diff --git a/modules/core/include/opencv2/core/mat.hpp b/modules/core/include/opencv2/core/mat.hpp index 919fa0b6f9..289ba7f7c5 100644 --- a/modules/core/include/opencv2/core/mat.hpp +++ b/modules/core/include/opencv2/core/mat.hpp @@ -2290,7 +2290,7 @@ public: const_iterator begin() const; const_iterator end() const; - //! template methods for for operation over all matrix elements. + //! template methods for operation over all matrix elements. // the operations take care of skipping gaps in the end of rows (if any) template<typename Functor> void forEach(const Functor& operation); template<typename Functor> void forEach(const Functor& operation) const; diff --git a/modules/cudafilters/include/opencv2/cudafilters.hpp b/modules/cudafilters/include/opencv2/cudafilters.hpp index 1e25e5602d..8cd109f775 100644 --- a/modules/cudafilters/include/opencv2/cudafilters.hpp +++ b/modules/cudafilters/include/opencv2/cudafilters.hpp @@ -318,7 +318,7 @@ CV_EXPORTS Ptr<Filter> createColumnSumFilter(int srcType, int dstType, int ksize /** @brief Performs median filtering for each point of the source image. -@param srcType type of of source image. Only CV_8UC1 images are supported for now. +@param srcType type of source image. Only CV_8UC1 images are supported for now. @param windowSize Size of the kernerl used for the filtering. Uses a (windowSize x windowSize) filter. @param partition Specifies the parallel granularity of the workload. This parameter should be used GPU experts when optimizing performance. diff --git a/modules/cudafilters/src/cuda/median_filter.cu b/modules/cudafilters/src/cuda/median_filter.cu index dd43a365c0..0b9f3c718e 100644 --- a/modules/cudafilters/src/cuda/median_filter.cu +++ b/modules/cudafilters/src/cuda/median_filter.cu @@ -235,7 +235,7 @@ namespace cv { namespace cuda { namespace device } __syncthreads(); - // For all remaining rows in the median filter, add the values to the the histogram + // For all remaining rows in the median filter, add the values to the histogram for (int j=threadIdx.x; j<cols; j+=blockDim.x){ for(int i=initStartRow; i<initStopRow; i++){ int pos=::min(i,rows-1); diff --git a/modules/dnn/src/darknet/darknet_io.cpp b/modules/dnn/src/darknet/darknet_io.cpp index 11aad453e3..520f3c94be 100644 --- a/modules/dnn/src/darknet/darknet_io.cpp +++ b/modules/dnn/src/darknet/darknet_io.cpp @@ -791,7 +791,7 @@ namespace cv { if (layers_vec.size() > 1) { // layer ids in layers_vec - inputs of Slice layers - // after adding offset to layers_vec: layer ids - ouputs of Slice layers + // after adding offset to layers_vec: layer ids - outputs of Slice layers for (size_t k = 0; k < layers_vec.size(); ++k) layers_vec[k] += layers_vec.size(); diff --git a/modules/dnn/src/onnx/opencv-onnx.proto b/modules/dnn/src/onnx/opencv-onnx.proto index b24220adb9..8dd69cb2d9 100644 --- a/modules/dnn/src/onnx/opencv-onnx.proto +++ b/modules/dnn/src/onnx/opencv-onnx.proto @@ -61,7 +61,7 @@ enum Version { // The version field is always serialized and we will use it to store the // version that the graph is generated from. This helps us set up version // control. - // For the IR, we are using simple numbers starting with with 0x00000001, + // For the IR, we are using simple numbers starting with 0x00000001, // which was the version we published on Oct 10, 2017. IR_VERSION_2017_10_10 = 0x0000000000000001; diff --git a/modules/imgproc/include/opencv2/imgproc.hpp b/modules/imgproc/include/opencv2/imgproc.hpp index 9425ba88d5..5ba36040c9 100644 --- a/modules/imgproc/include/opencv2/imgproc.hpp +++ b/modules/imgproc/include/opencv2/imgproc.hpp @@ -1537,7 +1537,7 @@ CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth, For every pixel \f$ (x, y) \f$ in the source image, the function calculates the sum of squares of those neighboring pixel values which overlap the filter placed over the pixel \f$ (x, y) \f$. -The unnormalized square box filter can be useful in computing local image statistics such as the the local +The unnormalized square box filter can be useful in computing local image statistics such as the local variance and standard deviation around the neighborhood of a pixel. @param src input image diff --git a/modules/imgproc/src/opencl/medianFilter.cl b/modules/imgproc/src/opencl/medianFilter.cl index f9a6c9e8f4..b517a38059 100644 --- a/modules/imgproc/src/opencl/medianFilter.cl +++ b/modules/imgproc/src/opencl/medianFilter.cl @@ -43,7 +43,7 @@ #ifdef USE_4OPT -//Utility macros for for 1,2,4 channel images: +//Utility macros for 1,2,4 channel images: // - LOAD4/STORE4 - load/store 4-pixel groups from/to global memory // - SHUFFLE4_3/SHUFFLE4_5 - rearrange scattered border/central pixels into regular 4-pixel variables diff --git a/modules/imgproc/test/test_convhull.cpp b/modules/imgproc/test/test_convhull.cpp index aa553e5efe..e5f6bd8e63 100644 --- a/modules/imgproc/test/test_convhull.cpp +++ b/modules/imgproc/test/test_convhull.cpp @@ -1015,7 +1015,7 @@ int CV_MinCircleTest::validate_test_results( int test_case_idx ) if( point_count >= 2 && (j < 2 || (j == 2 && cvTsDist(v[0],v[1]) < (radius-1)*2/eps)) ) { ts->printf( cvtest::TS::LOG, - "There should be at at least 3 points near the circle boundary or 2 points on the diameter\n" ); + "There should be at least 3 points near the circle boundary or 2 points on the diameter\n" ); code = cvtest::TS::FAIL_BAD_ACCURACY; goto _exit_; } diff --git a/modules/ml/src/lr.cpp b/modules/ml/src/lr.cpp index ed4fb4c720..b43e104045 100644 --- a/modules/ml/src/lr.cpp +++ b/modules/ml/src/lr.cpp @@ -126,7 +126,7 @@ bool LogisticRegressionImpl::train(const Ptr<TrainData>& trainData, int) int num_classes = (int) this->forward_mapper.size(); if(num_classes < 2) { - CV_Error( CV_StsBadArg, "data should have atleast 2 classes" ); + CV_Error( CV_StsBadArg, "data should have at least 2 classes" ); } // add a column of ones to the data (bias/intercept term) diff --git a/modules/videoio/src/cap_gstreamer.cpp b/modules/videoio/src/cap_gstreamer.cpp index dd6387d892..34bc98eaba 100644 --- a/modules/videoio/src/cap_gstreamer.cpp +++ b/modules/videoio/src/cap_gstreamer.cpp @@ -334,7 +334,7 @@ GStreamerCapture::~GStreamerCapture() /*! * \brief CvCapture_GStreamer::grabFrame * \return - * Grabs a sample from the pipeline, awaiting consumation by retreiveFrame. + * Grabs a sample from the pipeline, awaiting consumation by retrieveFrame. * The pipeline is started if it was not running yet */ bool GStreamerCapture::grabFrame() diff --git a/modules/videoio/src/cap_intelperc.cpp b/modules/videoio/src/cap_intelperc.cpp index 093b1fd235..63e43ee0da 100644 --- a/modules/videoio/src/cap_intelperc.cpp +++ b/modules/videoio/src/cap_intelperc.cpp @@ -507,21 +507,21 @@ bool IntelPerCStreamDepth::setProperty(int propIdx, double propVal) } bool IntelPerCStreamDepth::retrieveDepthAsOutputArray(cv::OutputArray image) { - return retriveFrame(CV_16SC1, 0, image); + return retrieveFrame(CV_16SC1, 0, image); } bool IntelPerCStreamDepth::retrieveIRAsOutputArray(cv::OutputArray image) { - return retriveFrame(CV_16SC1, 1, image); + return retrieveFrame(CV_16SC1, 1, image); } bool IntelPerCStreamDepth::retrieveUVAsOutputArray(cv::OutputArray image) { - return retriveFrame(CV_32FC2, 2, image); + return retrieveFrame(CV_32FC2, 2, image); } bool IntelPerCStreamDepth::validProfile(const PXCCapture::VideoStream::ProfileInfo& pinfo) { return (PXCImage::COLOR_FORMAT_DEPTH == pinfo.imageInfo.format); } -bool IntelPerCStreamDepth::retriveFrame(int type, int planeIdx, cv::OutputArray frame) +bool IntelPerCStreamDepth::retrieveFrame(int type, int planeIdx, cv::OutputArray frame) { if (!m_pxcImage.IsValid()) return false; diff --git a/modules/videoio/src/cap_intelperc.hpp b/modules/videoio/src/cap_intelperc.hpp index 209cd4736a..66ba3e21ca 100644 --- a/modules/videoio/src/cap_intelperc.hpp +++ b/modules/videoio/src/cap_intelperc.hpp @@ -85,7 +85,7 @@ public: protected: virtual bool validProfile(const PXCCapture::VideoStream::ProfileInfo& pinfo); protected: - bool retriveFrame(int type, int planeIdx, OutputArray frame); + bool retrieveFrame(int type, int planeIdx, OutputArray frame); }; class VideoCapture_IntelPerC : public IVideoCapture diff --git a/modules/videoio/src/cap_libv4l.cpp b/modules/videoio/src/cap_libv4l.cpp index 6fd0f757a8..1c1129ceaa 100644 --- a/modules/videoio/src/cap_libv4l.cpp +++ b/modules/videoio/src/cap_libv4l.cpp @@ -1858,7 +1858,7 @@ static int icvSetPropertyCAM_V4L(CvCaptureCAM_V4L* capture, int property_id, dou retval = icvSetControl(capture, property_id, value); } - /* return the the status */ + /* return the status */ return retval; } diff --git a/modules/videoio/test/test_video_io.cpp b/modules/videoio/test/test_video_io.cpp index 44947f02f4..e82ef9fd48 100644 --- a/modules/videoio/test/test_video_io.cpp +++ b/modules/videoio/test/test_video_io.cpp @@ -261,7 +261,7 @@ public: if (cvtest::debugLevel > 0) std::cout << "i = " << i << ": timestamp = " << timestamp << std::endl; const double frame_period = 1000.f/bunny_param.getFps(); - // NOTE: eps == frame_period, because videoCapture returns frame begining timestamp or frame end + // NOTE: eps == frame_period, because videoCapture returns frame beginning timestamp or frame end // timestamp depending on codec and back-end. So the first frame has timestamp 0 or frame_period. EXPECT_NEAR(timestamp, i*frame_period, frame_period) << "i=" << i; }