improve reduction logic and add fast transpose kernel

pull/16226/head
YashasSamaga 5 years ago
parent ee4feb4b09
commit 16bc505d26
  1. 37
      modules/dnn/src/cuda/fill_copy.cu
  2. 2
      modules/dnn/src/cuda/max_unpooling.cu
  3. 2
      modules/dnn/src/cuda/normalize.cu
  4. 218
      modules/dnn/src/cuda/permute.cu
  5. 9
      modules/dnn/src/cuda4dnn/kernels/fill_copy.hpp
  6. 3
      modules/dnn/src/cuda4dnn/kernels/permute.hpp
  7. 2
      modules/dnn/src/cuda4dnn/primitives/concat.hpp
  8. 2
      modules/dnn/src/cuda4dnn/primitives/padding.hpp

@ -21,7 +21,6 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T, std::size_t N> template <class T, std::size_t N>
__global__ void fill_vec(Span<T> output, T value) { __global__ void fill_vec(Span<T> output, T value) {
using vector_type = get_vector_type_t<T, N>; using vector_type = get_vector_type_t<T, N>;
auto output_vPtr = vector_type::get_pointer(output.data()); auto output_vPtr = vector_type::get_pointer(output.data());
for (auto i : grid_stride_range(output.size() / vector_type::size())) { for (auto i : grid_stride_range(output.size() / vector_type::size())) {
vector_type vec; vector_type vec;
@ -30,6 +29,18 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
v_store(output_vPtr[i], vec); v_store(output_vPtr[i], vec);
} }
} }
template <class T, std::size_t N>
__global__ void copy_vec(Span<T> output, View<T> input) {
using vector_type = get_vector_type_t<T, N>;
auto input_vPtr = vector_type::get_pointer(input.data());
auto output_vPtr = vector_type::get_pointer(output.data());
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
vector_type vec;
v_load(vec, input_vPtr[i]);
v_store(output_vPtr[i], vec);
}
}
} }
template <class T, std::size_t N> static template <class T, std::size_t N> static
@ -55,4 +66,28 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template void fill(const Stream&, Span<__half>, __half); template void fill(const Stream&, Span<__half>, __half);
template void fill(const Stream&, Span<float>, float); template void fill(const Stream&, Span<float>, float);
template <class T, std::size_t N> static
void launch_vectorized_copy(const Stream& stream, Span<T> output, View<T> input) {
CV_Assert(is_fully_aligned<T>(output, N));
CV_Assert(is_fully_aligned<T>(input, N));
auto kernel = raw::copy_vec<T, N>;
auto policy = make_policy(kernel, output.size() / N, 0, stream);
launch_kernel(kernel, policy, output, input);
}
template <class T>
void copy(const Stream& stream, Span<T> output, View<T> input) {
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(input, 4)) {
launch_vectorized_copy<T, 4>(stream, output, input);
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(input, 2)) {
launch_vectorized_copy<T, 2>(stream, output, input);
} else {
launch_vectorized_copy<T, 1>(stream, output, input);
}
}
template void copy(const Stream&, Span<__half>, View<__half>);
template void copy(const Stream&, Span<float>, View<float>);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */ }}}} /* namespace cv::dnn::cuda4dnn::kernels */

@ -16,7 +16,7 @@
#include "../cuda4dnn/csl/tensor.hpp" #include "../cuda4dnn/csl/tensor.hpp"
#include "../cuda4dnn/csl/span.hpp" #include "../cuda4dnn/csl/span.hpp"
#include "../cuda4dnn/kernels/fill.hpp" #include "../cuda4dnn/kernels/fill_copy.hpp"
#include <opencv2/core.hpp> #include <opencv2/core.hpp>

@ -15,7 +15,7 @@
#include "../cuda4dnn/csl/stream.hpp" #include "../cuda4dnn/csl/stream.hpp"
#include "../cuda4dnn/csl/span.hpp" #include "../cuda4dnn/csl/span.hpp"
#include "../cuda4dnn/kernels/fill.hpp" #include "../cuda4dnn/kernels/fill_copy.hpp"
#include "../cuda4dnn/kernels/scale_shift.hpp" #include "../cuda4dnn/kernels/scale_shift.hpp"
#include <opencv2/core.hpp> #include <opencv2/core.hpp>

@ -7,6 +7,7 @@
#include "array.hpp" #include "array.hpp"
#include "types.hpp" #include "types.hpp"
#include "vector_traits.hpp"
#include "grid_stride_range.hpp" #include "grid_stride_range.hpp"
#include "execution.hpp" #include "execution.hpp"
#include "kernel_dispatcher.hpp" #include "kernel_dispatcher.hpp"
@ -15,6 +16,8 @@
#include "../cuda4dnn/csl/tensor.hpp" #include "../cuda4dnn/csl/tensor.hpp"
#include "../cuda4dnn/csl/span.hpp" #include "../cuda4dnn/csl/span.hpp"
#include "../cuda4dnn/kernels/fill_copy.hpp"
#include <opencv2/core.hpp> #include <opencv2/core.hpp>
#include <cstddef> #include <cstddef>
@ -46,8 +49,88 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
output[i] = input[oldPosition]; output[i] = input[oldPosition];
} }
} }
template <class T, int TILE_SIZE, std::size_t N>
__global__ void transpose(Span<T> output, View<T> input, size_type in_width, size_type out_width)
{
using vector_type = get_vector_type_t<T, N>;
__shared__ T tile[TILE_SIZE][TILE_SIZE + 1];
/* blockDim.y = TILE_SIZE, blockDim.x = TILE_SIZE/N */
const index_type in_x = blockIdx.x * TILE_SIZE + threadIdx.x * N;
const index_type in_y = blockIdx.y * TILE_SIZE + threadIdx.y;
/* Every valid input location has a corresponding output location and vice versa.
* Hence, if we do not load values into the shared memory for a given location, we
* also won't read them for storing in the output.
*/
if (in_x < in_width && in_y < out_width)
{
vector_type vec;
auto input_vPtr = vector_type::get_pointer(input.data());
v_load(vec, input_vPtr[(in_y * in_width + in_x) / N]);
for (int i = 0; i < vector_type::size(); i++)
tile[threadIdx.y][threadIdx.x * N + i] = vec.data[i];
}
__syncthreads();
/* Note that `blockDim.x * N` is equal to `blockDim.y`. Since there are an equal
* number of them, we can interchange `threadIdx.x` and `threadIdx.y` without changing
* result. The advantage of interchanging is that consecutive output indices map to
* consecutive threads. This would allow writes across threds in a warp to be coalesced.
*/
const index_type out_x = blockIdx.y * TILE_SIZE + threadIdx.x * N;
const index_type out_y = blockIdx.x * TILE_SIZE + threadIdx.y;
if (out_x < out_width && out_y < in_width)
{
vector_type vec;
for (int i = 0; i < vector_type::size(); i++)
vec.data[i] = tile[threadIdx.x * N + i][threadIdx.y];
auto output_vPtr = vector_type::get_pointer(output.data());
v_store(output_vPtr[(out_y * out_width + out_x) / N], vec);
}
}
} }
template <class T, std::size_t N> static
void launch_transpose_kernel(const Stream& stream, Span<T> output, View<T> input, size_type in_width, size_type out_width)
{
CV_Assert(is_fully_aligned<T>(output, N));
CV_Assert(is_fully_aligned<T>(input, N));
CV_Assert(in_width % N == 0);
CV_Assert(out_width % N == 0);
constexpr int TILE_SIZE = 32;
constexpr int TILE_SIZE_X = TILE_SIZE/N, TILE_SIZE_Y = TILE_SIZE;
auto kernel = raw::transpose<T, TILE_SIZE, N>;
dim3 grid_size((in_width/N + TILE_SIZE_X - 1)/TILE_SIZE_X, (out_width + TILE_SIZE_Y - 1)/TILE_SIZE_Y);
dim3 block_size(TILE_SIZE_X, TILE_SIZE_Y);
auto policy = execution_policy(grid_size, block_size, stream);
launch_kernel(kernel, policy, output, input, in_width, out_width);
}
template <class T>
void transpose(const Stream& stream, Span<T> output, View<T> input, std::size_t in_width, std::size_t out_width)
{
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(input, 4) && in_width % 4 == 0 && out_width % 4 == 0) {
launch_transpose_kernel<T, 4>(stream, output, input, in_width, out_width);
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(input, 2) && in_width % 2 == 0 && out_width % 2 == 0) {
launch_transpose_kernel<T, 2>(stream, output, input, in_width, out_width);
} else {
launch_transpose_kernel<T, 1>(stream, output, input, in_width, out_width);
}
}
template void transpose(const Stream&, Span<__half>, View<__half>, std::size_t, std::size_t);
template void transpose(const Stream&, Span<float>, View<float>, std::size_t, std::size_t);
template <class T, std::size_t Rank> static template <class T, std::size_t Rank> static
void launch_permute_kernel( void launch_permute_kernel(
const Stream& stream, const Stream& stream,
@ -83,7 +166,11 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
CV_Assert(input.rank() == order.size()); CV_Assert(input.rank() == order.size());
CV_Assert(input.size() == output.size()); CV_Assert(input.size() == output.size());
/* squeezable axes at the beginning of both tensors which aren't permuted can be eliminated auto rank = output.rank();
auto inShape = input.shape_as_vector();
auto outShape = output.shape_as_vector();
/* singleton axes do not contribute towards address calculation
* *
* Reasoning: * Reasoning:
* ---------- * ----------
@ -92,33 +179,93 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
* tensor indices be [o1, o2, ...]. The permutation operation essentially copies items * tensor indices be [o1, o2, ...]. The permutation operation essentially copies items
* from the input tensor to new locations in the output tensor as dictated by the indices. * from the input tensor to new locations in the output tensor as dictated by the indices.
* *
* If the size of the first axis of the input and output tensor is one and these axes are * If the size of the nth axis (say i2) of the input is one the input and output indicies for
* not involved in any permutation, i.e. order[0] = 0, the input and output indicies for * all the elements will be of the form be [i1, 0, ...] and [..., 0, ...] respectively.
* all the elements will be of the form be [0, i2, ...] and [0, o2, ...] respectively. * The index does not contribute to the element's address calculation and hence would give
* The first index does not contribute to the element's address calculation and hence does * identical result if it weren't there.
* nothing apart from eating up few cycles.
*/ */
while (order[0] == 0 && input.get_axis_size(0) == 1 && output.get_axis_size(0) == 1) { for (int i = 0; i < rank; i++)
/* remove the axes */ {
input.squeeze(0); /* index `i` corresponds to the axis index in the output; order[i] has the corresponding axis index in the input */
output.squeeze(0); while (i < rank && outShape[i] == 1)
{
int in_i = order[i];
CV_Assert(inShape[in_i] == 1);
/* when we remove axis zero, the axis index will be one less than the previous index /* delete axis `i` */
* for the remaining axes inShape.erase(std::begin(inShape) + in_i);
*/ outShape.erase(std::begin(outShape) + i);
order.erase(order.begin());
for (auto& axis : order) /* deletion of an axis reduces an axis in the input tensor which would cause the indices
axis--; * of the axes that come after the deleted axis to reduce by one
*/
/* optimizations should not break the invariants */ order.erase(order.begin() + i);
CV_Assert(output.rank() == input.rank()); for (auto& axis : order)
CV_Assert(input.rank() == order.size()); if (axis > in_i)
CV_Assert(input.size() == output.size()); axis--;
rank--;
/* optimizations should not break the invariants */
CV_Assert(rank == order.size());
CV_Assert(inShape.size() == order.size());
CV_Assert(outShape.size() == order.size());
CV_Assert(input.size() == output.size());
}
} }
auto rank = output.rank(); /* contiguous axes whose relative ordering stays same before and after permutation can be merged into one axis
auto inShape = input.shape_as_vector(); * example: in permute order 0 2 3 1, axes 2 and 3 can be grouped into a single axis
auto outShape = output.shape_as_vector(); *
* Reasoning:
* ----------
* Suppose an item's indices in the input tensor is [i0, i1, i2, i3, ...]. Let the permutation order be [0, 3, 1, 2, ...].
* Note that i1 and i2 are adjacent axes in the same order in input as well as output. The indices in the output tensor
* will be [i0, i3, i1, i2, ...].
*
* Each axis in the contiguous axes sequence will add an offset of iN * strideN. In the above example,
* the two axes add a total offset of `i1 * (size2 * stride2) + i2 * stride2` which is `(i1 * size2 + i2) * stride2`,
* in both input and output. Note stride2 can be different in the input and output. We can merge the two axes into one axis
* with a size of `size1 * size2`. The new offset added will be `i12 * stride12` as the kernel iterates through `i12`. Note
* that `i12` is actually `(i1 * size2 + i2)` and `stride12` is `stride2`.
*/
for (int i = 0; i < rank; i++) {
/* the indices used in the loops such as `i` and `j` are axis indices in the output tensor */
/* the corresponding input axis indices are `order[i]` and `order[j]`*/
/* loop invariant: `i` is the first axis in the contiguous unpermuted axis sequence */
int j = i + 1; /* `j` is the axis which we will attempt to merge */
while (j < rank && (order[i] + 1) == order[j]) {
/* axis `i` and axis `j` do not change relative order */
auto in_i = order[i], in_j = order[j];
auto new_size = inShape[in_i] * inShape[in_j];
inShape[in_i] = new_size;
outShape[i] = new_size;
/* delete axis `j` */
inShape.erase(std::begin(inShape) + in_j);
outShape.erase(std::begin(outShape) + j);
/* deletion of an axis reduces an axis in the input tensor which would cause the indices
* of the axes that come after the deleted axis to reduce by one
*/
order.erase(order.begin() + j);
for (auto& axis : order)
if (axis > order[i])
axis--;
rank--;
/* optimizations should not break the invariants */
CV_Assert(rank == order.size());
CV_Assert(inShape.size() == order.size());
CV_Assert(outShape.size() == order.size());
CV_Assert(input.size() == output.size());
}
}
std::vector<std::size_t> inStride(rank), outStride(rank); std::vector<std::size_t> inStride(rank), outStride(rank);
inStride.back() = 1; inStride.back() = 1;
@ -133,8 +280,27 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
std::partial_sum(outStride.rbegin(), outStride.rend(), outStride.rbegin(), std::multiplies<std::size_t>()); std::partial_sum(outStride.rbegin(), outStride.rend(), outStride.rbegin(), std::multiplies<std::size_t>());
/* stride[0], stride[1], ..., stride[-2], 1 */ /* stride[0], stride[1], ..., stride[-2], 1 */
CV_Assert(2 <= rank && rank <= CSL_MAX_TENSOR_RANK); const bool is_in_order = [&order] {
permute_dispatcher<T, 2, CSL_MAX_TENSOR_RANK>(rank, stream, order, output, outStride, input, inStride); for (int i = 0; i < order.size(); i++)
if (order[i] != i)
return false;
return true;
}();
if (is_in_order)
{
kernels::copy<T>(stream, output, input);
}
else if(rank == 2)
{
/* use the more efficient transpose kernel */
transpose<T>(stream, output, input, inShape[1], outShape[1]);
}
else
{
CV_Assert(3 <= rank && rank <= CSL_MAX_TENSOR_RANK);
permute_dispatcher<T, 3, CSL_MAX_TENSOR_RANK>(rank, stream, order, output, outStride, input, inStride);
}
} }
template void permute(const Stream&, TensorSpan<__half>, TensorView<__half>, std::vector<std::size_t>); template void permute(const Stream&, TensorSpan<__half>, TensorView<__half>, std::vector<std::size_t>);

@ -2,8 +2,8 @@
// It is subject to the license terms in the LICENSE file found in the top-level directory // It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html. // of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_FILL_HPP #ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_FILL_COPY_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_FILL_HPP #define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_FILL_COPY_HPP
#include "../csl/stream.hpp" #include "../csl/stream.hpp"
#include "../csl/span.hpp" #include "../csl/span.hpp"
@ -13,6 +13,9 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T> template <class T>
void fill(const csl::Stream& stream, csl::Span<T> output, T value); void fill(const csl::Stream& stream, csl::Span<T> output, T value);
template <class T>
void copy(const csl::Stream& stream, csl::Span<T> output, csl::View<T> input);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */ }}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_FILL_HPP */ #endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_FILL_COPY_HPP */

@ -16,6 +16,9 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T> template <class T>
void permute(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> input, std::vector<std::size_t> order); void permute(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> input, std::vector<std::size_t> order);
template <class T>
void transpose(const csl::Stream& stream, csl::Span<T> output, csl::View<T> input, std::size_t in_width, std::size_t out_width);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */ }}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_PERMUTE_HPP */ #endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_PERMUTE_HPP */

@ -10,7 +10,7 @@
#include "../csl/stream.hpp" #include "../csl/stream.hpp"
#include "../csl/pointer.hpp" #include "../csl/pointer.hpp"
#include "../kernels/fill.hpp" #include "../kernels/fill_copy.hpp"
#include "../kernels/concat.hpp" #include "../kernels/concat.hpp"
#include <opencv2/core.hpp> #include <opencv2/core.hpp>

@ -10,7 +10,7 @@
#include "../csl/stream.hpp" #include "../csl/stream.hpp"
#include "../csl/tensor.hpp" #include "../csl/tensor.hpp"
#include "../kernels/fill.hpp" #include "../kernels/fill_copy.hpp"
#include "../kernels/concat.hpp" #include "../kernels/concat.hpp"
#include "../kernels/padding.hpp" #include "../kernels/padding.hpp"

Loading…
Cancel
Save