|
|
|
@ -10,19 +10,6 @@ |
|
|
|
|
|
|
|
|
|
namespace opencv_test { namespace { |
|
|
|
|
|
|
|
|
|
static void loadNet(const std::string& weights, const std::string& proto, |
|
|
|
|
const std::string& framework, Net* net) |
|
|
|
|
{ |
|
|
|
|
if (framework == "caffe") |
|
|
|
|
*net = cv::dnn::readNetFromCaffe(proto, weights); |
|
|
|
|
else if (framework == "torch") |
|
|
|
|
*net = cv::dnn::readNetFromTorch(weights); |
|
|
|
|
else if (framework == "tensorflow") |
|
|
|
|
*net = cv::dnn::readNetFromTensorflow(weights, proto); |
|
|
|
|
else |
|
|
|
|
CV_Error(Error::StsNotImplemented, "Unknown framework " + framework); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
class DNNTestNetwork : public TestWithParam <tuple<DNNBackend, DNNTarget> > |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
@ -37,7 +24,7 @@ public: |
|
|
|
|
|
|
|
|
|
void processNet(const std::string& weights, const std::string& proto, |
|
|
|
|
Size inpSize, const std::string& outputLayer, |
|
|
|
|
const std::string& framework, const std::string& halideScheduler = "", |
|
|
|
|
const std::string& halideScheduler = "", |
|
|
|
|
double l1 = 1e-5, double lInf = 1e-4) |
|
|
|
|
{ |
|
|
|
|
// Create a common input blob.
|
|
|
|
@ -45,12 +32,12 @@ public: |
|
|
|
|
Mat inp(4, blobSize, CV_32FC1); |
|
|
|
|
randu(inp, 0.0f, 1.0f); |
|
|
|
|
|
|
|
|
|
processNet(weights, proto, inp, outputLayer, framework, halideScheduler, l1, lInf); |
|
|
|
|
processNet(weights, proto, inp, outputLayer, halideScheduler, l1, lInf); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void processNet(std::string weights, std::string proto, |
|
|
|
|
Mat inp, const std::string& outputLayer, |
|
|
|
|
const std::string& framework, std::string halideScheduler = "", |
|
|
|
|
std::string halideScheduler = "", |
|
|
|
|
double l1 = 1e-5, double lInf = 1e-4) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL) |
|
|
|
@ -67,9 +54,8 @@ public: |
|
|
|
|
proto = findDataFile(proto, false); |
|
|
|
|
|
|
|
|
|
// Create two networks - with default backend and target and a tested one.
|
|
|
|
|
Net netDefault, net; |
|
|
|
|
loadNet(weights, proto, framework, &netDefault); |
|
|
|
|
loadNet(weights, proto, framework, &net); |
|
|
|
|
Net netDefault = readNet(weights, proto); |
|
|
|
|
Net net = readNet(weights, proto); |
|
|
|
|
|
|
|
|
|
netDefault.setInput(inp); |
|
|
|
|
Mat outDefault = netDefault.forward(outputLayer).clone(); |
|
|
|
@ -115,7 +101,7 @@ public: |
|
|
|
|
TEST_P(DNNTestNetwork, AlexNet) |
|
|
|
|
{ |
|
|
|
|
processNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt", |
|
|
|
|
Size(227, 227), "prob", "caffe", |
|
|
|
|
Size(227, 227), "prob", |
|
|
|
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_alexnet.yml" : |
|
|
|
|
"dnn/halide_scheduler_alexnet.yml"); |
|
|
|
|
} |
|
|
|
@ -123,7 +109,7 @@ TEST_P(DNNTestNetwork, AlexNet) |
|
|
|
|
TEST_P(DNNTestNetwork, ResNet_50) |
|
|
|
|
{ |
|
|
|
|
processNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt", |
|
|
|
|
Size(224, 224), "prob", "caffe", |
|
|
|
|
Size(224, 224), "prob", |
|
|
|
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_resnet_50.yml" : |
|
|
|
|
"dnn/halide_scheduler_resnet_50.yml"); |
|
|
|
|
} |
|
|
|
@ -131,7 +117,7 @@ TEST_P(DNNTestNetwork, ResNet_50) |
|
|
|
|
TEST_P(DNNTestNetwork, SqueezeNet_v1_1) |
|
|
|
|
{ |
|
|
|
|
processNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt", |
|
|
|
|
Size(227, 227), "prob", "caffe", |
|
|
|
|
Size(227, 227), "prob", |
|
|
|
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_squeezenet_v1_1.yml" : |
|
|
|
|
"dnn/halide_scheduler_squeezenet_v1_1.yml"); |
|
|
|
|
} |
|
|
|
@ -139,13 +125,13 @@ TEST_P(DNNTestNetwork, SqueezeNet_v1_1) |
|
|
|
|
TEST_P(DNNTestNetwork, GoogLeNet) |
|
|
|
|
{ |
|
|
|
|
processNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt", |
|
|
|
|
Size(224, 224), "prob", "caffe"); |
|
|
|
|
Size(224, 224), "prob"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, Inception_5h) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE) throw SkipTestException(""); |
|
|
|
|
processNet("dnn/tensorflow_inception_graph.pb", "", Size(224, 224), "softmax2", "tensorflow", |
|
|
|
|
processNet("dnn/tensorflow_inception_graph.pb", "", Size(224, 224), "softmax2", |
|
|
|
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_inception_5h.yml" : |
|
|
|
|
"dnn/halide_scheduler_inception_5h.yml"); |
|
|
|
|
} |
|
|
|
@ -153,7 +139,7 @@ TEST_P(DNNTestNetwork, Inception_5h) |
|
|
|
|
TEST_P(DNNTestNetwork, ENet) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE) throw SkipTestException(""); |
|
|
|
|
processNet("dnn/Enet-model-best.net", "", Size(512, 512), "l367_Deconvolution", "torch", |
|
|
|
|
processNet("dnn/Enet-model-best.net", "", Size(512, 512), "l367_Deconvolution", |
|
|
|
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_enet.yml" : |
|
|
|
|
"dnn/halide_scheduler_enet.yml", |
|
|
|
|
2e-5, 0.15); |
|
|
|
@ -166,7 +152,7 @@ TEST_P(DNNTestNetwork, MobileNet_SSD_Caffe) |
|
|
|
|
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); |
|
|
|
|
|
|
|
|
|
processNet("dnn/MobileNetSSD_deploy.caffemodel", "dnn/MobileNetSSD_deploy.prototxt", |
|
|
|
|
inp, "detection_out", "caffe"); |
|
|
|
|
inp, "detection_out"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, MobileNet_SSD_TensorFlow) |
|
|
|
@ -175,7 +161,7 @@ TEST_P(DNNTestNetwork, MobileNet_SSD_TensorFlow) |
|
|
|
|
Mat sample = imread(findDataFile("dnn/street.png", false)); |
|
|
|
|
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); |
|
|
|
|
processNet("dnn/ssd_mobilenet_v1_coco.pb", "dnn/ssd_mobilenet_v1_coco.pbtxt", |
|
|
|
|
inp, "detection_out", "tensorflow"); |
|
|
|
|
inp, "detection_out"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, SSD_VGG16) |
|
|
|
@ -185,21 +171,21 @@ TEST_P(DNNTestNetwork, SSD_VGG16) |
|
|
|
|
backend == DNN_BACKEND_INFERENCE_ENGINE) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
processNet("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", |
|
|
|
|
"dnn/ssd_vgg16.prototxt", Size(300, 300), "detection_out", "caffe"); |
|
|
|
|
"dnn/ssd_vgg16.prototxt", Size(300, 300), "detection_out"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, OpenPose_pose_coco) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); |
|
|
|
|
processNet("dnn/openpose_pose_coco.caffemodel", "dnn/openpose_pose_coco.prototxt", |
|
|
|
|
Size(368, 368), "", "caffe"); |
|
|
|
|
Size(368, 368), ""); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, OpenPose_pose_mpi) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); |
|
|
|
|
processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi.prototxt", |
|
|
|
|
Size(368, 368), "", "caffe"); |
|
|
|
|
Size(368, 368), ""); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, OpenPose_pose_mpi_faster_4_stages) |
|
|
|
@ -208,13 +194,13 @@ TEST_P(DNNTestNetwork, OpenPose_pose_mpi_faster_4_stages) |
|
|
|
|
// The same .caffemodel but modified .prototxt
|
|
|
|
|
// See https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/pose/poseParameters.cpp
|
|
|
|
|
processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi_faster_4_stages.prototxt", |
|
|
|
|
Size(368, 368), "", "caffe"); |
|
|
|
|
Size(368, 368), ""); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, OpenFace) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); |
|
|
|
|
processNet("dnn/openface_nn4.small2.v1.t7", "", Size(96, 96), "", "torch"); |
|
|
|
|
processNet("dnn/openface_nn4.small2.v1.t7", "", Size(96, 96), ""); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, opencv_face_detector) |
|
|
|
@ -223,7 +209,7 @@ TEST_P(DNNTestNetwork, opencv_face_detector) |
|
|
|
|
Mat img = imread(findDataFile("gpu/lbpcascade/er.png", false)); |
|
|
|
|
Mat inp = blobFromImage(img, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false); |
|
|
|
|
processNet("dnn/opencv_face_detector.caffemodel", "dnn/opencv_face_detector.prototxt", |
|
|
|
|
inp, "detection_out", "caffe"); |
|
|
|
|
inp, "detection_out"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, Inception_v2_SSD_TensorFlow) |
|
|
|
@ -232,7 +218,7 @@ TEST_P(DNNTestNetwork, Inception_v2_SSD_TensorFlow) |
|
|
|
|
Mat sample = imread(findDataFile("dnn/street.png", false)); |
|
|
|
|
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); |
|
|
|
|
processNet("dnn/ssd_inception_v2_coco_2017_11_17.pb", "dnn/ssd_inception_v2_coco_2017_11_17.pbtxt", |
|
|
|
|
inp, "detection_out", "tensorflow"); |
|
|
|
|
inp, "detection_out"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
const tuple<DNNBackend, DNNTarget> testCases[] = { |
|
|
|
|