mirror of https://github.com/opencv/opencv.git
parent
87563c6638
commit
14a0abbfa9
3 changed files with 1238 additions and 86 deletions
@ -0,0 +1,850 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
// to be moved to legacy
|
||||
|
||||
static int icvMinimalPyramidSize( CvSize imgSize ) |
||||
{ |
||||
return cvAlign(imgSize.width,8) * imgSize.height / 3; |
||||
} |
||||
|
||||
|
||||
static void |
||||
icvInitPyramidalAlgorithm( const CvMat* imgA, const CvMat* imgB, |
||||
CvMat* pyrA, CvMat* pyrB, |
||||
int level, CvTermCriteria * criteria, |
||||
int max_iters, int flags, |
||||
uchar *** imgI, uchar *** imgJ, |
||||
int **step, CvSize** size, |
||||
double **scale, cv::AutoBuffer<uchar>* buffer ) |
||||
{ |
||||
const int ALIGN = 8; |
||||
int pyrBytes, bufferBytes = 0, elem_size; |
||||
int level1 = level + 1; |
||||
|
||||
int i; |
||||
CvSize imgSize, levelSize; |
||||
|
||||
*imgI = *imgJ = 0; |
||||
*step = 0; |
||||
*scale = 0; |
||||
*size = 0; |
||||
|
||||
/* check input arguments */ |
||||
if( ((flags & CV_LKFLOW_PYR_A_READY) != 0 && !pyrA) || |
||||
((flags & CV_LKFLOW_PYR_B_READY) != 0 && !pyrB) ) |
||||
CV_Error( CV_StsNullPtr, "Some of the precomputed pyramids are missing" ); |
||||
|
||||
if( level < 0 ) |
||||
CV_Error( CV_StsOutOfRange, "The number of pyramid levels is negative" ); |
||||
|
||||
switch( criteria->type ) |
||||
{ |
||||
case CV_TERMCRIT_ITER: |
||||
criteria->epsilon = 0.f; |
||||
break; |
||||
case CV_TERMCRIT_EPS: |
||||
criteria->max_iter = max_iters; |
||||
break; |
||||
case CV_TERMCRIT_ITER | CV_TERMCRIT_EPS: |
||||
break; |
||||
default: |
||||
assert( 0 ); |
||||
CV_Error( CV_StsBadArg, "Invalid termination criteria" ); |
||||
} |
||||
|
||||
/* compare squared values */ |
||||
criteria->epsilon *= criteria->epsilon; |
||||
|
||||
/* set pointers and step for every level */ |
||||
pyrBytes = 0; |
||||
|
||||
imgSize = cvGetSize(imgA); |
||||
elem_size = CV_ELEM_SIZE(imgA->type); |
||||
levelSize = imgSize; |
||||
|
||||
for( i = 1; i < level1; i++ ) |
||||
{ |
||||
levelSize.width = (levelSize.width + 1) >> 1; |
||||
levelSize.height = (levelSize.height + 1) >> 1; |
||||
|
||||
int tstep = cvAlign(levelSize.width,ALIGN) * elem_size; |
||||
pyrBytes += tstep * levelSize.height; |
||||
} |
||||
|
||||
assert( pyrBytes <= imgSize.width * imgSize.height * elem_size * 4 / 3 ); |
||||
|
||||
/* buffer_size = <size for patches> + <size for pyramids> */ |
||||
bufferBytes = (int)((level1 >= 0) * ((pyrA->data.ptr == 0) + |
||||
(pyrB->data.ptr == 0)) * pyrBytes + |
||||
(sizeof(imgI[0][0]) * 2 + sizeof(step[0][0]) + |
||||
sizeof(size[0][0]) + sizeof(scale[0][0])) * level1); |
||||
|
||||
buffer->allocate( bufferBytes ); |
||||
|
||||
*imgI = (uchar **) (uchar*)(*buffer); |
||||
*imgJ = *imgI + level1; |
||||
*step = (int *) (*imgJ + level1); |
||||
*scale = (double *) (*step + level1); |
||||
*size = (CvSize *)(*scale + level1); |
||||
|
||||
imgI[0][0] = imgA->data.ptr; |
||||
imgJ[0][0] = imgB->data.ptr; |
||||
step[0][0] = imgA->step; |
||||
scale[0][0] = 1; |
||||
size[0][0] = imgSize; |
||||
|
||||
if( level > 0 ) |
||||
{ |
||||
uchar *bufPtr = (uchar *) (*size + level1); |
||||
uchar *ptrA = pyrA->data.ptr; |
||||
uchar *ptrB = pyrB->data.ptr; |
||||
|
||||
if( !ptrA ) |
||||
{ |
||||
ptrA = bufPtr; |
||||
bufPtr += pyrBytes; |
||||
} |
||||
|
||||
if( !ptrB ) |
||||
ptrB = bufPtr; |
||||
|
||||
levelSize = imgSize; |
||||
|
||||
/* build pyramids for both frames */ |
||||
for( i = 1; i <= level; i++ ) |
||||
{ |
||||
int levelBytes; |
||||
CvMat prev_level, next_level; |
||||
|
||||
levelSize.width = (levelSize.width + 1) >> 1; |
||||
levelSize.height = (levelSize.height + 1) >> 1; |
||||
|
||||
size[0][i] = levelSize; |
||||
step[0][i] = cvAlign( levelSize.width, ALIGN ) * elem_size; |
||||
scale[0][i] = scale[0][i - 1] * 0.5; |
||||
|
||||
levelBytes = step[0][i] * levelSize.height; |
||||
imgI[0][i] = (uchar *) ptrA; |
||||
ptrA += levelBytes; |
||||
|
||||
if( !(flags & CV_LKFLOW_PYR_A_READY) ) |
||||
{ |
||||
prev_level = cvMat( size[0][i-1].height, size[0][i-1].width, CV_8UC1 ); |
||||
next_level = cvMat( size[0][i].height, size[0][i].width, CV_8UC1 ); |
||||
cvSetData( &prev_level, imgI[0][i-1], step[0][i-1] ); |
||||
cvSetData( &next_level, imgI[0][i], step[0][i] ); |
||||
cvPyrDown( &prev_level, &next_level ); |
||||
} |
||||
|
||||
imgJ[0][i] = (uchar *) ptrB; |
||||
ptrB += levelBytes; |
||||
|
||||
if( !(flags & CV_LKFLOW_PYR_B_READY) ) |
||||
{ |
||||
prev_level = cvMat( size[0][i-1].height, size[0][i-1].width, CV_8UC1 ); |
||||
next_level = cvMat( size[0][i].height, size[0][i].width, CV_8UC1 ); |
||||
cvSetData( &prev_level, imgJ[0][i-1], step[0][i-1] ); |
||||
cvSetData( &next_level, imgJ[0][i], step[0][i] ); |
||||
cvPyrDown( &prev_level, &next_level ); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/* compute dI/dx and dI/dy */ |
||||
static void |
||||
icvCalcIxIy_32f( const float* src, int src_step, float* dstX, float* dstY, int dst_step, |
||||
CvSize src_size, const float* smooth_k, float* buffer0 ) |
||||
{ |
||||
int src_width = src_size.width, dst_width = src_size.width-2; |
||||
int x, height = src_size.height - 2; |
||||
float* buffer1 = buffer0 + src_width; |
||||
|
||||
src_step /= sizeof(src[0]); |
||||
dst_step /= sizeof(dstX[0]); |
||||
|
||||
for( ; height--; src += src_step, dstX += dst_step, dstY += dst_step ) |
||||
{ |
||||
const float* src2 = src + src_step; |
||||
const float* src3 = src + src_step*2; |
||||
|
||||
for( x = 0; x < src_width; x++ ) |
||||
{ |
||||
float t0 = (src3[x] + src[x])*smooth_k[0] + src2[x]*smooth_k[1]; |
||||
float t1 = src3[x] - src[x]; |
||||
buffer0[x] = t0; buffer1[x] = t1; |
||||
} |
||||
|
||||
for( x = 0; x < dst_width; x++ ) |
||||
{ |
||||
float t0 = buffer0[x+2] - buffer0[x]; |
||||
float t1 = (buffer1[x] + buffer1[x+2])*smooth_k[0] + buffer1[x+1]*smooth_k[1]; |
||||
dstX[x] = t0; dstY[x] = t1; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
#undef CV_8TO32F |
||||
#define CV_8TO32F(a) (a) |
||||
|
||||
static const void* |
||||
icvAdjustRect( const void* srcptr, int src_step, int pix_size, |
||||
CvSize src_size, CvSize win_size, |
||||
CvPoint ip, CvRect* pRect ) |
||||
{ |
||||
CvRect rect; |
||||
const char* src = (const char*)srcptr; |
||||
|
||||
if( ip.x >= 0 ) |
||||
{ |
||||
src += ip.x*pix_size; |
||||
rect.x = 0; |
||||
} |
||||
else |
||||
{ |
||||
rect.x = -ip.x; |
||||
if( rect.x > win_size.width ) |
||||
rect.x = win_size.width; |
||||
} |
||||
|
||||
if( ip.x + win_size.width < src_size.width ) |
||||
rect.width = win_size.width; |
||||
else |
||||
{ |
||||
rect.width = src_size.width - ip.x - 1; |
||||
if( rect.width < 0 ) |
||||
{ |
||||
src += rect.width*pix_size; |
||||
rect.width = 0; |
||||
} |
||||
assert( rect.width <= win_size.width ); |
||||
} |
||||
|
||||
if( ip.y >= 0 ) |
||||
{ |
||||
src += ip.y * src_step; |
||||
rect.y = 0; |
||||
} |
||||
else |
||||
rect.y = -ip.y; |
||||
|
||||
if( ip.y + win_size.height < src_size.height ) |
||||
rect.height = win_size.height; |
||||
else |
||||
{ |
||||
rect.height = src_size.height - ip.y - 1; |
||||
if( rect.height < 0 ) |
||||
{ |
||||
src += rect.height*src_step; |
||||
rect.height = 0; |
||||
} |
||||
} |
||||
|
||||
*pRect = rect; |
||||
return src - rect.x*pix_size; |
||||
} |
||||
|
||||
|
||||
static CvStatus CV_STDCALL icvGetRectSubPix_8u32f_C1R |
||||
( const uchar* src, int src_step, CvSize src_size, |
||||
float* dst, int dst_step, CvSize win_size, CvPoint2D32f center ) |
||||
{ |
||||
CvPoint ip; |
||||
float a12, a22, b1, b2; |
||||
float a, b; |
||||
double s = 0; |
||||
int i, j; |
||||
|
||||
center.x -= (win_size.width-1)*0.5f; |
||||
center.y -= (win_size.height-1)*0.5f; |
||||
|
||||
ip.x = cvFloor( center.x ); |
||||
ip.y = cvFloor( center.y ); |
||||
|
||||
if( win_size.width <= 0 || win_size.height <= 0 ) |
||||
return CV_BADRANGE_ERR; |
||||
|
||||
a = center.x - ip.x; |
||||
b = center.y - ip.y; |
||||
a = MAX(a,0.0001f); |
||||
a12 = a*(1.f-b); |
||||
a22 = a*b; |
||||
b1 = 1.f - b; |
||||
b2 = b; |
||||
s = (1. - a)/a; |
||||
|
||||
src_step /= sizeof(src[0]); |
||||
dst_step /= sizeof(dst[0]); |
||||
|
||||
if( 0 <= ip.x && ip.x + win_size.width < src_size.width && |
||||
0 <= ip.y && ip.y + win_size.height < src_size.height ) |
||||
{ |
||||
// extracted rectangle is totally inside the image
|
||||
src += ip.y * src_step + ip.x; |
||||
|
||||
#if 0 |
||||
if( icvCopySubpix_8u32f_C1R_p && |
||||
icvCopySubpix_8u32f_C1R_p( src, src_step, dst, |
||||
dst_step*sizeof(dst[0]), win_size, a, b ) >= 0 ) |
||||
return CV_OK; |
||||
#endif |
||||
|
||||
for( ; win_size.height--; src += src_step, dst += dst_step ) |
||||
{ |
||||
float prev = (1 - a)*(b1*CV_8TO32F(src[0]) + b2*CV_8TO32F(src[src_step])); |
||||
for( j = 0; j < win_size.width; j++ ) |
||||
{ |
||||
float t = a12*CV_8TO32F(src[j+1]) + a22*CV_8TO32F(src[j+1+src_step]); |
||||
dst[j] = prev + t; |
||||
prev = (float)(t*s); |
||||
} |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
CvRect r; |
||||
|
||||
src = (const uchar*)icvAdjustRect( src, src_step*sizeof(*src), |
||||
sizeof(*src), src_size, win_size,ip, &r); |
||||
|
||||
for( i = 0; i < win_size.height; i++, dst += dst_step ) |
||||
{ |
||||
const uchar *src2 = src + src_step; |
||||
|
||||
if( i < r.y || i >= r.height ) |
||||
src2 -= src_step; |
||||
|
||||
for( j = 0; j < r.x; j++ ) |
||||
{ |
||||
float s0 = CV_8TO32F(src[r.x])*b1 + |
||||
CV_8TO32F(src2[r.x])*b2; |
||||
|
||||
dst[j] = (float)(s0); |
||||
} |
||||
|
||||
if( j < r.width ) |
||||
{ |
||||
float prev = (1 - a)*(b1*CV_8TO32F(src[j]) + b2*CV_8TO32F(src2[j])); |
||||
|
||||
for( ; j < r.width; j++ ) |
||||
{ |
||||
float t = a12*CV_8TO32F(src[j+1]) + a22*CV_8TO32F(src2[j+1]); |
||||
dst[j] = prev + t; |
||||
prev = (float)(t*s); |
||||
} |
||||
} |
||||
|
||||
for( ; j < win_size.width; j++ ) |
||||
{ |
||||
float s0 = CV_8TO32F(src[r.width])*b1 + |
||||
CV_8TO32F(src2[r.width])*b2; |
||||
|
||||
dst[j] = (float)(s0); |
||||
} |
||||
|
||||
if( i < r.height ) |
||||
src = src2; |
||||
} |
||||
} |
||||
|
||||
return CV_OK; |
||||
} |
||||
|
||||
|
||||
#define ICV_32F8U(x) ((uchar)cvRound(x)) |
||||
|
||||
#define ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( flavor, srctype, dsttype, \ |
||||
worktype, cast_macro, cvt ) \
|
||||
static CvStatus CV_STDCALL \
|
||||
icvGetQuadrangleSubPix_##flavor##_C1R \
|
||||
( const srctype * src, int src_step, CvSize src_size, \
|
||||
dsttype *dst, int dst_step, CvSize win_size, const float *matrix ) \
|
||||
{ \
|
||||
int x, y; \
|
||||
double dx = (win_size.width - 1)*0.5; \
|
||||
double dy = (win_size.height - 1)*0.5; \
|
||||
double A11 = matrix[0], A12 = matrix[1], A13 = matrix[2]-A11*dx-A12*dy; \
|
||||
double A21 = matrix[3], A22 = matrix[4], A23 = matrix[5]-A21*dx-A22*dy; \
|
||||
\
|
||||
src_step /= sizeof(srctype); \
|
||||
dst_step /= sizeof(dsttype); \
|
||||
\
|
||||
for( y = 0; y < win_size.height; y++, dst += dst_step ) \
|
||||
{ \
|
||||
double xs = A12*y + A13; \
|
||||
double ys = A22*y + A23; \
|
||||
double xe = A11*(win_size.width-1) + A12*y + A13; \
|
||||
double ye = A21*(win_size.width-1) + A22*y + A23; \
|
||||
\
|
||||
if( (unsigned)(cvFloor(xs)-1) < (unsigned)(src_size.width - 3) && \
|
||||
(unsigned)(cvFloor(ys)-1) < (unsigned)(src_size.height - 3) && \
|
||||
(unsigned)(cvFloor(xe)-1) < (unsigned)(src_size.width - 3) && \
|
||||
(unsigned)(cvFloor(ye)-1) < (unsigned)(src_size.height - 3)) \
|
||||
{ \
|
||||
for( x = 0; x < win_size.width; x++ ) \
|
||||
{ \
|
||||
int ixs = cvFloor( xs ); \
|
||||
int iys = cvFloor( ys ); \
|
||||
const srctype *ptr = src + src_step*iys + ixs; \
|
||||
double a = xs - ixs, b = ys - iys, a1 = 1.f - a; \
|
||||
worktype p0 = cvt(ptr[0])*a1 + cvt(ptr[1])*a; \
|
||||
worktype p1 = cvt(ptr[src_step])*a1 + cvt(ptr[src_step+1])*a;\
|
||||
xs += A11; \
|
||||
ys += A21; \
|
||||
\
|
||||
dst[x] = cast_macro(p0 + b * (p1 - p0)); \
|
||||
} \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
for( x = 0; x < win_size.width; x++ ) \
|
||||
{ \
|
||||
int ixs = cvFloor( xs ), iys = cvFloor( ys ); \
|
||||
double a = xs - ixs, b = ys - iys, a1 = 1.f - a; \
|
||||
const srctype *ptr0, *ptr1; \
|
||||
worktype p0, p1; \
|
||||
xs += A11; ys += A21; \
|
||||
\
|
||||
if( (unsigned)iys < (unsigned)(src_size.height-1) ) \
|
||||
ptr0 = src + src_step*iys, ptr1 = ptr0 + src_step; \
|
||||
else \
|
||||
ptr0 = ptr1 = src + (iys < 0 ? 0 : src_size.height-1)*src_step; \
|
||||
\
|
||||
if( (unsigned)ixs < (unsigned)(src_size.width-1) ) \
|
||||
{ \
|
||||
p0 = cvt(ptr0[ixs])*a1 + cvt(ptr0[ixs+1])*a; \
|
||||
p1 = cvt(ptr1[ixs])*a1 + cvt(ptr1[ixs+1])*a; \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
ixs = ixs < 0 ? 0 : src_size.width - 1; \
|
||||
p0 = cvt(ptr0[ixs]); p1 = cvt(ptr1[ixs]); \
|
||||
} \
|
||||
dst[x] = cast_macro(p0 + b * (p1 - p0)); \
|
||||
} \
|
||||
} \
|
||||
} \
|
||||
\
|
||||
return CV_OK; \
|
||||
} |
||||
|
||||
ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( 8u32f, uchar, float, double, CV_CAST_32F, CV_8TO32F ) |
||||
|
||||
/* Affine tracking algorithm */ |
||||
|
||||
CV_IMPL void |
||||
cvCalcAffineFlowPyrLK( const void* arrA, const void* arrB, |
||||
void* pyrarrA, void* pyrarrB, |
||||
const CvPoint2D32f * featuresA, |
||||
CvPoint2D32f * featuresB, |
||||
float *matrices, int count, |
||||
CvSize winSize, int level, |
||||
char *status, float *error, |
||||
CvTermCriteria criteria, int flags ) |
||||
{ |
||||
const int MAX_ITERS = 100; |
||||
|
||||
cv::AutoBuffer<char> _status; |
||||
cv::AutoBuffer<uchar> buffer; |
||||
cv::AutoBuffer<uchar> pyr_buffer; |
||||
|
||||
CvMat stubA, *imgA = (CvMat*)arrA; |
||||
CvMat stubB, *imgB = (CvMat*)arrB; |
||||
CvMat pstubA, *pyrA = (CvMat*)pyrarrA; |
||||
CvMat pstubB, *pyrB = (CvMat*)pyrarrB; |
||||
|
||||
static const float smoothKernel[] = { 0.09375, 0.3125, 0.09375 }; /* 3/32, 10/32, 3/32 */ |
||||
|
||||
int bufferBytes = 0; |
||||
|
||||
uchar **imgI = 0; |
||||
uchar **imgJ = 0; |
||||
int *step = 0; |
||||
double *scale = 0; |
||||
CvSize* size = 0; |
||||
|
||||
float *patchI; |
||||
float *patchJ; |
||||
float *Ix; |
||||
float *Iy; |
||||
|
||||
int i, j, k, l; |
||||
|
||||
CvSize patchSize = cvSize( winSize.width * 2 + 1, winSize.height * 2 + 1 ); |
||||
int patchLen = patchSize.width * patchSize.height; |
||||
int patchStep = patchSize.width * sizeof( patchI[0] ); |
||||
|
||||
CvSize srcPatchSize = cvSize( patchSize.width + 2, patchSize.height + 2 ); |
||||
int srcPatchLen = srcPatchSize.width * srcPatchSize.height; |
||||
int srcPatchStep = srcPatchSize.width * sizeof( patchI[0] ); |
||||
CvSize imgSize; |
||||
float eps = (float)MIN(winSize.width, winSize.height); |
||||
|
||||
imgA = cvGetMat( imgA, &stubA ); |
||||
imgB = cvGetMat( imgB, &stubB ); |
||||
|
||||
if( CV_MAT_TYPE( imgA->type ) != CV_8UC1 ) |
||||
CV_Error( CV_StsUnsupportedFormat, "" ); |
||||
|
||||
if( !CV_ARE_TYPES_EQ( imgA, imgB )) |
||||
CV_Error( CV_StsUnmatchedFormats, "" ); |
||||
|
||||
if( !CV_ARE_SIZES_EQ( imgA, imgB )) |
||||
CV_Error( CV_StsUnmatchedSizes, "" ); |
||||
|
||||
if( imgA->step != imgB->step ) |
||||
CV_Error( CV_StsUnmatchedSizes, "imgA and imgB must have equal steps" ); |
||||
|
||||
if( !matrices ) |
||||
CV_Error( CV_StsNullPtr, "" ); |
||||
|
||||
imgSize = cvGetMatSize( imgA ); |
||||
|
||||
if( pyrA ) |
||||
{ |
||||
pyrA = cvGetMat( pyrA, &pstubA ); |
||||
|
||||
if( pyrA->step*pyrA->height < icvMinimalPyramidSize( imgSize ) ) |
||||
CV_Error( CV_StsBadArg, "pyramid A has insufficient size" ); |
||||
} |
||||
else |
||||
{ |
||||
pyrA = &pstubA; |
||||
pyrA->data.ptr = 0; |
||||
} |
||||
|
||||
if( pyrB ) |
||||
{ |
||||
pyrB = cvGetMat( pyrB, &pstubB ); |
||||
|
||||
if( pyrB->step*pyrB->height < icvMinimalPyramidSize( imgSize ) ) |
||||
CV_Error( CV_StsBadArg, "pyramid B has insufficient size" ); |
||||
} |
||||
else |
||||
{ |
||||
pyrB = &pstubB; |
||||
pyrB->data.ptr = 0; |
||||
} |
||||
|
||||
if( count == 0 ) |
||||
return; |
||||
|
||||
/* check input arguments */ |
||||
if( !featuresA || !featuresB || !matrices ) |
||||
CV_Error( CV_StsNullPtr, "" ); |
||||
|
||||
if( winSize.width <= 1 || winSize.height <= 1 ) |
||||
CV_Error( CV_StsOutOfRange, "the search window is too small" ); |
||||
|
||||
if( count < 0 ) |
||||
CV_Error( CV_StsOutOfRange, "" ); |
||||
|
||||
icvInitPyramidalAlgorithm( imgA, imgB, |
||||
pyrA, pyrB, level, &criteria, MAX_ITERS, flags, |
||||
&imgI, &imgJ, &step, &size, &scale, &pyr_buffer ); |
||||
|
||||
/* buffer_size = <size for patches> + <size for pyramids> */ |
||||
bufferBytes = (srcPatchLen + patchLen*3)*sizeof(patchI[0]) + (36*2 + 6)*sizeof(double); |
||||
|
||||
buffer.allocate(bufferBytes); |
||||
|
||||
if( !status ) |
||||
{ |
||||
_status.allocate(count); |
||||
status = _status; |
||||
} |
||||
|
||||
patchI = (float *)(uchar*)buffer; |
||||
patchJ = patchI + srcPatchLen; |
||||
Ix = patchJ + patchLen; |
||||
Iy = Ix + patchLen; |
||||
|
||||
if( status ) |
||||
memset( status, 1, count ); |
||||
|
||||
if( !(flags & CV_LKFLOW_INITIAL_GUESSES) ) |
||||
{ |
||||
memcpy( featuresB, featuresA, count * sizeof( featuresA[0] )); |
||||
for( i = 0; i < count * 4; i += 4 ) |
||||
{ |
||||
matrices[i] = matrices[i + 3] = 1.f; |
||||
matrices[i + 1] = matrices[i + 2] = 0.f; |
||||
} |
||||
} |
||||
|
||||
for( i = 0; i < count; i++ ) |
||||
{ |
||||
featuresB[i].x = (float)(featuresB[i].x * scale[level] * 0.5); |
||||
featuresB[i].y = (float)(featuresB[i].y * scale[level] * 0.5); |
||||
} |
||||
|
||||
/* do processing from top pyramid level (smallest image)
|
||||
to the bottom (original image) */ |
||||
for( l = level; l >= 0; l-- ) |
||||
{ |
||||
CvSize levelSize = size[l]; |
||||
int levelStep = step[l]; |
||||
|
||||
/* find flow for each given point at the particular level */ |
||||
for( i = 0; i < count; i++ ) |
||||
{ |
||||
CvPoint2D32f u; |
||||
float Av[6]; |
||||
double G[36]; |
||||
double meanI = 0, meanJ = 0; |
||||
int x, y; |
||||
int pt_status = status[i]; |
||||
CvMat mat; |
||||
|
||||
if( !pt_status ) |
||||
continue; |
||||
|
||||
Av[0] = matrices[i*4]; |
||||
Av[1] = matrices[i*4+1]; |
||||
Av[3] = matrices[i*4+2]; |
||||
Av[4] = matrices[i*4+3]; |
||||
|
||||
Av[2] = featuresB[i].x += featuresB[i].x; |
||||
Av[5] = featuresB[i].y += featuresB[i].y; |
||||
|
||||
u.x = (float) (featuresA[i].x * scale[l]); |
||||
u.y = (float) (featuresA[i].y * scale[l]); |
||||
|
||||
if( u.x < -eps || u.x >= levelSize.width+eps || |
||||
u.y < -eps || u.y >= levelSize.height+eps || |
||||
icvGetRectSubPix_8u32f_C1R( imgI[l], levelStep, |
||||
levelSize, patchI, srcPatchStep, srcPatchSize, u ) < 0 ) |
||||
{ |
||||
/* point is outside the image. take the next */ |
||||
if( l == 0 ) |
||||
status[i] = 0; |
||||
continue; |
||||
} |
||||
|
||||
icvCalcIxIy_32f( patchI, srcPatchStep, Ix, Iy, |
||||
(srcPatchSize.width-2)*sizeof(patchI[0]), srcPatchSize, |
||||
smoothKernel, patchJ ); |
||||
|
||||
/* repack patchI (remove borders) */ |
||||
for( k = 0; k < patchSize.height; k++ ) |
||||
memcpy( patchI + k * patchSize.width, |
||||
patchI + (k + 1) * srcPatchSize.width + 1, patchStep ); |
||||
|
||||
memset( G, 0, sizeof( G )); |
||||
|
||||
/* calculate G matrix */ |
||||
for( y = -winSize.height, k = 0; y <= winSize.height; y++ ) |
||||
{ |
||||
for( x = -winSize.width; x <= winSize.width; x++, k++ ) |
||||
{ |
||||
double ixix = ((double) Ix[k]) * Ix[k]; |
||||
double ixiy = ((double) Ix[k]) * Iy[k]; |
||||
double iyiy = ((double) Iy[k]) * Iy[k]; |
||||
|
||||
double xx, xy, yy; |
||||
|
||||
G[0] += ixix; |
||||
G[1] += ixiy; |
||||
G[2] += x * ixix; |
||||
G[3] += y * ixix; |
||||
G[4] += x * ixiy; |
||||
G[5] += y * ixiy; |
||||
|
||||
// G[6] == G[1]
|
||||
G[7] += iyiy; |
||||
// G[8] == G[4]
|
||||
// G[9] == G[5]
|
||||
G[10] += x * iyiy; |
||||
G[11] += y * iyiy; |
||||
|
||||
xx = x * x; |
||||
xy = x * y; |
||||
yy = y * y; |
||||
|
||||
// G[12] == G[2]
|
||||
// G[13] == G[8] == G[4]
|
||||
G[14] += xx * ixix; |
||||
G[15] += xy * ixix; |
||||
G[16] += xx * ixiy; |
||||
G[17] += xy * ixiy; |
||||
|
||||
// G[18] == G[3]
|
||||
// G[19] == G[9]
|
||||
// G[20] == G[15]
|
||||
G[21] += yy * ixix; |
||||
// G[22] == G[17]
|
||||
G[23] += yy * ixiy; |
||||
|
||||
// G[24] == G[4]
|
||||
// G[25] == G[10]
|
||||
// G[26] == G[16]
|
||||
// G[27] == G[22]
|
||||
G[28] += xx * iyiy; |
||||
G[29] += xy * iyiy; |
||||
|
||||
// G[30] == G[5]
|
||||
// G[31] == G[11]
|
||||
// G[32] == G[17]
|
||||
// G[33] == G[23]
|
||||
// G[34] == G[29]
|
||||
G[35] += yy * iyiy; |
||||
|
||||
meanI += patchI[k]; |
||||
} |
||||
} |
||||
|
||||
meanI /= patchSize.width*patchSize.height; |
||||
|
||||
G[8] = G[4]; |
||||
G[9] = G[5]; |
||||
G[22] = G[17]; |
||||
|
||||
// fill part of G below its diagonal
|
||||
for( y = 1; y < 6; y++ ) |
||||
for( x = 0; x < y; x++ ) |
||||
G[y * 6 + x] = G[x * 6 + y]; |
||||
|
||||
cvInitMatHeader( &mat, 6, 6, CV_64FC1, G ); |
||||
|
||||
if( cvInvert( &mat, &mat, CV_SVD ) < 1e-4 ) |
||||
{ |
||||
/* bad matrix. take the next point */ |
||||
if( l == 0 ) |
||||
status[i] = 0; |
||||
continue; |
||||
} |
||||
|
||||
for( j = 0; j < criteria.max_iter; j++ ) |
||||
{ |
||||
double b[6] = {0,0,0,0,0,0}, eta[6]; |
||||
double t0, t1, s = 0; |
||||
|
||||
if( Av[2] < -eps || Av[2] >= levelSize.width+eps || |
||||
Av[5] < -eps || Av[5] >= levelSize.height+eps || |
||||
icvGetQuadrangleSubPix_8u32f_C1R( imgJ[l], levelStep, |
||||
levelSize, patchJ, patchStep, patchSize, Av ) < 0 ) |
||||
{ |
||||
pt_status = 0; |
||||
break; |
||||
} |
||||
|
||||
for( y = -winSize.height, k = 0, meanJ = 0; y <= winSize.height; y++ ) |
||||
for( x = -winSize.width; x <= winSize.width; x++, k++ ) |
||||
meanJ += patchJ[k]; |
||||
|
||||
meanJ = meanJ / (patchSize.width * patchSize.height) - meanI; |
||||
|
||||
for( y = -winSize.height, k = 0; y <= winSize.height; y++ ) |
||||
{ |
||||
for( x = -winSize.width; x <= winSize.width; x++, k++ ) |
||||
{ |
||||
double t = patchI[k] - patchJ[k] + meanJ; |
||||
double ixt = Ix[k] * t; |
||||
double iyt = Iy[k] * t; |
||||
|
||||
s += t; |
||||
|
||||
b[0] += ixt; |
||||
b[1] += iyt; |
||||
b[2] += x * ixt; |
||||
b[3] += y * ixt; |
||||
b[4] += x * iyt; |
||||
b[5] += y * iyt; |
||||
} |
||||
} |
||||
|
||||
for( k = 0; k < 6; k++ ) |
||||
eta[k] = G[k*6]*b[0] + G[k*6+1]*b[1] + G[k*6+2]*b[2] + |
||||
G[k*6+3]*b[3] + G[k*6+4]*b[4] + G[k*6+5]*b[5]; |
||||
|
||||
Av[2] = (float)(Av[2] + Av[0] * eta[0] + Av[1] * eta[1]); |
||||
Av[5] = (float)(Av[5] + Av[3] * eta[0] + Av[4] * eta[1]); |
||||
|
||||
t0 = Av[0] * (1 + eta[2]) + Av[1] * eta[4]; |
||||
t1 = Av[0] * eta[3] + Av[1] * (1 + eta[5]); |
||||
Av[0] = (float)t0; |
||||
Av[1] = (float)t1; |
||||
|
||||
t0 = Av[3] * (1 + eta[2]) + Av[4] * eta[4]; |
||||
t1 = Av[3] * eta[3] + Av[4] * (1 + eta[5]); |
||||
Av[3] = (float)t0; |
||||
Av[4] = (float)t1; |
||||
|
||||
if( eta[0] * eta[0] + eta[1] * eta[1] < criteria.epsilon ) |
||||
break; |
||||
} |
||||
|
||||
if( pt_status != 0 || l == 0 ) |
||||
{ |
||||
status[i] = (char)pt_status; |
||||
featuresB[i].x = Av[2]; |
||||
featuresB[i].y = Av[5]; |
||||
|
||||
matrices[i*4] = Av[0]; |
||||
matrices[i*4+1] = Av[1]; |
||||
matrices[i*4+2] = Av[3]; |
||||
matrices[i*4+3] = Av[4]; |
||||
} |
||||
|
||||
if( pt_status && l == 0 && error ) |
||||
{ |
||||
/* calc error */ |
||||
double err = 0; |
||||
|
||||
for( y = 0, k = 0; y < patchSize.height; y++ ) |
||||
{ |
||||
for( x = 0; x < patchSize.width; x++, k++ ) |
||||
{ |
||||
double t = patchI[k] - patchJ[k] + meanJ; |
||||
err += t * t; |
||||
} |
||||
} |
||||
error[i] = (float)std::sqrt(err); |
||||
} |
||||
} |
||||
} |
||||
} |
@ -0,0 +1,388 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
|
||||
/////////////////////////// Meanshift & CAMShift ///////////////////////////
|
||||
|
||||
CV_IMPL int |
||||
cvMeanShift( const void* imgProb, CvRect windowIn, |
||||
CvTermCriteria criteria, CvConnectedComp* comp ) |
||||
{ |
||||
cv::Mat img = cv::cvarrToMat(imgProb); |
||||
cv::Rect window = windowIn; |
||||
int iters = cv::meanShift(img, window, criteria); |
||||
|
||||
if( comp ) |
||||
{ |
||||
comp->rect = window; |
||||
comp->area = cvRound(cv::sum(img(window))[0]); |
||||
} |
||||
|
||||
return iters; |
||||
} |
||||
|
||||
|
||||
CV_IMPL int |
||||
cvCamShift( const void* imgProb, CvRect windowIn, |
||||
CvTermCriteria criteria, |
||||
CvConnectedComp* comp, |
||||
CvBox2D* box ) |
||||
{ |
||||
cv::Mat img = cv::cvarrToMat(imgProb); |
||||
cv::Rect window = windowIn; |
||||
cv::RotatedRect rr = cv::CamShift(img, window, criteria); |
||||
|
||||
if( comp ) |
||||
{ |
||||
comp->rect = window; |
||||
cv::Rect roi = rr.boundingRect() & cv::Rect(0, 0, img.cols, img.rows); |
||||
comp->area = cvRound(cv::sum(img(roi))[0]); |
||||
} |
||||
|
||||
if( box ) |
||||
*box = rr; |
||||
|
||||
return rr.size.width*rr.size.height > 0.f ? 1 : -1; |
||||
} |
||||
|
||||
|
||||
///////////////////////// Motion Templates ////////////////////////////
|
||||
|
||||
CV_IMPL void |
||||
cvUpdateMotionHistory( const void* silhouette, void* mhimg, |
||||
double timestamp, double mhi_duration ) |
||||
{ |
||||
cv::Mat silh = cv::cvarrToMat(silhouette), mhi = cv::cvarrToMat(mhimg); |
||||
cv::updateMotionHistory(silh, mhi, timestamp, mhi_duration); |
||||
} |
||||
|
||||
|
||||
CV_IMPL void |
||||
cvCalcMotionGradient( const CvArr* mhimg, CvArr* maskimg, |
||||
CvArr* orientation, |
||||
double delta1, double delta2, |
||||
int aperture_size ) |
||||
{ |
||||
cv::Mat mhi = cv::cvarrToMat(mhimg); |
||||
const cv::Mat mask = cv::cvarrToMat(maskimg), orient = cv::cvarrToMat(orientation); |
||||
cv::calcMotionGradient(mhi, mask, orient, delta1, delta2, aperture_size); |
||||
} |
||||
|
||||
|
||||
CV_IMPL double |
||||
cvCalcGlobalOrientation( const void* orientation, const void* maskimg, const void* mhimg, |
||||
double curr_mhi_timestamp, double mhi_duration ) |
||||
{ |
||||
cv::Mat mhi = cv::cvarrToMat(mhimg); |
||||
cv::Mat mask = cv::cvarrToMat(maskimg), orient = cv::cvarrToMat(orientation); |
||||
return cv::calcGlobalOrientation(orient, mask, mhi, curr_mhi_timestamp, mhi_duration); |
||||
} |
||||
|
||||
|
||||
CV_IMPL CvSeq* |
||||
cvSegmentMotion( const CvArr* mhimg, CvArr* segmaskimg, CvMemStorage* storage, |
||||
double timestamp, double segThresh ) |
||||
{ |
||||
cv::Mat mhi = cv::cvarrToMat(mhimg); |
||||
const cv::Mat segmask = cv::cvarrToMat(segmaskimg); |
||||
std::vector<cv::Rect> brs; |
||||
cv::segmentMotion(mhi, segmask, brs, timestamp, segThresh); |
||||
CvSeq* seq = cvCreateSeq(0, sizeof(CvSeq), sizeof(CvConnectedComp), storage); |
||||
|
||||
CvConnectedComp comp; |
||||
memset(&comp, 0, sizeof(comp)); |
||||
for( size_t i = 0; i < brs.size(); i++ ) |
||||
{ |
||||
cv::Rect roi = brs[i]; |
||||
float compLabel = (float)(i+1); |
||||
int x, y, area = 0; |
||||
|
||||
cv::Mat part = segmask(roi); |
||||
for( y = 0; y < roi.height; y++ ) |
||||
{ |
||||
const float* partptr = part.ptr<float>(y); |
||||
for( x = 0; x < roi.width; x++ ) |
||||
area += partptr[x] == compLabel; |
||||
} |
||||
|
||||
comp.value = cv::Scalar(compLabel); |
||||
comp.rect = roi; |
||||
comp.area = area; |
||||
cvSeqPush(seq, &comp); |
||||
} |
||||
|
||||
return seq; |
||||
} |
||||
|
||||
|
||||
///////////////////////////////// Kalman ///////////////////////////////
|
||||
|
||||
CV_IMPL CvKalman* |
||||
cvCreateKalman( int DP, int MP, int CP ) |
||||
{ |
||||
CvKalman *kalman = 0; |
||||
|
||||
if( DP <= 0 || MP <= 0 ) |
||||
CV_Error( CV_StsOutOfRange, |
||||
"state and measurement vectors must have positive number of dimensions" ); |
||||
|
||||
if( CP < 0 ) |
||||
CP = DP; |
||||
|
||||
/* allocating memory for the structure */ |
||||
kalman = (CvKalman *)cvAlloc( sizeof( CvKalman )); |
||||
memset( kalman, 0, sizeof(*kalman)); |
||||
|
||||
kalman->DP = DP; |
||||
kalman->MP = MP; |
||||
kalman->CP = CP; |
||||
|
||||
kalman->state_pre = cvCreateMat( DP, 1, CV_32FC1 ); |
||||
cvZero( kalman->state_pre ); |
||||
|
||||
kalman->state_post = cvCreateMat( DP, 1, CV_32FC1 ); |
||||
cvZero( kalman->state_post ); |
||||
|
||||
kalman->transition_matrix = cvCreateMat( DP, DP, CV_32FC1 ); |
||||
cvSetIdentity( kalman->transition_matrix ); |
||||
|
||||
kalman->process_noise_cov = cvCreateMat( DP, DP, CV_32FC1 ); |
||||
cvSetIdentity( kalman->process_noise_cov ); |
||||
|
||||
kalman->measurement_matrix = cvCreateMat( MP, DP, CV_32FC1 ); |
||||
cvZero( kalman->measurement_matrix ); |
||||
|
||||
kalman->measurement_noise_cov = cvCreateMat( MP, MP, CV_32FC1 ); |
||||
cvSetIdentity( kalman->measurement_noise_cov ); |
||||
|
||||
kalman->error_cov_pre = cvCreateMat( DP, DP, CV_32FC1 ); |
||||
|
||||
kalman->error_cov_post = cvCreateMat( DP, DP, CV_32FC1 ); |
||||
cvZero( kalman->error_cov_post ); |
||||
|
||||
kalman->gain = cvCreateMat( DP, MP, CV_32FC1 ); |
||||
|
||||
if( CP > 0 ) |
||||
{ |
||||
kalman->control_matrix = cvCreateMat( DP, CP, CV_32FC1 ); |
||||
cvZero( kalman->control_matrix ); |
||||
} |
||||
|
||||
kalman->temp1 = cvCreateMat( DP, DP, CV_32FC1 ); |
||||
kalman->temp2 = cvCreateMat( MP, DP, CV_32FC1 ); |
||||
kalman->temp3 = cvCreateMat( MP, MP, CV_32FC1 ); |
||||
kalman->temp4 = cvCreateMat( MP, DP, CV_32FC1 ); |
||||
kalman->temp5 = cvCreateMat( MP, 1, CV_32FC1 ); |
||||
|
||||
#if 1 |
||||
kalman->PosterState = kalman->state_pre->data.fl; |
||||
kalman->PriorState = kalman->state_post->data.fl; |
||||
kalman->DynamMatr = kalman->transition_matrix->data.fl; |
||||
kalman->MeasurementMatr = kalman->measurement_matrix->data.fl; |
||||
kalman->MNCovariance = kalman->measurement_noise_cov->data.fl; |
||||
kalman->PNCovariance = kalman->process_noise_cov->data.fl; |
||||
kalman->KalmGainMatr = kalman->gain->data.fl; |
||||
kalman->PriorErrorCovariance = kalman->error_cov_pre->data.fl; |
||||
kalman->PosterErrorCovariance = kalman->error_cov_post->data.fl; |
||||
#endif |
||||
|
||||
return kalman; |
||||
} |
||||
|
||||
|
||||
CV_IMPL void |
||||
cvReleaseKalman( CvKalman** _kalman ) |
||||
{ |
||||
CvKalman *kalman; |
||||
|
||||
if( !_kalman ) |
||||
CV_Error( CV_StsNullPtr, "" ); |
||||
|
||||
kalman = *_kalman; |
||||
if( !kalman ) |
||||
return; |
||||
|
||||
/* freeing the memory */ |
||||
cvReleaseMat( &kalman->state_pre ); |
||||
cvReleaseMat( &kalman->state_post ); |
||||
cvReleaseMat( &kalman->transition_matrix ); |
||||
cvReleaseMat( &kalman->control_matrix ); |
||||
cvReleaseMat( &kalman->measurement_matrix ); |
||||
cvReleaseMat( &kalman->process_noise_cov ); |
||||
cvReleaseMat( &kalman->measurement_noise_cov ); |
||||
cvReleaseMat( &kalman->error_cov_pre ); |
||||
cvReleaseMat( &kalman->gain ); |
||||
cvReleaseMat( &kalman->error_cov_post ); |
||||
cvReleaseMat( &kalman->temp1 ); |
||||
cvReleaseMat( &kalman->temp2 ); |
||||
cvReleaseMat( &kalman->temp3 ); |
||||
cvReleaseMat( &kalman->temp4 ); |
||||
cvReleaseMat( &kalman->temp5 ); |
||||
|
||||
memset( kalman, 0, sizeof(*kalman)); |
||||
|
||||
/* deallocating the structure */ |
||||
cvFree( _kalman ); |
||||
} |
||||
|
||||
|
||||
CV_IMPL const CvMat* |
||||
cvKalmanPredict( CvKalman* kalman, const CvMat* control ) |
||||
{ |
||||
if( !kalman ) |
||||
CV_Error( CV_StsNullPtr, "" ); |
||||
|
||||
/* update the state */ |
||||
/* x'(k) = A*x(k) */ |
||||
cvMatMulAdd( kalman->transition_matrix, kalman->state_post, 0, kalman->state_pre ); |
||||
|
||||
if( control && kalman->CP > 0 ) |
||||
/* x'(k) = x'(k) + B*u(k) */ |
||||
cvMatMulAdd( kalman->control_matrix, control, kalman->state_pre, kalman->state_pre ); |
||||
|
||||
/* update error covariance matrices */ |
||||
/* temp1 = A*P(k) */ |
||||
cvMatMulAdd( kalman->transition_matrix, kalman->error_cov_post, 0, kalman->temp1 ); |
||||
|
||||
/* P'(k) = temp1*At + Q */ |
||||
cvGEMM( kalman->temp1, kalman->transition_matrix, 1, kalman->process_noise_cov, 1, |
||||
kalman->error_cov_pre, CV_GEMM_B_T ); |
||||
|
||||
/* handle the case when there will be measurement before the next predict */ |
||||
cvCopy(kalman->state_pre, kalman->state_post); |
||||
|
||||
return kalman->state_pre; |
||||
} |
||||
|
||||
|
||||
CV_IMPL const CvMat* |
||||
cvKalmanCorrect( CvKalman* kalman, const CvMat* measurement ) |
||||
{ |
||||
if( !kalman || !measurement ) |
||||
CV_Error( CV_StsNullPtr, "" ); |
||||
|
||||
/* temp2 = H*P'(k) */ |
||||
cvMatMulAdd( kalman->measurement_matrix, kalman->error_cov_pre, 0, kalman->temp2 ); |
||||
/* temp3 = temp2*Ht + R */ |
||||
cvGEMM( kalman->temp2, kalman->measurement_matrix, 1, |
||||
kalman->measurement_noise_cov, 1, kalman->temp3, CV_GEMM_B_T ); |
||||
|
||||
/* temp4 = inv(temp3)*temp2 = Kt(k) */ |
||||
cvSolve( kalman->temp3, kalman->temp2, kalman->temp4, CV_SVD ); |
||||
|
||||
/* K(k) */ |
||||
cvTranspose( kalman->temp4, kalman->gain ); |
||||
|
||||
/* temp5 = z(k) - H*x'(k) */ |
||||
cvGEMM( kalman->measurement_matrix, kalman->state_pre, -1, measurement, 1, kalman->temp5 ); |
||||
|
||||
/* x(k) = x'(k) + K(k)*temp5 */ |
||||
cvMatMulAdd( kalman->gain, kalman->temp5, kalman->state_pre, kalman->state_post ); |
||||
|
||||
/* P(k) = P'(k) - K(k)*temp2 */ |
||||
cvGEMM( kalman->gain, kalman->temp2, -1, kalman->error_cov_pre, 1, |
||||
kalman->error_cov_post, 0 ); |
||||
|
||||
return kalman->state_post; |
||||
} |
||||
|
||||
///////////////////////////////////// Optical Flow ////////////////////////////////
|
||||
|
||||
CV_IMPL void |
||||
cvCalcOpticalFlowPyrLK( const void* arrA, const void* arrB, |
||||
void* /*pyrarrA*/, void* /*pyrarrB*/, |
||||
const CvPoint2D32f * featuresA, |
||||
CvPoint2D32f * featuresB, |
||||
int count, CvSize winSize, int level, |
||||
char *status, float *error, |
||||
CvTermCriteria criteria, int flags ) |
||||
{ |
||||
if( count <= 0 ) |
||||
return; |
||||
CV_Assert( featuresA && featuresB ); |
||||
cv::Mat A = cv::cvarrToMat(arrA), B = cv::cvarrToMat(arrB); |
||||
cv::Mat ptA(count, 1, CV_32FC2, (void*)featuresA); |
||||
cv::Mat ptB(count, 1, CV_32FC2, (void*)featuresB); |
||||
cv::Mat st, err; |
||||
|
||||
if( status ) |
||||
st = cv::Mat(count, 1, CV_8U, (void*)status); |
||||
if( error ) |
||||
err = cv::Mat(count, 1, CV_32F, (void*)error); |
||||
cv::calcOpticalFlowPyrLK( A, B, ptA, ptB, st, |
||||
error ? cv::_OutputArray(err) : cv::noArray(), |
||||
winSize, level, criteria, flags); |
||||
} |
||||
|
||||
|
||||
CV_IMPL void cvCalcOpticalFlowFarneback( |
||||
const CvArr* _prev, const CvArr* _next, |
||||
CvArr* _flow, double pyr_scale, int levels, |
||||
int winsize, int iterations, int poly_n, |
||||
double poly_sigma, int flags ) |
||||
{ |
||||
cv::Mat prev = cv::cvarrToMat(_prev), next = cv::cvarrToMat(_next); |
||||
cv::Mat flow = cv::cvarrToMat(_flow); |
||||
CV_Assert( flow.size() == prev.size() && flow.type() == CV_32FC2 ); |
||||
cv::calcOpticalFlowFarneback( prev, next, flow, pyr_scale, levels, |
||||
winsize, iterations, poly_n, poly_sigma, flags ); |
||||
} |
||||
|
||||
|
||||
CV_IMPL int |
||||
cvEstimateRigidTransform( const CvArr* arrA, const CvArr* arrB, CvMat* arrM, int full_affine ) |
||||
{ |
||||
cv::Mat matA = cv::cvarrToMat(arrA), matB = cv::cvarrToMat(arrB); |
||||
const cv::Mat matM0 = cv::cvarrToMat(arrM); |
||||
|
||||
cv::Mat matM = cv::estimateRigidTransform(matA, matB, full_affine != 0); |
||||
if( matM.empty() ) |
||||
{ |
||||
matM = cv::cvarrToMat(arrM); |
||||
matM.setTo(cv::Scalar::all(0)); |
||||
return 0; |
||||
} |
||||
matM.convertTo(matM0, matM0.type()); |
||||
return 1; |
||||
} |
@ -1,86 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_SIMPLEFLOW_H__ |
||||
#define __OPENCV_SIMPLEFLOW_H__ |
||||
|
||||
#include <vector> |
||||
|
||||
#define MASK_TRUE_VALUE 255 |
||||
#define UNKNOWN_FLOW_THRESH 1e9 |
||||
|
||||
namespace cv { |
||||
|
||||
inline static float dist(const Vec3b& p1, const Vec3b& p2) { |
||||
return (float)((p1[0] - p2[0]) * (p1[0] - p2[0]) + |
||||
(p1[1] - p2[1]) * (p1[1] - p2[1]) + |
||||
(p1[2] - p2[2]) * (p1[2] - p2[2])); |
||||
} |
||||
|
||||
inline static float dist(const Vec2f& p1, const Vec2f& p2) { |
||||
return (p1[0] - p2[0]) * (p1[0] - p2[0]) + |
||||
(p1[1] - p2[1]) * (p1[1] - p2[1]); |
||||
} |
||||
|
||||
inline static float dist(const Point2f& p1, const Point2f& p2) { |
||||
return (p1.x - p2.x) * (p1.x - p2.x) + |
||||
(p1.y - p2.y) * (p1.y - p2.y); |
||||
} |
||||
|
||||
inline static float dist(float x1, float y1, float x2, float y2) { |
||||
return (x1 - x2) * (x1 - x2) + |
||||
(y1 - y2) * (y1 - y2); |
||||
} |
||||
|
||||
inline static int dist(int x1, int y1, int x2, int y2) { |
||||
return (x1 - x2) * (x1 - x2) + |
||||
(y1 - y2) * (y1 - y2); |
||||
} |
||||
|
||||
template<class T> |
||||
inline static T min(T t1, T t2, T t3) { |
||||
return (t1 <= t2 && t1 <= t3) ? t1 : min(t2, t3); |
||||
} |
||||
|
||||
} |
||||
|
||||
#endif |
Loading…
Reference in new issue