Merge pull request #3544 from jet47:cuda-warping-refactoring

pull/3626/head
Vadim Pisarevsky 10 years ago
commit 17b1152fa3
  1. 13
      modules/cudalegacy/include/opencv2/cudalegacy.hpp
  2. 147
      modules/cudalegacy/src/image_pyramid.cpp
  3. 2
      modules/cudawarping/CMakeLists.txt
  4. 23
      modules/cudawarping/include/opencv2/cudawarping.hpp
  5. 119
      modules/cudawarping/perf/perf_warping.cpp
  6. 7
      modules/cudawarping/src/precomp.hpp
  7. 110
      modules/cudawarping/src/pyramids.cpp
  8. 122
      modules/cudawarping/src/warp.cpp
  9. 5
      modules/stitching/CMakeLists.txt
  10. 2
      modules/stitching/include/opencv2/stitching/detail/warpers.hpp
  11. 0
      modules/stitching/src/cuda/build_warp_maps.cu
  12. 85
      modules/stitching/src/warpers.cpp
  13. 298
      modules/stitching/src/warpers_cuda.cpp

@ -43,6 +43,7 @@
#ifndef __OPENCV_CUDALEGACY_HPP__
#define __OPENCV_CUDALEGACY_HPP__
#include "opencv2/core/cuda.hpp"
#include "opencv2/cudalegacy/NCV.hpp"
#include "opencv2/cudalegacy/NPP_staging.hpp"
#include "opencv2/cudalegacy/NCVPyramid.hpp"
@ -56,4 +57,16 @@
@}
*/
namespace cv { namespace cuda {
class CV_EXPORTS ImagePyramid : public Algorithm
{
public:
virtual void getLayer(OutputArray outImg, Size outRoi, Stream& stream = Stream::Null()) const = 0;
};
CV_EXPORTS Ptr<ImagePyramid> createImagePyramid(InputArray img, int nLayers = -1, Stream& stream = Stream::Null());
}}
#endif /* __OPENCV_CUDALEGACY_HPP__ */

@ -0,0 +1,147 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::cuda;
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
Ptr<ImagePyramid> cv::cuda::createImagePyramid(InputArray, int, Stream&) { throw_no_cuda(); return Ptr<ImagePyramid>(); }
#else // HAVE_CUDA
namespace
{
class ImagePyramidImpl : public ImagePyramid
{
public:
ImagePyramidImpl(InputArray img, int nLayers, Stream& stream);
void getLayer(OutputArray outImg, Size outRoi, Stream& stream = Stream::Null()) const;
private:
GpuMat layer0_;
std::vector<GpuMat> pyramid_;
int nLayers_;
};
ImagePyramidImpl::ImagePyramidImpl(InputArray _img, int numLayers, Stream& stream)
{
GpuMat img = _img.getGpuMat();
CV_Assert( img.depth() <= CV_32F && img.channels() <= 4 );
img.copyTo(layer0_, stream);
Size szLastLayer = img.size();
nLayers_ = 1;
if (numLayers <= 0)
numLayers = 255; // it will cut-off when any of the dimensions goes 1
pyramid_.resize(numLayers);
for (int i = 0; i < numLayers - 1; ++i)
{
Size szCurLayer(szLastLayer.width / 2, szLastLayer.height / 2);
if (szCurLayer.width == 0 || szCurLayer.height == 0)
break;
ensureSizeIsEnough(szCurLayer, img.type(), pyramid_[i]);
nLayers_++;
const GpuMat& prevLayer = i == 0 ? layer0_ : pyramid_[i - 1];
cv::cuda::device::pyramid::downsampleX2(prevLayer, pyramid_[i], img.depth(), img.channels(), StreamAccessor::getStream(stream));
szLastLayer = szCurLayer;
}
}
void ImagePyramidImpl::getLayer(OutputArray _outImg, Size outRoi, Stream& stream) const
{
CV_Assert( outRoi.width <= layer0_.cols && outRoi.height <= layer0_.rows && outRoi.width > 0 && outRoi.height > 0 );
ensureSizeIsEnough(outRoi, layer0_.type(), _outImg);
GpuMat outImg = _outImg.getGpuMat();
if (outRoi.width == layer0_.cols && outRoi.height == layer0_.rows)
{
layer0_.copyTo(outImg, stream);
return;
}
float lastScale = 1.0f;
float curScale;
GpuMat lastLayer = layer0_;
GpuMat curLayer;
for (int i = 0; i < nLayers_ - 1; ++i)
{
curScale = lastScale * 0.5f;
curLayer = pyramid_[i];
if (outRoi.width == curLayer.cols && outRoi.height == curLayer.rows)
{
curLayer.copyTo(outImg, stream);
}
if (outRoi.width >= curLayer.cols && outRoi.height >= curLayer.rows)
break;
lastScale = curScale;
lastLayer = curLayer;
}
cv::cuda::device::pyramid::interpolateFrom1(lastLayer, outImg, outImg.depth(), outImg.channels(), StreamAccessor::getStream(stream));
}
}
Ptr<ImagePyramid> cv::cuda::createImagePyramid(InputArray img, int nLayers, Stream& stream)
{
return Ptr<ImagePyramid>(new ImagePyramidImpl(img, nLayers, stream));
}
#endif

@ -6,4 +6,4 @@ set(the_description "CUDA-accelerated Image Warping")
ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4127 /wd4324 /wd4512 -Wundef -Wmissing-declarations -Wshadow)
ocv_define_module(cudawarping opencv_imgproc OPTIONAL opencv_cudalegacy)
ocv_define_module(cudawarping opencv_core opencv_imgproc OPTIONAL opencv_cudev)

@ -171,21 +171,6 @@ CV_EXPORTS void warpPerspective(InputArray src, OutputArray dst, InputArray M, S
*/
CV_EXPORTS void buildWarpPerspectiveMaps(InputArray M, bool inverse, Size dsize, OutputArray xmap, OutputArray ymap, Stream& stream = Stream::Null());
/** @brief Builds plane warping maps.
*/
CV_EXPORTS void buildWarpPlaneMaps(Size src_size, Rect dst_roi, InputArray K, InputArray R, InputArray T, float scale,
OutputArray map_x, OutputArray map_y, Stream& stream = Stream::Null());
/** @brief Builds cylindrical warping maps.
*/
CV_EXPORTS void buildWarpCylindricalMaps(Size src_size, Rect dst_roi, InputArray K, InputArray R, float scale,
OutputArray map_x, OutputArray map_y, Stream& stream = Stream::Null());
/** @brief Builds spherical warping maps.
*/
CV_EXPORTS void buildWarpSphericalMaps(Size src_size, Rect dst_roi, InputArray K, InputArray R, float scale,
OutputArray map_x, OutputArray map_y, Stream& stream = Stream::Null());
/** @brief Rotates an image around the origin (0,0) and then shifts it.
@param src Source image. Supports 1, 3 or 4 channels images with CV_8U , CV_16U or CV_32F
@ -224,14 +209,6 @@ src .
*/
CV_EXPORTS void pyrUp(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
class CV_EXPORTS ImagePyramid : public Algorithm
{
public:
virtual void getLayer(OutputArray outImg, Size outRoi, Stream& stream = Stream::Null()) const = 0;
};
CV_EXPORTS Ptr<ImagePyramid> createImagePyramid(InputArray img, int nLayers = -1, Stream& stream = Stream::Null());
//! @}
}} // namespace cv { namespace cuda {

@ -325,88 +325,6 @@ PERF_TEST_P(Sz_Depth_Cn_Inter_Border, WarpPerspective,
}
}
//////////////////////////////////////////////////////////////////////
// BuildWarpPlaneMaps
PERF_TEST_P(Sz, BuildWarpPlaneMaps,
CUDA_TYPICAL_MAT_SIZES)
{
const cv::Size size = GetParam();
const cv::Mat K = cv::Mat::eye(3, 3, CV_32FC1);
const cv::Mat R = cv::Mat::ones(3, 3, CV_32FC1);
const cv::Mat T = cv::Mat::zeros(1, 3, CV_32F);
if (PERF_RUN_CUDA())
{
cv::cuda::GpuMat map_x;
cv::cuda::GpuMat map_y;
TEST_CYCLE() cv::cuda::buildWarpPlaneMaps(size, cv::Rect(0, 0, size.width, size.height), K, R, T, 1.0, map_x, map_y);
CUDA_SANITY_CHECK(map_x);
CUDA_SANITY_CHECK(map_y);
}
else
{
FAIL_NO_CPU();
}
}
//////////////////////////////////////////////////////////////////////
// BuildWarpCylindricalMaps
PERF_TEST_P(Sz, BuildWarpCylindricalMaps,
CUDA_TYPICAL_MAT_SIZES)
{
const cv::Size size = GetParam();
const cv::Mat K = cv::Mat::eye(3, 3, CV_32FC1);
const cv::Mat R = cv::Mat::ones(3, 3, CV_32FC1);
if (PERF_RUN_CUDA())
{
cv::cuda::GpuMat map_x;
cv::cuda::GpuMat map_y;
TEST_CYCLE() cv::cuda::buildWarpCylindricalMaps(size, cv::Rect(0, 0, size.width, size.height), K, R, 1.0, map_x, map_y);
CUDA_SANITY_CHECK(map_x);
CUDA_SANITY_CHECK(map_y);
}
else
{
FAIL_NO_CPU();
}
}
//////////////////////////////////////////////////////////////////////
// BuildWarpSphericalMaps
PERF_TEST_P(Sz, BuildWarpSphericalMaps,
CUDA_TYPICAL_MAT_SIZES)
{
const cv::Size size = GetParam();
const cv::Mat K = cv::Mat::eye(3, 3, CV_32FC1);
const cv::Mat R = cv::Mat::ones(3, 3, CV_32FC1);
if (PERF_RUN_CUDA())
{
cv::cuda::GpuMat map_x;
cv::cuda::GpuMat map_y;
TEST_CYCLE() cv::cuda::buildWarpSphericalMaps(size, cv::Rect(0, 0, size.width, size.height), K, R, 1.0, map_x, map_y);
CUDA_SANITY_CHECK(map_x);
CUDA_SANITY_CHECK(map_y);
}
else
{
FAIL_NO_CPU();
}
}
//////////////////////////////////////////////////////////////////////
// Rotate
@ -514,40 +432,3 @@ PERF_TEST_P(Sz_Depth_Cn, PyrUp,
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// ImagePyramidGetLayer
PERF_TEST_P(Sz_Depth_Cn, ImagePyramidGetLayer,
Combine(CUDA_TYPICAL_MAT_SIZES,
Values(CV_8U, CV_16U, CV_32F),
CUDA_CHANNELS_1_3_4))
{
const cv::Size size = GET_PARAM(0);
const int depth = GET_PARAM(1);
const int channels = GET_PARAM(2);
const int type = CV_MAKE_TYPE(depth, channels);
cv::Mat src(size, type);
declare.in(src, WARMUP_RNG);
const int nLayers = 3;
const cv::Size dstSize(size.width / 2 + 10, size.height / 2 + 10);
if (PERF_RUN_CUDA())
{
const cv::cuda::GpuMat d_src(src);
cv::cuda::GpuMat dst;
cv::Ptr<cv::cuda::ImagePyramid> d_pyr = cv::cuda::createImagePyramid(d_src, nLayers);
TEST_CYCLE() d_pyr->getLayer(dst, dstSize);
CUDA_SANITY_CHECK(dst);
}
else
{
FAIL_NO_CPU();
}
}

@ -47,11 +47,4 @@
#include "opencv2/core/private.cuda.hpp"
#include "opencv2/opencv_modules.hpp"
#ifdef HAVE_OPENCV_CUDALEGACY
# include "opencv2/cudalegacy.hpp"
# include "opencv2/cudalegacy/private.hpp"
#endif
#endif /* __OPENCV_PRECOMP_H__ */

@ -50,8 +50,6 @@ using namespace cv::cuda;
void cv::cuda::pyrDown(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
void cv::cuda::pyrUp(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
Ptr<ImagePyramid> cv::cuda::createImagePyramid(InputArray, int, Stream&) { throw_no_cuda(); return Ptr<ImagePyramid>(); }
#else // HAVE_CUDA
//////////////////////////////////////////////////////////////////////////////
@ -133,112 +131,4 @@ void cv::cuda::pyrUp(InputArray _src, OutputArray _dst, Stream& stream)
func(src, dst, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// ImagePyramid
#ifdef HAVE_OPENCV_CUDALEGACY
namespace
{
class ImagePyramidImpl : public ImagePyramid
{
public:
ImagePyramidImpl(InputArray img, int nLayers, Stream& stream);
void getLayer(OutputArray outImg, Size outRoi, Stream& stream = Stream::Null()) const;
private:
GpuMat layer0_;
std::vector<GpuMat> pyramid_;
int nLayers_;
};
ImagePyramidImpl::ImagePyramidImpl(InputArray _img, int numLayers, Stream& stream)
{
GpuMat img = _img.getGpuMat();
CV_Assert( img.depth() <= CV_32F && img.channels() <= 4 );
img.copyTo(layer0_, stream);
Size szLastLayer = img.size();
nLayers_ = 1;
if (numLayers <= 0)
numLayers = 255; // it will cut-off when any of the dimensions goes 1
pyramid_.resize(numLayers);
for (int i = 0; i < numLayers - 1; ++i)
{
Size szCurLayer(szLastLayer.width / 2, szLastLayer.height / 2);
if (szCurLayer.width == 0 || szCurLayer.height == 0)
break;
ensureSizeIsEnough(szCurLayer, img.type(), pyramid_[i]);
nLayers_++;
const GpuMat& prevLayer = i == 0 ? layer0_ : pyramid_[i - 1];
cv::cuda::device::pyramid::downsampleX2(prevLayer, pyramid_[i], img.depth(), img.channels(), StreamAccessor::getStream(stream));
szLastLayer = szCurLayer;
}
}
void ImagePyramidImpl::getLayer(OutputArray _outImg, Size outRoi, Stream& stream) const
{
CV_Assert( outRoi.width <= layer0_.cols && outRoi.height <= layer0_.rows && outRoi.width > 0 && outRoi.height > 0 );
ensureSizeIsEnough(outRoi, layer0_.type(), _outImg);
GpuMat outImg = _outImg.getGpuMat();
if (outRoi.width == layer0_.cols && outRoi.height == layer0_.rows)
{
layer0_.copyTo(outImg, stream);
return;
}
float lastScale = 1.0f;
float curScale;
GpuMat lastLayer = layer0_;
GpuMat curLayer;
for (int i = 0; i < nLayers_ - 1; ++i)
{
curScale = lastScale * 0.5f;
curLayer = pyramid_[i];
if (outRoi.width == curLayer.cols && outRoi.height == curLayer.rows)
{
curLayer.copyTo(outImg, stream);
}
if (outRoi.width >= curLayer.cols && outRoi.height >= curLayer.rows)
break;
lastScale = curScale;
lastLayer = curLayer;
}
cv::cuda::device::pyramid::interpolateFrom1(lastLayer, outImg, outImg.depth(), outImg.channels(), StreamAccessor::getStream(stream));
}
}
#endif
Ptr<ImagePyramid> cv::cuda::createImagePyramid(InputArray img, int nLayers, Stream& stream)
{
#ifndef HAVE_OPENCV_CUDALEGACY
(void) img;
(void) nLayers;
(void) stream;
throw_no_cuda();
return Ptr<ImagePyramid>();
#else
return Ptr<ImagePyramid>(new ImagePyramidImpl(img, nLayers, stream));
#endif
}
#endif // HAVE_CUDA

@ -53,10 +53,6 @@ void cv::cuda::buildWarpAffineMaps(InputArray, bool, Size, OutputArray, OutputAr
void cv::cuda::warpPerspective(InputArray, OutputArray, InputArray, Size, int, int, Scalar, Stream&) { throw_no_cuda(); }
void cv::cuda::buildWarpPerspectiveMaps(InputArray, bool, Size, OutputArray, OutputArray, Stream&) { throw_no_cuda(); }
void cv::cuda::buildWarpPlaneMaps(Size, Rect, InputArray, InputArray, InputArray, float, OutputArray, OutputArray, Stream&) { throw_no_cuda(); }
void cv::cuda::buildWarpCylindricalMaps(Size, Rect, InputArray, InputArray, float, OutputArray, OutputArray, Stream&) { throw_no_cuda(); }
void cv::cuda::buildWarpSphericalMaps(Size, Rect, InputArray, InputArray, float, OutputArray, OutputArray, Stream&) { throw_no_cuda(); }
void cv::cuda::rotate(InputArray, OutputArray, Size, double, double, double, int, Stream&) { throw_no_cuda(); }
#else // HAVE_CUDA
@ -462,124 +458,6 @@ void cv::cuda::warpPerspective(InputArray _src, OutputArray _dst, InputArray _M,
}
}
//////////////////////////////////////////////////////////////////////////////
// buildWarpPlaneMaps
namespace cv { namespace cuda { namespace device
{
namespace imgproc
{
void buildWarpPlaneMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y,
const float k_rinv[9], const float r_kinv[9], const float t[3], float scale,
cudaStream_t stream);
}
}}}
void cv::cuda::buildWarpPlaneMaps(Size src_size, Rect dst_roi, InputArray _K, InputArray _R, InputArray _T,
float scale, OutputArray _map_x, OutputArray _map_y, Stream& stream)
{
(void) src_size;
Mat K = _K.getMat();
Mat R = _R.getMat();
Mat T = _T.getMat();
CV_Assert( K.size() == Size(3,3) && K.type() == CV_32FC1 );
CV_Assert( R.size() == Size(3,3) && R.type() == CV_32FC1 );
CV_Assert( (T.size() == Size(3,1) || T.size() == Size(1,3)) && T.type() == CV_32FC1 && T.isContinuous() );
Mat K_Rinv = K * R.t();
Mat R_Kinv = R * K.inv();
CV_Assert( K_Rinv.isContinuous() );
CV_Assert( R_Kinv.isContinuous() );
_map_x.create(dst_roi.size(), CV_32FC1);
_map_y.create(dst_roi.size(), CV_32FC1);
GpuMat map_x = _map_x.getGpuMat();
GpuMat map_y = _map_y.getGpuMat();
device::imgproc::buildWarpPlaneMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(),
T.ptr<float>(), scale, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// buildWarpCylyndricalMaps
namespace cv { namespace cuda { namespace device
{
namespace imgproc
{
void buildWarpCylindricalMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y,
const float k_rinv[9], const float r_kinv[9], float scale,
cudaStream_t stream);
}
}}}
void cv::cuda::buildWarpCylindricalMaps(Size src_size, Rect dst_roi, InputArray _K, InputArray _R, float scale,
OutputArray _map_x, OutputArray _map_y, Stream& stream)
{
(void) src_size;
Mat K = _K.getMat();
Mat R = _R.getMat();
CV_Assert( K.size() == Size(3,3) && K.type() == CV_32FC1 );
CV_Assert( R.size() == Size(3,3) && R.type() == CV_32FC1 );
Mat K_Rinv = K * R.t();
Mat R_Kinv = R * K.inv();
CV_Assert( K_Rinv.isContinuous() );
CV_Assert( R_Kinv.isContinuous() );
_map_x.create(dst_roi.size(), CV_32FC1);
_map_y.create(dst_roi.size(), CV_32FC1);
GpuMat map_x = _map_x.getGpuMat();
GpuMat map_y = _map_y.getGpuMat();
device::imgproc::buildWarpCylindricalMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(), scale, StreamAccessor::getStream(stream));
}
//////////////////////////////////////////////////////////////////////////////
// buildWarpSphericalMaps
namespace cv { namespace cuda { namespace device
{
namespace imgproc
{
void buildWarpSphericalMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y,
const float k_rinv[9], const float r_kinv[9], float scale,
cudaStream_t stream);
}
}}}
void cv::cuda::buildWarpSphericalMaps(Size src_size, Rect dst_roi, InputArray _K, InputArray _R, float scale,
OutputArray _map_x, OutputArray _map_y, Stream& stream)
{
(void) src_size;
Mat K = _K.getMat();
Mat R = _R.getMat();
CV_Assert( K.size() == Size(3,3) && K.type() == CV_32FC1 );
CV_Assert( R.size() == Size(3,3) && R.type() == CV_32FC1 );
Mat K_Rinv = K * R.t();
Mat R_Kinv = R * K.inv();
CV_Assert( K_Rinv.isContinuous() );
CV_Assert( R_Kinv.isContinuous() );
_map_x.create(dst_roi.size(), CV_32FC1);
_map_y.create(dst_roi.size(), CV_32FC1);
GpuMat map_x = _map_x.getGpuMat();
GpuMat map_y = _map_y.getGpuMat();
device::imgproc::buildWarpSphericalMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(), scale, StreamAccessor::getStream(stream));
}
////////////////////////////////////////////////////////////////////////
// rotate

@ -1,3 +1,8 @@
set(the_description "Images stitching")
if(HAVE_CUDA)
ocv_warnings_disable(CMAKE_CXX_FLAGS -Wundef -Wmissing-declarations -Wshadow)
endif()
ocv_define_module(stitching opencv_imgproc opencv_features2d opencv_calib3d opencv_objdetect
OPTIONAL opencv_cuda opencv_cudaarithm opencv_cudafilters opencv_cudafeatures2d opencv_xfeatures2d)

@ -398,7 +398,6 @@ public:
};
#ifdef HAVE_OPENCV_CUDAWARPING
class CV_EXPORTS PlaneWarperGpu : public PlaneWarper
{
public:
@ -515,7 +514,6 @@ public:
private:
cuda::GpuMat d_xmap_, d_ymap_, d_src_, d_dst_;
};
#endif
struct SphericalPortraitProjector : ProjectorBase

@ -242,91 +242,6 @@ void SphericalWarper::detectResultRoi(Size src_size, Point &dst_tl, Point &dst_b
dst_br.y = static_cast<int>(br_vf);
}
#ifdef HAVE_OPENCV_CUDAWARPING
Rect PlaneWarperGpu::buildMaps(Size src_size, InputArray K, InputArray R, cuda::GpuMat & xmap, cuda::GpuMat & ymap)
{
return buildMaps(src_size, K, R, Mat::zeros(3, 1, CV_32F), xmap, ymap);
}
Rect PlaneWarperGpu::buildMaps(Size src_size, InputArray K, InputArray R, InputArray T, cuda::GpuMat & xmap, cuda::GpuMat & ymap)
{
projector_.setCameraParams(K, R, T);
Point dst_tl, dst_br;
detectResultRoi(src_size, dst_tl, dst_br);
cuda::buildWarpPlaneMaps(src_size, Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1)),
K, R, T, projector_.scale, xmap, ymap);
return Rect(dst_tl, dst_br);
}
Point PlaneWarperGpu::warp(const cuda::GpuMat & src, InputArray K, InputArray R, int interp_mode, int border_mode,
cuda::GpuMat & dst)
{
return warp(src, K, R, Mat::zeros(3, 1, CV_32F), interp_mode, border_mode, dst);
}
Point PlaneWarperGpu::warp(const cuda::GpuMat & src, InputArray K, InputArray R, InputArray T, int interp_mode, int border_mode,
cuda::GpuMat & dst)
{
Rect dst_roi = buildMaps(src.size(), K, R, T, d_xmap_, d_ymap_);
dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type());
cuda::remap(src, dst, d_xmap_, d_ymap_, interp_mode, border_mode);
return dst_roi.tl();
}
Rect SphericalWarperGpu::buildMaps(Size src_size, InputArray K, InputArray R, cuda::GpuMat & xmap, cuda::GpuMat & ymap)
{
projector_.setCameraParams(K, R);
Point dst_tl, dst_br;
detectResultRoi(src_size, dst_tl, dst_br);
cuda::buildWarpSphericalMaps(src_size, Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1)),
K, R, projector_.scale, xmap, ymap);
return Rect(dst_tl, dst_br);
}
Point SphericalWarperGpu::warp(const cuda::GpuMat & src, InputArray K, InputArray R, int interp_mode, int border_mode,
cuda::GpuMat & dst)
{
Rect dst_roi = buildMaps(src.size(), K, R, d_xmap_, d_ymap_);
dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type());
cuda::remap(src, dst, d_xmap_, d_ymap_, interp_mode, border_mode);
return dst_roi.tl();
}
Rect CylindricalWarperGpu::buildMaps(Size src_size, InputArray K, InputArray R, cuda::GpuMat & xmap, cuda::GpuMat & ymap)
{
projector_.setCameraParams(K, R);
Point dst_tl, dst_br;
detectResultRoi(src_size, dst_tl, dst_br);
cuda::buildWarpCylindricalMaps(src_size, Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1)),
K, R, projector_.scale, xmap, ymap);
return Rect(dst_tl, dst_br);
}
Point CylindricalWarperGpu::warp(const cuda::GpuMat & src, InputArray K, InputArray R, int interp_mode, int border_mode,
cuda::GpuMat & dst)
{
Rect dst_roi = buildMaps(src.size(), K, R, d_xmap_, d_ymap_);
dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type());
cuda::remap(src, dst, d_xmap_, d_ymap_, interp_mode, border_mode);
return dst_roi.tl();
}
#endif
void SphericalPortraitWarper::detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br)
{
detectResultRoiByBorder(src_size, dst_tl, dst_br);

@ -0,0 +1,298 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/core/private.cuda.hpp"
using namespace cv;
using namespace cv::cuda;
#ifdef HAVE_CUDA
namespace cv { namespace cuda { namespace device
{
namespace imgproc
{
void buildWarpPlaneMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y,
const float k_rinv[9], const float r_kinv[9], const float t[3], float scale,
cudaStream_t stream);
void buildWarpSphericalMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y,
const float k_rinv[9], const float r_kinv[9], float scale,
cudaStream_t stream);
void buildWarpCylindricalMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y,
const float k_rinv[9], const float r_kinv[9], float scale,
cudaStream_t stream);
}
}}}
static void buildWarpPlaneMaps(Size src_size, Rect dst_roi, InputArray _K, InputArray _R, InputArray _T,
float scale, OutputArray _map_x, OutputArray _map_y, Stream& stream = Stream::Null())
{
(void) src_size;
Mat K = _K.getMat();
Mat R = _R.getMat();
Mat T = _T.getMat();
CV_Assert( K.size() == Size(3,3) && K.type() == CV_32FC1 );
CV_Assert( R.size() == Size(3,3) && R.type() == CV_32FC1 );
CV_Assert( (T.size() == Size(3,1) || T.size() == Size(1,3)) && T.type() == CV_32FC1 && T.isContinuous() );
Mat K_Rinv = K * R.t();
Mat R_Kinv = R * K.inv();
CV_Assert( K_Rinv.isContinuous() );
CV_Assert( R_Kinv.isContinuous() );
_map_x.create(dst_roi.size(), CV_32FC1);
_map_y.create(dst_roi.size(), CV_32FC1);
GpuMat map_x = _map_x.getGpuMat();
GpuMat map_y = _map_y.getGpuMat();
device::imgproc::buildWarpPlaneMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(),
T.ptr<float>(), scale, StreamAccessor::getStream(stream));
}
static void buildWarpSphericalMaps(Size src_size, Rect dst_roi, InputArray _K, InputArray _R, float scale,
OutputArray _map_x, OutputArray _map_y, Stream& stream = Stream::Null())
{
(void) src_size;
Mat K = _K.getMat();
Mat R = _R.getMat();
CV_Assert( K.size() == Size(3,3) && K.type() == CV_32FC1 );
CV_Assert( R.size() == Size(3,3) && R.type() == CV_32FC1 );
Mat K_Rinv = K * R.t();
Mat R_Kinv = R * K.inv();
CV_Assert( K_Rinv.isContinuous() );
CV_Assert( R_Kinv.isContinuous() );
_map_x.create(dst_roi.size(), CV_32FC1);
_map_y.create(dst_roi.size(), CV_32FC1);
GpuMat map_x = _map_x.getGpuMat();
GpuMat map_y = _map_y.getGpuMat();
device::imgproc::buildWarpSphericalMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(), scale, StreamAccessor::getStream(stream));
}
static void buildWarpCylindricalMaps(Size src_size, Rect dst_roi, InputArray _K, InputArray _R, float scale,
OutputArray _map_x, OutputArray _map_y, Stream& stream = Stream::Null())
{
(void) src_size;
Mat K = _K.getMat();
Mat R = _R.getMat();
CV_Assert( K.size() == Size(3,3) && K.type() == CV_32FC1 );
CV_Assert( R.size() == Size(3,3) && R.type() == CV_32FC1 );
Mat K_Rinv = K * R.t();
Mat R_Kinv = R * K.inv();
CV_Assert( K_Rinv.isContinuous() );
CV_Assert( R_Kinv.isContinuous() );
_map_x.create(dst_roi.size(), CV_32FC1);
_map_y.create(dst_roi.size(), CV_32FC1);
GpuMat map_x = _map_x.getGpuMat();
GpuMat map_y = _map_y.getGpuMat();
device::imgproc::buildWarpCylindricalMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr<float>(), R_Kinv.ptr<float>(), scale, StreamAccessor::getStream(stream));
}
#endif
Rect cv::detail::PlaneWarperGpu::buildMaps(Size src_size, InputArray K, InputArray R,
cuda::GpuMat & xmap, cuda::GpuMat & ymap)
{
return buildMaps(src_size, K, R, Mat::zeros(3, 1, CV_32F), xmap, ymap);
}
Rect cv::detail::PlaneWarperGpu::buildMaps(Size src_size, InputArray K, InputArray R, InputArray T,
cuda::GpuMat & xmap, cuda::GpuMat & ymap)
{
#ifndef HAVE_CUDA
(void)src_size;
(void)K;
(void)R;
(void)T;
(void)xmap;
(void)ymap;
throw_no_cuda();
return Rect();
#else
projector_.setCameraParams(K, R, T);
Point dst_tl, dst_br;
detectResultRoi(src_size, dst_tl, dst_br);
::buildWarpPlaneMaps(src_size, Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1)),
K, R, T, projector_.scale, xmap, ymap);
return Rect(dst_tl, dst_br);
#endif
}
Point cv::detail::PlaneWarperGpu::warp(const cuda::GpuMat & src, InputArray K, InputArray R,
int interp_mode, int border_mode,
cuda::GpuMat & dst)
{
return warp(src, K, R, Mat::zeros(3, 1, CV_32F), interp_mode, border_mode, dst);
}
Point cv::detail::PlaneWarperGpu::warp(const cuda::GpuMat & src, InputArray K, InputArray R, InputArray T,
int interp_mode, int border_mode,
cuda::GpuMat & dst)
{
#ifndef HAVE_OPENCV_CUDAWARPING
(void)src;
(void)K;
(void)R;
(void)T;
(void)interp_mode;
(void)border_mode;
(void)dst;
throw_no_cuda();
return Point();
#else
Rect dst_roi = buildMaps(src.size(), K, R, T, d_xmap_, d_ymap_);
dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type());
cuda::remap(src, dst, d_xmap_, d_ymap_, interp_mode, border_mode);
return dst_roi.tl();
#endif
}
Rect cv::detail::SphericalWarperGpu::buildMaps(Size src_size, InputArray K, InputArray R, cuda::GpuMat & xmap, cuda::GpuMat & ymap)
{
#ifndef HAVE_CUDA
(void)src_size;
(void)K;
(void)R;
(void)xmap;
(void)ymap;
throw_no_cuda();
return Rect();
#else
projector_.setCameraParams(K, R);
Point dst_tl, dst_br;
detectResultRoi(src_size, dst_tl, dst_br);
::buildWarpSphericalMaps(src_size, Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1)),
K, R, projector_.scale, xmap, ymap);
return Rect(dst_tl, dst_br);
#endif
}
Point cv::detail::SphericalWarperGpu::warp(const cuda::GpuMat & src, InputArray K, InputArray R,
int interp_mode, int border_mode,
cuda::GpuMat & dst)
{
#ifndef HAVE_OPENCV_CUDAWARPING
(void)src;
(void)K;
(void)R;
(void)interp_mode;
(void)border_mode;
(void)dst;
throw_no_cuda();
return Point();
#else
Rect dst_roi = buildMaps(src.size(), K, R, d_xmap_, d_ymap_);
dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type());
cuda::remap(src, dst, d_xmap_, d_ymap_, interp_mode, border_mode);
return dst_roi.tl();
#endif
}
Rect cv::detail::CylindricalWarperGpu::buildMaps(Size src_size, InputArray K, InputArray R,
cuda::GpuMat & xmap, cuda::GpuMat & ymap)
{
#ifndef HAVE_CUDA
(void)src_size;
(void)K;
(void)R;
(void)xmap;
(void)ymap;
throw_no_cuda();
return Rect();
#else
projector_.setCameraParams(K, R);
Point dst_tl, dst_br;
detectResultRoi(src_size, dst_tl, dst_br);
::buildWarpCylindricalMaps(src_size, Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1)),
K, R, projector_.scale, xmap, ymap);
return Rect(dst_tl, dst_br);
#endif
}
Point cv::detail::CylindricalWarperGpu::warp(const cuda::GpuMat & src, InputArray K, InputArray R,
int interp_mode, int border_mode,
cuda::GpuMat & dst)
{
#ifndef HAVE_OPENCV_CUDAWARPING
(void)src;
(void)K;
(void)R;
(void)interp_mode;
(void)border_mode;
(void)dst;
throw_no_cuda();
return Point();
#else
Rect dst_roi = buildMaps(src.size(), K, R, d_xmap_, d_ymap_);
dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type());
cuda::remap(src, dst, d_xmap_, d_ymap_, interp_mode, border_mode);
return dst_roi.tl();
#endif
}
Loading…
Cancel
Save