optimized cv::normalize in case of mask

pull/2808/head
Ilya Lavrenov 11 years ago
parent d156f5af6d
commit 17956a5ae5
  1. 2
      modules/core/doc/operations_on_arrays.rst
  2. 2
      modules/core/include/opencv2/core.hpp
  3. 1
      modules/core/include/opencv2/core/mat.hpp
  4. 82
      modules/core/src/convert.cpp
  5. 17
      modules/core/src/matrix.cpp
  6. 72
      modules/core/src/opencl/normalize.cl

@ -2065,7 +2065,7 @@ normalize
--------- ---------
Normalizes the norm or value range of an array. Normalizes the norm or value range of an array.
.. ocv:function:: void normalize( InputArray src, OutputArray dst, double alpha=1, double beta=0, int norm_type=NORM_L2, int dtype=-1, InputArray mask=noArray() ) .. ocv:function:: void normalize( InputArray src, InputOutputArray dst, double alpha=1, double beta=0, int norm_type=NORM_L2, int dtype=-1, InputArray mask=noArray() )
.. ocv:function:: void normalize(const SparseMat& src, SparseMat& dst, double alpha, int normType) .. ocv:function:: void normalize(const SparseMat& src, SparseMat& dst, double alpha, int normType)

@ -240,7 +240,7 @@ CV_EXPORTS_W void batchDistance(InputArray src1, InputArray src2,
bool crosscheck = false); bool crosscheck = false);
//! scales and shifts array elements so that either the specified norm (alpha) or the minimum (alpha) and maximum (beta) array values get the specified values //! scales and shifts array elements so that either the specified norm (alpha) or the minimum (alpha) and maximum (beta) array values get the specified values
CV_EXPORTS_W void normalize( InputArray src, OutputArray dst, double alpha = 1, double beta = 0, CV_EXPORTS_W void normalize( InputArray src, InputOutputArray dst, double alpha = 1, double beta = 0,
int norm_type = NORM_L2, int dtype = -1, InputArray mask = noArray()); int norm_type = NORM_L2, int dtype = -1, InputArray mask = noArray());
//! scales and shifts array elements so that either the specified norm (alpha) or the minimum (alpha) and maximum (beta) array values get the specified values //! scales and shifts array elements so that either the specified norm (alpha) or the minimum (alpha) and maximum (beta) array values get the specified values

@ -131,6 +131,7 @@ public:
virtual bool isSubmatrix(int i=-1) const; virtual bool isSubmatrix(int i=-1) const;
virtual bool empty() const; virtual bool empty() const;
virtual void copyTo(const _OutputArray& arr) const; virtual void copyTo(const _OutputArray& arr) const;
virtual void copyTo(const _OutputArray& arr, const _InputArray & mask) const;
virtual size_t offset(int i=-1) const; virtual size_t offset(int i=-1) const;
virtual size_t step(int i=-1) const; virtual size_t step(int i=-1) const;
bool isMat() const; bool isMat() const;

@ -1831,18 +1831,86 @@ namespace cv {
#ifdef HAVE_OPENCL #ifdef HAVE_OPENCL
static bool ocl_normalize( InputArray _src, OutputArray _dst, InputArray _mask, int rtype, static bool ocl_normalize( InputArray _src, InputOutputArray _dst, InputArray _mask, int dtype,
double scale, double shift ) double scale, double delta )
{ {
UMat src = _src.getUMat(), dst = _dst.getUMat(); UMat src = _src.getUMat();
if( _mask.empty() ) if( _mask.empty() )
src.convertTo( dst, rtype, scale, shift ); src.convertTo( _dst, dtype, scale, delta );
else if (src.channels() <= 4)
{
const ocl::Device & dev = ocl::Device::getDefault();
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype),
ddepth = CV_MAT_DEPTH(dtype), wdepth = std::max(CV_32F, std::max(sdepth, ddepth)),
rowsPerWI = dev.isIntel() ? 4 : 1;
float fscale = static_cast<float>(scale), fdelta = static_cast<float>(delta);
bool haveScale = std::fabs(scale - 1) > DBL_EPSILON,
haveZeroScale = !(std::fabs(scale) > DBL_EPSILON),
haveDelta = std::fabs(delta) > DBL_EPSILON,
doubleSupport = dev.doubleFPConfig() > 0;
if (!haveScale && !haveDelta && stype == dtype)
{
_src.copyTo(_dst, _mask);
return true;
}
if (haveZeroScale)
{
_dst.setTo(Scalar(delta), _mask);
return true;
}
if ((sdepth == CV_64F || ddepth == CV_64F) && !doubleSupport)
return false;
char cvt[2][40];
String opts = format("-D srcT=%s -D dstT=%s -D convertToWT=%s -D cn=%d -D rowsPerWI=%d"
" -D convertToDT=%s -D workT=%s%s%s%s -D srcT1=%s -D dstT1=%s",
ocl::typeToStr(stype), ocl::typeToStr(dtype),
ocl::convertTypeStr(sdepth, wdepth, cn, cvt[0]), cn,
rowsPerWI, ocl::convertTypeStr(wdepth, ddepth, cn, cvt[1]),
ocl::typeToStr(CV_MAKE_TYPE(wdepth, cn)),
doubleSupport ? " -D DOUBLE_SUPPORT" : "",
haveScale ? " -D HAVE_SCALE" : "",
haveDelta ? " -D HAVE_DELTA" : "",
ocl::typeToStr(sdepth), ocl::typeToStr(ddepth));
ocl::Kernel k("normalizek", ocl::core::normalize_oclsrc, opts);
if (k.empty())
return false;
UMat mask = _mask.getUMat(), dst = _dst.getUMat();
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
maskarg = ocl::KernelArg::ReadOnlyNoSize(mask),
dstarg = ocl::KernelArg::ReadWrite(dst);
if (haveScale)
{
if (haveDelta)
k.args(srcarg, maskarg, dstarg, fscale, fdelta);
else
k.args(srcarg, maskarg, dstarg, fscale);
}
else
{
if (haveDelta)
k.args(srcarg, maskarg, dstarg, fdelta);
else
k.args(srcarg, maskarg, dstarg);
}
size_t globalsize[2] = { src.cols, (src.rows + rowsPerWI - 1) / rowsPerWI };
return k.run(2, globalsize, NULL, false);
}
else else
{ {
UMat temp; UMat temp;
src.convertTo( temp, rtype, scale, shift ); src.convertTo( temp, dtype, scale, delta );
temp.copyTo( dst, _mask ); temp.copyTo( _dst, _mask );
} }
return true; return true;
@ -1852,7 +1920,7 @@ static bool ocl_normalize( InputArray _src, OutputArray _dst, InputArray _mask,
} }
void cv::normalize( InputArray _src, OutputArray _dst, double a, double b, void cv::normalize( InputArray _src, InputOutputArray _dst, double a, double b,
int norm_type, int rtype, InputArray _mask ) int norm_type, int rtype, InputArray _mask )
{ {
double scale = 1, shift = 0; double scale = 1, shift = 0;

@ -2051,6 +2051,23 @@ void _InputArray::copyTo(const _OutputArray& arr) const
CV_Error(Error::StsNotImplemented, ""); CV_Error(Error::StsNotImplemented, "");
} }
void _InputArray::copyTo(const _OutputArray& arr, const _InputArray & mask) const
{
int k = kind();
if( k == NONE )
arr.release();
else if( k == MAT || k == MATX || k == STD_VECTOR )
{
Mat m = getMat();
m.copyTo(arr, mask);
}
else if( k == UMAT )
((UMat*)obj)->copyTo(arr, mask);
else
CV_Error(Error::StsNotImplemented, "");
}
bool _OutputArray::fixedSize() const bool _OutputArray::fixedSize() const
{ {
return (flags & FIXED_SIZE) == FIXED_SIZE; return (flags & FIXED_SIZE) == FIXED_SIZE;

@ -0,0 +1,72 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2014, Itseez, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
#ifdef DOUBLE_SUPPORT
#ifdef cl_amd_fp64
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#elif defined (cl_khr_fp64)
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
#endif
#define noconvert
#if cn != 3
#define loadpix(addr) *(__global const srcT *)(addr)
#define storepix(val, addr) *(__global dstT *)(addr) = val
#define srcTSIZE (int)sizeof(srcT)
#define dstTSIZE (int)sizeof(dstT)
#else
#define loadpix(addr) vload3(0, (__global const srcT1 *)(addr))
#define storepix(val, addr) vstore3(val, 0, (__global dstT1 *)(addr))
#define srcTSIZE ((int)sizeof(srcT1)*3)
#define dstTSIZE ((int)sizeof(dstT1)*3)
#endif
__kernel void normalizek(__global const uchar * srcptr, int src_step, int src_offset,
__global const uchar * mask, int mask_step, int mask_offset,
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols
#ifdef HAVE_SCALE
, float scale
#endif
#ifdef HAVE_DELTA
, float delta
#endif
)
{
int x = get_global_id(0);
int y0 = get_global_id(1) * rowsPerWI;
if (x < dst_cols)
{
int src_index = mad24(y0, src_step, mad24(x, srcTSIZE, src_offset));
int mask_index = mad24(y0, mask_step, x + mask_offset);
int dst_index = mad24(y0, dst_step, mad24(x, dstTSIZE, dst_offset));
for (int y = y0, y1 = min(y0 + rowsPerWI, dst_rows); y < y1;
++y, src_index += src_step, dst_index += dst_step, mask_index += mask_step)
{
if (mask[mask_index])
{
workT value = convertToWT(loadpix(srcptr + src_index));
#ifdef HAVE_SCALE
#ifdef HAVE_DELTA
value = fma(value, (workT)(scale), (workT)(delta));
#else
value *= (workT)(scale);
#endif
#else // not scale
#ifdef HAVE_DELTA
value += (workT)(delta);
#endif
#endif
storepix(convertToDT(value), dstptr + dst_index);
}
}
}
}
Loading…
Cancel
Save