|
|
|
@ -599,13 +599,11 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @brief \f$ L_p \f$ - detection output layer. |
|
|
|
|
* @brief detection output layer. |
|
|
|
|
* |
|
|
|
|
* num() and channels() are 1. |
|
|
|
|
* Since the number of bboxes to be kept is unknown before nms, we manually |
|
|
|
|
* set it to maximal number of detections, [keep_top_k] parameter multiplied by batch size. |
|
|
|
|
* Each row is a 7 dimension std::vector, which stores |
|
|
|
|
* [image_id, label, confidence, xmin, ymin, xmax, ymax] |
|
|
|
|
* The layer size is: @f$ (1 \times 1 \times N \times 7) @f$ |
|
|
|
|
* where N is the number of detections after nms, and each row is: |
|
|
|
|
* [image_id, label, confidence, xmin, ymin, xmax, ymax] |
|
|
|
|
*/ |
|
|
|
|
class CV_EXPORTS DetectionOutputLayer : public Layer |
|
|
|
|
{ |
|
|
|
|