refactored HoughLines (converted it into Algorithm)

pull/1042/head
Vladislav Vinogradov 12 years ago
parent 48fb8c4f8a
commit 1652540a1f
  1. 7
      modules/gpu/perf4au/main.cpp
  2. 81
      modules/gpuimgproc/include/opencv2/gpuimgproc.hpp
  3. 10
      modules/gpuimgproc/perf/perf_hough.cpp
  4. 292
      modules/gpuimgproc/src/hough.cpp
  5. 6
      modules/gpuimgproc/test/test_hough.cpp
  6. 7
      samples/gpu/houghlines.cpp

@ -86,13 +86,14 @@ PERF_TEST_P(Image, HoughLinesP, testing::Values(std::string("im1_1280x800.jpg"))
{
cv::gpu::GpuMat d_image(image);
cv::gpu::GpuMat d_lines;
cv::gpu::HoughLinesBuf d_buf;
cv::gpu::HoughLinesP(d_image, d_lines, d_buf, rho, theta, minLineLenght, maxLineGap);
cv::Ptr<cv::gpu::HoughSegmentDetector> hough = cv::gpu::createHoughSegmentDetector(rho, theta, minLineLenght, maxLineGap);
hough->detect(d_image, d_lines);
TEST_CYCLE()
{
cv::gpu::HoughLinesP(d_image, d_lines, d_buf, rho, theta, minLineLenght, maxLineGap);
hough->detect(d_image, d_lines);
}
}
else

@ -220,18 +220,82 @@ inline void Canny(InputArray dx, InputArray dy, OutputArray edges, double low_th
/////////////////////////// Hough Transform ////////////////////////////
struct HoughLinesBuf
//////////////////////////////////////
// HoughLines
class CV_EXPORTS HoughLinesDetector : public Algorithm
{
GpuMat accum;
GpuMat list;
public:
virtual void detect(InputArray src, OutputArray lines) = 0;
virtual void downloadResults(InputArray d_lines, OutputArray h_lines, OutputArray h_votes = noArray()) = 0;
virtual void setRho(float rho) = 0;
virtual float getRho() const = 0;
virtual void setTheta(float theta) = 0;
virtual float getTheta() const = 0;
virtual void setThreshold(int threshold) = 0;
virtual int getThreshold() const = 0;
virtual void setDoSort(bool doSort) = 0;
virtual bool getDoSort() const = 0;
virtual void setMaxLines(int maxLines) = 0;
virtual int getMaxLines() const = 0;
};
CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
CV_EXPORTS void HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines, OutputArray h_votes = noArray());
CV_EXPORTS Ptr<HoughLinesDetector> createHoughLinesDetector(float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
// obsolete
__OPENCV_GPUIMGPROC_DEPR_BEFORE__ void HoughLines(InputArray src, OutputArray lines, float rho, float theta, int threshold,
bool doSort = false, int maxLines = 4096) __OPENCV_GPUIMGPROC_DEPR_AFTER__;
inline void HoughLines(InputArray src, OutputArray lines, float rho, float theta, int threshold, bool doSort, int maxLines)
{
gpu::createHoughLinesDetector(rho, theta, threshold, doSort, maxLines)->detect(src, lines);
}
//////////////////////////////////////
// HoughLinesP
//! finds line segments in the black-n-white image using probabalistic Hough transform
CV_EXPORTS void HoughLinesP(const GpuMat& image, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096);
class CV_EXPORTS HoughSegmentDetector : public Algorithm
{
public:
virtual void detect(InputArray src, OutputArray lines) = 0;
virtual void setRho(float rho) = 0;
virtual float getRho() const = 0;
virtual void setTheta(float theta) = 0;
virtual float getTheta() const = 0;
virtual void setMinLineLength(int minLineLength) = 0;
virtual int getMinLineLength() const = 0;
virtual void setMaxLineGap(int maxLineGap) = 0;
virtual int getMaxLineGap() const = 0;
virtual void setMaxLines(int maxLines) = 0;
virtual int getMaxLines() const = 0;
};
CV_EXPORTS Ptr<HoughSegmentDetector> createHoughSegmentDetector(float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096);
// obsolete
__OPENCV_GPUIMGPROC_DEPR_BEFORE__ void HoughLinesP(InputArray src, OutputArray lines,
float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096) __OPENCV_GPUIMGPROC_DEPR_AFTER__;
inline void HoughLinesP(InputArray src, OutputArray lines, float rho, float theta, int minLineLength, int maxLineGap, int maxLines)
{
gpu::createHoughSegmentDetector(rho, theta, minLineLength, maxLineGap, maxLines)->detect(src, lines);
}
//////////////////////////////////////
// HoughCircles
struct HoughCirclesBuf
{
@ -245,6 +309,9 @@ CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, int method, flo
CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, HoughCirclesBuf& buf, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
CV_EXPORTS void HoughCirclesDownload(const GpuMat& d_circles, OutputArray h_circles);
//////////////////////////////////////
// GeneralizedHough
//! finds arbitrary template in the grayscale image using Generalized Hough Transform
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.

@ -103,9 +103,10 @@ PERF_TEST_P(Sz, HoughLines,
{
const cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_lines;
cv::gpu::HoughLinesBuf d_buf;
TEST_CYCLE() cv::gpu::HoughLines(d_src, d_lines, d_buf, rho, theta, threshold);
cv::Ptr<cv::gpu::HoughLinesDetector> hough = cv::gpu::createHoughLinesDetector(rho, theta, threshold);
TEST_CYCLE() hough->detect(d_src, d_lines);
cv::Mat gpu_lines(d_lines.row(0));
cv::Vec2f* begin = gpu_lines.ptr<cv::Vec2f>(0);
@ -151,9 +152,10 @@ PERF_TEST_P(Image, HoughLinesP,
{
const cv::gpu::GpuMat d_mask(mask);
cv::gpu::GpuMat d_lines;
cv::gpu::HoughLinesBuf d_buf;
TEST_CYCLE() cv::gpu::HoughLinesP(d_mask, d_lines, d_buf, rho, theta, minLineLenght, maxLineGap);
cv::Ptr<cv::gpu::HoughSegmentDetector> hough = cv::gpu::createHoughSegmentDetector(rho, theta, minLineLenght, maxLineGap);
TEST_CYCLE() hough->detect(d_mask, d_lines);
cv::Mat gpu_lines(d_lines);
cv::Vec4i* begin = gpu_lines.ptr<cv::Vec4i>();

@ -47,11 +47,9 @@ using namespace cv::gpu;
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
void cv::gpu::HoughLines(const GpuMat&, GpuMat&, float, float, int, bool, int) { throw_no_cuda(); }
void cv::gpu::HoughLines(const GpuMat&, GpuMat&, HoughLinesBuf&, float, float, int, bool, int) { throw_no_cuda(); }
void cv::gpu::HoughLinesDownload(const GpuMat&, OutputArray, OutputArray) { throw_no_cuda(); }
Ptr<gpu::HoughLinesDetector> cv::gpu::createHoughLinesDetector(float, float, int, bool, int) { throw_no_cuda(); return Ptr<HoughLinesDetector>(); }
void cv::gpu::HoughLinesP(const GpuMat&, GpuMat&, HoughLinesBuf&, float, float, int, int, int) { throw_no_cuda(); }
Ptr<gpu::HoughSegmentDetector> cv::gpu::createHoughSegmentDetector(float, float, int, int, int) { throw_no_cuda(); return Ptr<HoughSegmentDetector>(); }
void cv::gpu::HoughCircles(const GpuMat&, GpuMat&, int, float, float, int, int, int, int, int) { throw_no_cuda(); }
void cv::gpu::HoughCircles(const GpuMat&, GpuMat&, HoughCirclesBuf&, int, float, float, int, int, int, int, int) { throw_no_cuda(); }
@ -79,7 +77,7 @@ namespace cv { namespace gpu { namespace cudev
}}}
//////////////////////////////////////////////////////////
// HoughLines
// HoughLinesDetector
namespace cv { namespace gpu { namespace cudev
{
@ -90,74 +88,139 @@ namespace cv { namespace gpu { namespace cudev
}
}}}
void cv::gpu::HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort, int maxLines)
namespace
{
HoughLinesBuf buf;
HoughLines(src, lines, buf, rho, theta, threshold, doSort, maxLines);
}
class HoughLinesDetectorImpl : public HoughLinesDetector
{
public:
HoughLinesDetectorImpl(float rho, float theta, int threshold, bool doSort, int maxLines) :
rho_(rho), theta_(theta), threshold_(threshold), doSort_(doSort), maxLines_(maxLines)
{
}
void cv::gpu::HoughLines(const GpuMat& src, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int threshold, bool doSort, int maxLines)
{
using namespace cv::gpu::cudev::hough;
void detect(InputArray src, OutputArray lines);
void downloadResults(InputArray d_lines, OutputArray h_lines, OutputArray h_votes = noArray());
CV_Assert(src.type() == CV_8UC1);
CV_Assert(src.cols < std::numeric_limits<unsigned short>::max());
CV_Assert(src.rows < std::numeric_limits<unsigned short>::max());
void setRho(float rho) { rho_ = rho; }
float getRho() const { return rho_; }
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, buf.list);
unsigned int* srcPoints = buf.list.ptr<unsigned int>();
void setTheta(float theta) { theta_ = theta; }
float getTheta() const { return theta_; }
const int pointsCount = buildPointList_gpu(src, srcPoints);
if (pointsCount == 0)
{
lines.release();
return;
}
void setThreshold(int threshold) { threshold_ = threshold; }
int getThreshold() const { return threshold_; }
const int numangle = cvRound(CV_PI / theta);
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho);
CV_Assert(numangle > 0 && numrho > 0);
void setDoSort(bool doSort) { doSort_ = doSort; }
bool getDoSort() const { return doSort_; }
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, buf.accum);
buf.accum.setTo(Scalar::all(0));
void setMaxLines(int maxLines) { maxLines_ = maxLines; }
int getMaxLines() const { return maxLines_; }
DeviceInfo devInfo;
linesAccum_gpu(srcPoints, pointsCount, buf.accum, rho, theta, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20));
void write(FileStorage& fs) const
{
fs << "name" << "HoughLinesDetector_GPU"
<< "rho" << rho_
<< "theta" << theta_
<< "threshold" << threshold_
<< "doSort" << doSort_
<< "maxLines" << maxLines_;
}
ensureSizeIsEnough(2, maxLines, CV_32FC2, lines);
void read(const FileNode& fn)
{
CV_Assert( String(fn["name"]) == "HoughLinesDetector_GPU" );
rho_ = (float)fn["rho"];
theta_ = (float)fn["theta"];
threshold_ = (int)fn["threshold"];
doSort_ = (int)fn["doSort"] != 0;
maxLines_ = (int)fn["maxLines"];
}
int linesCount = linesGetResult_gpu(buf.accum, lines.ptr<float2>(0), lines.ptr<int>(1), maxLines, rho, theta, threshold, doSort);
if (linesCount > 0)
lines.cols = linesCount;
else
lines.release();
}
private:
float rho_;
float theta_;
int threshold_;
bool doSort_;
int maxLines_;
void cv::gpu::HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines_, OutputArray h_votes_)
{
if (d_lines.empty())
GpuMat accum_;
GpuMat list_;
GpuMat result_;
};
void HoughLinesDetectorImpl::detect(InputArray _src, OutputArray lines)
{
h_lines_.release();
if (h_votes_.needed())
h_votes_.release();
return;
}
using namespace cv::gpu::cudev::hough;
CV_Assert(d_lines.rows == 2 && d_lines.type() == CV_32FC2);
GpuMat src = _src.getGpuMat();
h_lines_.create(1, d_lines.cols, CV_32FC2);
Mat h_lines = h_lines_.getMat();
d_lines.row(0).download(h_lines);
CV_Assert( src.type() == CV_8UC1 );
CV_Assert( src.cols < std::numeric_limits<unsigned short>::max() );
CV_Assert( src.rows < std::numeric_limits<unsigned short>::max() );
if (h_votes_.needed())
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, list_);
unsigned int* srcPoints = list_.ptr<unsigned int>();
const int pointsCount = buildPointList_gpu(src, srcPoints);
if (pointsCount == 0)
{
lines.release();
return;
}
const int numangle = cvRound(CV_PI / theta_);
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho_);
CV_Assert( numangle > 0 && numrho > 0 );
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, accum_);
accum_.setTo(Scalar::all(0));
DeviceInfo devInfo;
linesAccum_gpu(srcPoints, pointsCount, accum_, rho_, theta_, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20));
ensureSizeIsEnough(2, maxLines_, CV_32FC2, result_);
int linesCount = linesGetResult_gpu(accum_, result_.ptr<float2>(0), result_.ptr<int>(1), maxLines_, rho_, theta_, threshold_, doSort_);
if (linesCount == 0)
{
lines.release();
return;
}
result_.cols = linesCount;
result_.copyTo(lines);
}
void HoughLinesDetectorImpl::downloadResults(InputArray _d_lines, OutputArray h_lines, OutputArray h_votes)
{
h_votes_.create(1, d_lines.cols, CV_32SC1);
Mat h_votes = h_votes_.getMat();
GpuMat d_votes(1, d_lines.cols, CV_32SC1, const_cast<int*>(d_lines.ptr<int>(1)));
d_votes.download(h_votes);
GpuMat d_lines = _d_lines.getGpuMat();
if (d_lines.empty())
{
h_lines.release();
if (h_votes.needed())
h_votes.release();
return;
}
CV_Assert( d_lines.rows == 2 && d_lines.type() == CV_32FC2 );
d_lines.row(0).download(h_lines);
if (h_votes.needed())
{
GpuMat d_votes(1, d_lines.cols, CV_32SC1, d_lines.ptr<int>(1));
d_votes.download(h_votes);
}
}
}
Ptr<HoughLinesDetector> cv::gpu::createHoughLinesDetector(float rho, float theta, int threshold, bool doSort, int maxLines)
{
return new HoughLinesDetectorImpl(rho, theta, threshold, doSort, maxLines);
}
//////////////////////////////////////////////////////////
// HoughLinesP
@ -169,42 +232,113 @@ namespace cv { namespace gpu { namespace cudev
}
}}}
void cv::gpu::HoughLinesP(const GpuMat& src, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int minLineLength, int maxLineGap, int maxLines)
namespace
{
using namespace cv::gpu::cudev::hough;
class PHoughLinesDetectorImpl : public HoughSegmentDetector
{
public:
PHoughLinesDetectorImpl(float rho, float theta, int minLineLength, int maxLineGap, int maxLines) :
rho_(rho), theta_(theta), minLineLength_(minLineLength), maxLineGap_(maxLineGap), maxLines_(maxLines)
{
}
CV_Assert( src.type() == CV_8UC1 );
CV_Assert( src.cols < std::numeric_limits<unsigned short>::max() );
CV_Assert( src.rows < std::numeric_limits<unsigned short>::max() );
void detect(InputArray src, OutputArray lines);
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, buf.list);
unsigned int* srcPoints = buf.list.ptr<unsigned int>();
void setRho(float rho) { rho_ = rho; }
float getRho() const { return rho_; }
const int pointsCount = buildPointList_gpu(src, srcPoints);
if (pointsCount == 0)
void setTheta(float theta) { theta_ = theta; }
float getTheta() const { return theta_; }
void setMinLineLength(int minLineLength) { minLineLength_ = minLineLength; }
int getMinLineLength() const { return minLineLength_; }
void setMaxLineGap(int maxLineGap) { maxLineGap_ = maxLineGap; }
int getMaxLineGap() const { return maxLineGap_; }
void setMaxLines(int maxLines) { maxLines_ = maxLines; }
int getMaxLines() const { return maxLines_; }
void write(FileStorage& fs) const
{
fs << "name" << "PHoughLinesDetector_GPU"
<< "rho" << rho_
<< "theta" << theta_
<< "minLineLength" << minLineLength_
<< "maxLineGap" << maxLineGap_
<< "maxLines" << maxLines_;
}
void read(const FileNode& fn)
{
CV_Assert( String(fn["name"]) == "PHoughLinesDetector_GPU" );
rho_ = (float)fn["rho"];
theta_ = (float)fn["theta"];
minLineLength_ = (int)fn["minLineLength"];
maxLineGap_ = (int)fn["maxLineGap"];
maxLines_ = (int)fn["maxLines"];
}
private:
float rho_;
float theta_;
int minLineLength_;
int maxLineGap_;
int maxLines_;
GpuMat accum_;
GpuMat list_;
GpuMat result_;
};
void PHoughLinesDetectorImpl::detect(InputArray _src, OutputArray lines)
{
lines.release();
return;
}
using namespace cv::gpu::cudev::hough;
const int numangle = cvRound(CV_PI / theta);
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho);
CV_Assert( numangle > 0 && numrho > 0 );
GpuMat src = _src.getGpuMat();
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, buf.accum);
buf.accum.setTo(Scalar::all(0));
CV_Assert( src.type() == CV_8UC1 );
CV_Assert( src.cols < std::numeric_limits<unsigned short>::max() );
CV_Assert( src.rows < std::numeric_limits<unsigned short>::max() );
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, list_);
unsigned int* srcPoints = list_.ptr<unsigned int>();
const int pointsCount = buildPointList_gpu(src, srcPoints);
if (pointsCount == 0)
{
lines.release();
return;
}
DeviceInfo devInfo;
linesAccum_gpu(srcPoints, pointsCount, buf.accum, rho, theta, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20));
const int numangle = cvRound(CV_PI / theta_);
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho_);
CV_Assert( numangle > 0 && numrho > 0 );
ensureSizeIsEnough(1, maxLines, CV_32SC4, lines);
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, accum_);
accum_.setTo(Scalar::all(0));
int linesCount = houghLinesProbabilistic_gpu(src, buf.accum, lines.ptr<int4>(), maxLines, rho, theta, maxLineGap, minLineLength);
DeviceInfo devInfo;
linesAccum_gpu(srcPoints, pointsCount, accum_, rho_, theta_, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20));
if (linesCount > 0)
lines.cols = linesCount;
else
lines.release();
ensureSizeIsEnough(1, maxLines_, CV_32SC4, result_);
int linesCount = houghLinesProbabilistic_gpu(src, accum_, result_.ptr<int4>(), maxLines_, rho_, theta_, maxLineGap_, minLineLength_);
if (linesCount == 0)
{
lines.release();
return;
}
result_.cols = linesCount;
result_.copyTo(lines);
}
}
Ptr<HoughSegmentDetector> cv::gpu::createHoughSegmentDetector(float rho, float theta, int minLineLength, int maxLineGap, int maxLines)
{
return new PHoughLinesDetectorImpl(rho, theta, minLineLength, maxLineGap, maxLines);
}
//////////////////////////////////////////////////////////

@ -94,11 +94,13 @@ GPU_TEST_P(HoughLines, Accuracy)
cv::Mat src(size, CV_8UC1);
generateLines(src);
cv::Ptr<cv::gpu::HoughLinesDetector> hough = cv::gpu::createHoughLinesDetector(rho, theta, threshold);
cv::gpu::GpuMat d_lines;
cv::gpu::HoughLines(loadMat(src, useRoi), d_lines, rho, theta, threshold);
hough->detect(loadMat(src, useRoi), d_lines);
std::vector<cv::Vec2f> lines;
cv::gpu::HoughLinesDownload(d_lines, lines);
hough->downloadResults(d_lines, lines);
cv::Mat dst(size, CV_8UC1);
drawLines(dst, lines);

@ -41,7 +41,7 @@ int main(int argc, const char* argv[])
{
const int64 start = getTickCount();
HoughLinesP(mask, lines_cpu, 1, CV_PI / 180, 50, 60, 5);
cv::HoughLinesP(mask, lines_cpu, 1, CV_PI / 180, 50, 60, 5);
const double timeSec = (getTickCount() - start) / getTickFrequency();
cout << "CPU Time : " << timeSec * 1000 << " ms" << endl;
@ -56,11 +56,12 @@ int main(int argc, const char* argv[])
GpuMat d_src(mask);
GpuMat d_lines;
HoughLinesBuf d_buf;
{
const int64 start = getTickCount();
gpu::HoughLinesP(d_src, d_lines, d_buf, 1.0f, (float) (CV_PI / 180.0f), 50, 5);
Ptr<gpu::HoughSegmentDetector> hough = gpu::createHoughSegmentDetector(1.0f, (float) (CV_PI / 180.0f), 50, 5);
hough->detect(d_src, d_lines);
const double timeSec = (getTickCount() - start) / getTickFrequency();
cout << "GPU Time : " << timeSec * 1000 << " ms" << endl;

Loading…
Cancel
Save