|
|
|
@ -47,11 +47,9 @@ using namespace cv::gpu; |
|
|
|
|
|
|
|
|
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) |
|
|
|
|
|
|
|
|
|
void cv::gpu::HoughLines(const GpuMat&, GpuMat&, float, float, int, bool, int) { throw_no_cuda(); } |
|
|
|
|
void cv::gpu::HoughLines(const GpuMat&, GpuMat&, HoughLinesBuf&, float, float, int, bool, int) { throw_no_cuda(); } |
|
|
|
|
void cv::gpu::HoughLinesDownload(const GpuMat&, OutputArray, OutputArray) { throw_no_cuda(); } |
|
|
|
|
Ptr<gpu::HoughLinesDetector> cv::gpu::createHoughLinesDetector(float, float, int, bool, int) { throw_no_cuda(); return Ptr<HoughLinesDetector>(); } |
|
|
|
|
|
|
|
|
|
void cv::gpu::HoughLinesP(const GpuMat&, GpuMat&, HoughLinesBuf&, float, float, int, int, int) { throw_no_cuda(); } |
|
|
|
|
Ptr<gpu::HoughSegmentDetector> cv::gpu::createHoughSegmentDetector(float, float, int, int, int) { throw_no_cuda(); return Ptr<HoughSegmentDetector>(); } |
|
|
|
|
|
|
|
|
|
void cv::gpu::HoughCircles(const GpuMat&, GpuMat&, int, float, float, int, int, int, int, int) { throw_no_cuda(); } |
|
|
|
|
void cv::gpu::HoughCircles(const GpuMat&, GpuMat&, HoughCirclesBuf&, int, float, float, int, int, int, int, int) { throw_no_cuda(); } |
|
|
|
@ -79,7 +77,7 @@ namespace cv { namespace gpu { namespace cudev |
|
|
|
|
}}} |
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////
|
|
|
|
|
// HoughLines
|
|
|
|
|
// HoughLinesDetector
|
|
|
|
|
|
|
|
|
|
namespace cv { namespace gpu { namespace cudev |
|
|
|
|
{ |
|
|
|
@ -90,74 +88,139 @@ namespace cv { namespace gpu { namespace cudev |
|
|
|
|
} |
|
|
|
|
}}} |
|
|
|
|
|
|
|
|
|
void cv::gpu::HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort, int maxLines) |
|
|
|
|
namespace |
|
|
|
|
{ |
|
|
|
|
HoughLinesBuf buf; |
|
|
|
|
HoughLines(src, lines, buf, rho, theta, threshold, doSort, maxLines); |
|
|
|
|
} |
|
|
|
|
class HoughLinesDetectorImpl : public HoughLinesDetector |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
HoughLinesDetectorImpl(float rho, float theta, int threshold, bool doSort, int maxLines) : |
|
|
|
|
rho_(rho), theta_(theta), threshold_(threshold), doSort_(doSort), maxLines_(maxLines) |
|
|
|
|
{ |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::gpu::HoughLines(const GpuMat& src, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int threshold, bool doSort, int maxLines) |
|
|
|
|
{ |
|
|
|
|
using namespace cv::gpu::cudev::hough; |
|
|
|
|
void detect(InputArray src, OutputArray lines); |
|
|
|
|
void downloadResults(InputArray d_lines, OutputArray h_lines, OutputArray h_votes = noArray()); |
|
|
|
|
|
|
|
|
|
CV_Assert(src.type() == CV_8UC1); |
|
|
|
|
CV_Assert(src.cols < std::numeric_limits<unsigned short>::max()); |
|
|
|
|
CV_Assert(src.rows < std::numeric_limits<unsigned short>::max()); |
|
|
|
|
void setRho(float rho) { rho_ = rho; } |
|
|
|
|
float getRho() const { return rho_; } |
|
|
|
|
|
|
|
|
|
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, buf.list); |
|
|
|
|
unsigned int* srcPoints = buf.list.ptr<unsigned int>(); |
|
|
|
|
void setTheta(float theta) { theta_ = theta; } |
|
|
|
|
float getTheta() const { return theta_; } |
|
|
|
|
|
|
|
|
|
const int pointsCount = buildPointList_gpu(src, srcPoints); |
|
|
|
|
if (pointsCount == 0) |
|
|
|
|
{ |
|
|
|
|
lines.release(); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
void setThreshold(int threshold) { threshold_ = threshold; } |
|
|
|
|
int getThreshold() const { return threshold_; } |
|
|
|
|
|
|
|
|
|
const int numangle = cvRound(CV_PI / theta); |
|
|
|
|
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho); |
|
|
|
|
CV_Assert(numangle > 0 && numrho > 0); |
|
|
|
|
void setDoSort(bool doSort) { doSort_ = doSort; } |
|
|
|
|
bool getDoSort() const { return doSort_; } |
|
|
|
|
|
|
|
|
|
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, buf.accum); |
|
|
|
|
buf.accum.setTo(Scalar::all(0)); |
|
|
|
|
void setMaxLines(int maxLines) { maxLines_ = maxLines; } |
|
|
|
|
int getMaxLines() const { return maxLines_; } |
|
|
|
|
|
|
|
|
|
DeviceInfo devInfo; |
|
|
|
|
linesAccum_gpu(srcPoints, pointsCount, buf.accum, rho, theta, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20)); |
|
|
|
|
void write(FileStorage& fs) const |
|
|
|
|
{ |
|
|
|
|
fs << "name" << "HoughLinesDetector_GPU" |
|
|
|
|
<< "rho" << rho_ |
|
|
|
|
<< "theta" << theta_ |
|
|
|
|
<< "threshold" << threshold_ |
|
|
|
|
<< "doSort" << doSort_ |
|
|
|
|
<< "maxLines" << maxLines_; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
ensureSizeIsEnough(2, maxLines, CV_32FC2, lines); |
|
|
|
|
void read(const FileNode& fn) |
|
|
|
|
{ |
|
|
|
|
CV_Assert( String(fn["name"]) == "HoughLinesDetector_GPU" ); |
|
|
|
|
rho_ = (float)fn["rho"]; |
|
|
|
|
theta_ = (float)fn["theta"]; |
|
|
|
|
threshold_ = (int)fn["threshold"]; |
|
|
|
|
doSort_ = (int)fn["doSort"] != 0; |
|
|
|
|
maxLines_ = (int)fn["maxLines"]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int linesCount = linesGetResult_gpu(buf.accum, lines.ptr<float2>(0), lines.ptr<int>(1), maxLines, rho, theta, threshold, doSort); |
|
|
|
|
if (linesCount > 0) |
|
|
|
|
lines.cols = linesCount; |
|
|
|
|
else |
|
|
|
|
lines.release(); |
|
|
|
|
} |
|
|
|
|
private: |
|
|
|
|
float rho_; |
|
|
|
|
float theta_; |
|
|
|
|
int threshold_; |
|
|
|
|
bool doSort_; |
|
|
|
|
int maxLines_; |
|
|
|
|
|
|
|
|
|
void cv::gpu::HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines_, OutputArray h_votes_) |
|
|
|
|
{ |
|
|
|
|
if (d_lines.empty()) |
|
|
|
|
GpuMat accum_; |
|
|
|
|
GpuMat list_; |
|
|
|
|
GpuMat result_; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
void HoughLinesDetectorImpl::detect(InputArray _src, OutputArray lines) |
|
|
|
|
{ |
|
|
|
|
h_lines_.release(); |
|
|
|
|
if (h_votes_.needed()) |
|
|
|
|
h_votes_.release(); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
using namespace cv::gpu::cudev::hough; |
|
|
|
|
|
|
|
|
|
CV_Assert(d_lines.rows == 2 && d_lines.type() == CV_32FC2); |
|
|
|
|
GpuMat src = _src.getGpuMat(); |
|
|
|
|
|
|
|
|
|
h_lines_.create(1, d_lines.cols, CV_32FC2); |
|
|
|
|
Mat h_lines = h_lines_.getMat(); |
|
|
|
|
d_lines.row(0).download(h_lines); |
|
|
|
|
CV_Assert( src.type() == CV_8UC1 ); |
|
|
|
|
CV_Assert( src.cols < std::numeric_limits<unsigned short>::max() ); |
|
|
|
|
CV_Assert( src.rows < std::numeric_limits<unsigned short>::max() ); |
|
|
|
|
|
|
|
|
|
if (h_votes_.needed()) |
|
|
|
|
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, list_); |
|
|
|
|
unsigned int* srcPoints = list_.ptr<unsigned int>(); |
|
|
|
|
|
|
|
|
|
const int pointsCount = buildPointList_gpu(src, srcPoints); |
|
|
|
|
if (pointsCount == 0) |
|
|
|
|
{ |
|
|
|
|
lines.release(); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
const int numangle = cvRound(CV_PI / theta_); |
|
|
|
|
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho_); |
|
|
|
|
CV_Assert( numangle > 0 && numrho > 0 ); |
|
|
|
|
|
|
|
|
|
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, accum_); |
|
|
|
|
accum_.setTo(Scalar::all(0)); |
|
|
|
|
|
|
|
|
|
DeviceInfo devInfo; |
|
|
|
|
linesAccum_gpu(srcPoints, pointsCount, accum_, rho_, theta_, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20)); |
|
|
|
|
|
|
|
|
|
ensureSizeIsEnough(2, maxLines_, CV_32FC2, result_); |
|
|
|
|
|
|
|
|
|
int linesCount = linesGetResult_gpu(accum_, result_.ptr<float2>(0), result_.ptr<int>(1), maxLines_, rho_, theta_, threshold_, doSort_); |
|
|
|
|
|
|
|
|
|
if (linesCount == 0) |
|
|
|
|
{ |
|
|
|
|
lines.release(); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
result_.cols = linesCount; |
|
|
|
|
result_.copyTo(lines); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void HoughLinesDetectorImpl::downloadResults(InputArray _d_lines, OutputArray h_lines, OutputArray h_votes) |
|
|
|
|
{ |
|
|
|
|
h_votes_.create(1, d_lines.cols, CV_32SC1); |
|
|
|
|
Mat h_votes = h_votes_.getMat(); |
|
|
|
|
GpuMat d_votes(1, d_lines.cols, CV_32SC1, const_cast<int*>(d_lines.ptr<int>(1))); |
|
|
|
|
d_votes.download(h_votes); |
|
|
|
|
GpuMat d_lines = _d_lines.getGpuMat(); |
|
|
|
|
|
|
|
|
|
if (d_lines.empty()) |
|
|
|
|
{ |
|
|
|
|
h_lines.release(); |
|
|
|
|
if (h_votes.needed()) |
|
|
|
|
h_votes.release(); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
CV_Assert( d_lines.rows == 2 && d_lines.type() == CV_32FC2 ); |
|
|
|
|
|
|
|
|
|
d_lines.row(0).download(h_lines); |
|
|
|
|
|
|
|
|
|
if (h_votes.needed()) |
|
|
|
|
{ |
|
|
|
|
GpuMat d_votes(1, d_lines.cols, CV_32SC1, d_lines.ptr<int>(1)); |
|
|
|
|
d_votes.download(h_votes); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Ptr<HoughLinesDetector> cv::gpu::createHoughLinesDetector(float rho, float theta, int threshold, bool doSort, int maxLines) |
|
|
|
|
{ |
|
|
|
|
return new HoughLinesDetectorImpl(rho, theta, threshold, doSort, maxLines); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////
|
|
|
|
|
// HoughLinesP
|
|
|
|
|
|
|
|
|
@ -169,42 +232,113 @@ namespace cv { namespace gpu { namespace cudev |
|
|
|
|
} |
|
|
|
|
}}} |
|
|
|
|
|
|
|
|
|
void cv::gpu::HoughLinesP(const GpuMat& src, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int minLineLength, int maxLineGap, int maxLines) |
|
|
|
|
namespace |
|
|
|
|
{ |
|
|
|
|
using namespace cv::gpu::cudev::hough; |
|
|
|
|
class PHoughLinesDetectorImpl : public HoughSegmentDetector |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
PHoughLinesDetectorImpl(float rho, float theta, int minLineLength, int maxLineGap, int maxLines) : |
|
|
|
|
rho_(rho), theta_(theta), minLineLength_(minLineLength), maxLineGap_(maxLineGap), maxLines_(maxLines) |
|
|
|
|
{ |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
CV_Assert( src.type() == CV_8UC1 ); |
|
|
|
|
CV_Assert( src.cols < std::numeric_limits<unsigned short>::max() ); |
|
|
|
|
CV_Assert( src.rows < std::numeric_limits<unsigned short>::max() ); |
|
|
|
|
void detect(InputArray src, OutputArray lines); |
|
|
|
|
|
|
|
|
|
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, buf.list); |
|
|
|
|
unsigned int* srcPoints = buf.list.ptr<unsigned int>(); |
|
|
|
|
void setRho(float rho) { rho_ = rho; } |
|
|
|
|
float getRho() const { return rho_; } |
|
|
|
|
|
|
|
|
|
const int pointsCount = buildPointList_gpu(src, srcPoints); |
|
|
|
|
if (pointsCount == 0) |
|
|
|
|
void setTheta(float theta) { theta_ = theta; } |
|
|
|
|
float getTheta() const { return theta_; } |
|
|
|
|
|
|
|
|
|
void setMinLineLength(int minLineLength) { minLineLength_ = minLineLength; } |
|
|
|
|
int getMinLineLength() const { return minLineLength_; } |
|
|
|
|
|
|
|
|
|
void setMaxLineGap(int maxLineGap) { maxLineGap_ = maxLineGap; } |
|
|
|
|
int getMaxLineGap() const { return maxLineGap_; } |
|
|
|
|
|
|
|
|
|
void setMaxLines(int maxLines) { maxLines_ = maxLines; } |
|
|
|
|
int getMaxLines() const { return maxLines_; } |
|
|
|
|
|
|
|
|
|
void write(FileStorage& fs) const |
|
|
|
|
{ |
|
|
|
|
fs << "name" << "PHoughLinesDetector_GPU" |
|
|
|
|
<< "rho" << rho_ |
|
|
|
|
<< "theta" << theta_ |
|
|
|
|
<< "minLineLength" << minLineLength_ |
|
|
|
|
<< "maxLineGap" << maxLineGap_ |
|
|
|
|
<< "maxLines" << maxLines_; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void read(const FileNode& fn) |
|
|
|
|
{ |
|
|
|
|
CV_Assert( String(fn["name"]) == "PHoughLinesDetector_GPU" ); |
|
|
|
|
rho_ = (float)fn["rho"]; |
|
|
|
|
theta_ = (float)fn["theta"]; |
|
|
|
|
minLineLength_ = (int)fn["minLineLength"]; |
|
|
|
|
maxLineGap_ = (int)fn["maxLineGap"]; |
|
|
|
|
maxLines_ = (int)fn["maxLines"]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
private: |
|
|
|
|
float rho_; |
|
|
|
|
float theta_; |
|
|
|
|
int minLineLength_; |
|
|
|
|
int maxLineGap_; |
|
|
|
|
int maxLines_; |
|
|
|
|
|
|
|
|
|
GpuMat accum_; |
|
|
|
|
GpuMat list_; |
|
|
|
|
GpuMat result_; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
void PHoughLinesDetectorImpl::detect(InputArray _src, OutputArray lines) |
|
|
|
|
{ |
|
|
|
|
lines.release(); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
using namespace cv::gpu::cudev::hough; |
|
|
|
|
|
|
|
|
|
const int numangle = cvRound(CV_PI / theta); |
|
|
|
|
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho); |
|
|
|
|
CV_Assert( numangle > 0 && numrho > 0 ); |
|
|
|
|
GpuMat src = _src.getGpuMat(); |
|
|
|
|
|
|
|
|
|
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, buf.accum); |
|
|
|
|
buf.accum.setTo(Scalar::all(0)); |
|
|
|
|
CV_Assert( src.type() == CV_8UC1 ); |
|
|
|
|
CV_Assert( src.cols < std::numeric_limits<unsigned short>::max() ); |
|
|
|
|
CV_Assert( src.rows < std::numeric_limits<unsigned short>::max() ); |
|
|
|
|
|
|
|
|
|
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, list_); |
|
|
|
|
unsigned int* srcPoints = list_.ptr<unsigned int>(); |
|
|
|
|
|
|
|
|
|
const int pointsCount = buildPointList_gpu(src, srcPoints); |
|
|
|
|
if (pointsCount == 0) |
|
|
|
|
{ |
|
|
|
|
lines.release(); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
DeviceInfo devInfo; |
|
|
|
|
linesAccum_gpu(srcPoints, pointsCount, buf.accum, rho, theta, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20)); |
|
|
|
|
const int numangle = cvRound(CV_PI / theta_); |
|
|
|
|
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho_); |
|
|
|
|
CV_Assert( numangle > 0 && numrho > 0 ); |
|
|
|
|
|
|
|
|
|
ensureSizeIsEnough(1, maxLines, CV_32SC4, lines); |
|
|
|
|
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, accum_); |
|
|
|
|
accum_.setTo(Scalar::all(0)); |
|
|
|
|
|
|
|
|
|
int linesCount = houghLinesProbabilistic_gpu(src, buf.accum, lines.ptr<int4>(), maxLines, rho, theta, maxLineGap, minLineLength); |
|
|
|
|
DeviceInfo devInfo; |
|
|
|
|
linesAccum_gpu(srcPoints, pointsCount, accum_, rho_, theta_, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20)); |
|
|
|
|
|
|
|
|
|
if (linesCount > 0) |
|
|
|
|
lines.cols = linesCount; |
|
|
|
|
else |
|
|
|
|
lines.release(); |
|
|
|
|
ensureSizeIsEnough(1, maxLines_, CV_32SC4, result_); |
|
|
|
|
|
|
|
|
|
int linesCount = houghLinesProbabilistic_gpu(src, accum_, result_.ptr<int4>(), maxLines_, rho_, theta_, maxLineGap_, minLineLength_); |
|
|
|
|
|
|
|
|
|
if (linesCount == 0) |
|
|
|
|
{ |
|
|
|
|
lines.release(); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
result_.cols = linesCount; |
|
|
|
|
result_.copyTo(lines); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Ptr<HoughSegmentDetector> cv::gpu::createHoughSegmentDetector(float rho, float theta, int minLineLength, int maxLineGap, int maxLines) |
|
|
|
|
{ |
|
|
|
|
return new PHoughLinesDetectorImpl(rho, theta, minLineLength, maxLineGap, maxLines); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////
|
|
|
|
|