pull/5/head
parent
f29d73fe86
commit
1454f3d391
1 changed files with 182 additions and 0 deletions
@ -0,0 +1,182 @@ |
|||||||
|
#!/usr/bin/env python |
||||||
|
# Software License Agreement (BSD License) |
||||||
|
# |
||||||
|
# Copyright (c) 2012, Philipp Wagner |
||||||
|
# All rights reserved. |
||||||
|
# |
||||||
|
# Redistribution and use in source and binary forms, with or without |
||||||
|
# modification, are permitted provided that the following conditions |
||||||
|
# are met: |
||||||
|
# |
||||||
|
# * Redistributions of source code must retain the above copyright |
||||||
|
# notice, this list of conditions and the following disclaimer. |
||||||
|
# * Redistributions in binary form must reproduce the above |
||||||
|
# copyright notice, this list of conditions and the following |
||||||
|
# disclaimer in the documentation and/or other materials provided |
||||||
|
# with the distribution. |
||||||
|
# * Neither the name of the author nor the names of its |
||||||
|
# contributors may be used to endorse or promote products derived |
||||||
|
# from this software without specific prior written permission. |
||||||
|
# |
||||||
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
||||||
|
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
||||||
|
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
||||||
|
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
||||||
|
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
||||||
|
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
||||||
|
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
||||||
|
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
||||||
|
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||||
|
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
||||||
|
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
||||||
|
# POSSIBILITY OF SUCH DAMAGE. |
||||||
|
|
||||||
|
|
||||||
|
import os |
||||||
|
import sys |
||||||
|
|
||||||
|
import PIL.Image as Image |
||||||
|
|
||||||
|
import numpy as np |
||||||
|
|
||||||
|
import matplotlib.pyplot as plt |
||||||
|
import matplotlib.cm as cm |
||||||
|
|
||||||
|
import cv2 |
||||||
|
|
||||||
|
def normalize(X, low, high, dtype=None): |
||||||
|
"""Normalizes a given array in X to a value between low and high.""" |
||||||
|
X = np.asarray(X) |
||||||
|
minX, maxX = np.min(X), np.max(X) |
||||||
|
# normalize to [0...1]. |
||||||
|
X = X - float(minX) |
||||||
|
X = X / float((maxX - minX)) |
||||||
|
# scale to [low...high]. |
||||||
|
X = X * (high-low) |
||||||
|
X = X + low |
||||||
|
if dtype is None: |
||||||
|
return np.asarray(X) |
||||||
|
return np.asarray(X, dtype=dtype) |
||||||
|
|
||||||
|
def read_images(path, sz=None): |
||||||
|
"""Reads the images in a given folder, resizes images on the fly if size is given. |
||||||
|
|
||||||
|
Args: |
||||||
|
path: Path to a folder with subfolders representing the subjects (persons). |
||||||
|
sz: A tuple with the size Resizes |
||||||
|
|
||||||
|
Returns: |
||||||
|
A list [X,y] |
||||||
|
|
||||||
|
X: The images, which is a Python list of numpy arrays. |
||||||
|
y: The corresponding labels (the unique number of the subject, person) in a Python list. |
||||||
|
""" |
||||||
|
c = 0 |
||||||
|
X,y = [], [] |
||||||
|
for dirname, dirnames, filenames in os.walk(path): |
||||||
|
for subdirname in dirnames: |
||||||
|
subject_path = os.path.join(dirname, subdirname) |
||||||
|
for filename in os.listdir(subject_path): |
||||||
|
try: |
||||||
|
im = Image.open(os.path.join(subject_path, filename)) |
||||||
|
im = im.convert("L") |
||||||
|
# resize to given size (if given) |
||||||
|
if (sz is not None): |
||||||
|
im = im.resize(sz, Image.ANTIALIAS) |
||||||
|
X.append(np.asarray(im, dtype=np.uint8)) |
||||||
|
y.append(c) |
||||||
|
except IOError, (errno, strerror): |
||||||
|
print "I/O error({0}): {1}".format(errno, strerror) |
||||||
|
except: |
||||||
|
print "Unexpected error:", sys.exc_info()[0] |
||||||
|
raise |
||||||
|
c = c+1 |
||||||
|
return [X,y] |
||||||
|
|
||||||
|
def create_font(fontname='Tahoma', fontsize=10): |
||||||
|
"""Creates a font for the subplot.""" |
||||||
|
return { 'fontname': fontname, 'fontsize':fontsize } |
||||||
|
|
||||||
|
def subplot(title, images, rows, cols, sptitle="subplot", sptitles=[], colormap=cm.gray, ticks_visible=True, filename=None): |
||||||
|
"""This will ease creating a subplot with matplotlib a lot for us.""" |
||||||
|
fig = plt.figure() |
||||||
|
# main title |
||||||
|
fig.text(.5, .95, title, horizontalalignment='center') |
||||||
|
for i in xrange(len(images)): |
||||||
|
ax0 = fig.add_subplot(rows,cols,(i+1)) |
||||||
|
plt.setp(ax0.get_xticklabels(), visible=False) |
||||||
|
plt.setp(ax0.get_yticklabels(), visible=False) |
||||||
|
if len(sptitles) == len(images): |
||||||
|
plt.title("%s #%s" % (sptitle, str(sptitles[i])), create_font('Tahoma',10)) |
||||||
|
else: |
||||||
|
plt.title("%s #%d" % (sptitle, (i+1)), create_font('Tahoma',10)) |
||||||
|
plt.imshow(np.asarray(images[i]), cmap=colormap) |
||||||
|
if filename is None: |
||||||
|
plt.show() |
||||||
|
else: |
||||||
|
fig.savefig(filename) |
||||||
|
|
||||||
|
def imsave(image, title="", filename=None): |
||||||
|
"""Saves or shows (if no filename is given) an image.""" |
||||||
|
fig = plt.figure() |
||||||
|
plt.imshow(np.asarray(image)) |
||||||
|
plt.title(title, create_font('Tahoma',10)) |
||||||
|
if filename is None: |
||||||
|
plt.show() |
||||||
|
else: |
||||||
|
fig.savefig(filename) |
||||||
|
|
||||||
|
if __name__ == "__main__": |
||||||
|
# You'll need at least a path to your image data, please see |
||||||
|
# the tutorial coming with this source code on how to prepare |
||||||
|
# your image data: |
||||||
|
if len(sys.argv) != 2: |
||||||
|
print "USAGE: facerec_demo.py </path/to/images>" |
||||||
|
sys.exit() |
||||||
|
# Now read in the image data. This must be a valid path! |
||||||
|
[X,y] = read_images(sys.argv[1]) |
||||||
|
# Create the Eigenfaces model. We are going to use the default |
||||||
|
# parameters for this simple example, please read the documentation |
||||||
|
# for thresholding: |
||||||
|
model = cv2.createEigenFaceRecognizer() |
||||||
|
# Read |
||||||
|
# Learn the model. Remember our function returns Python lists, |
||||||
|
# so we use np.asarray to turn them into NumPy lists to make |
||||||
|
# the OpenCV wrapper happy: |
||||||
|
model.train(np.asarray(X), np.asarray(y)) |
||||||
|
# We now get a prediction from the model! In reality you |
||||||
|
# should always use unseen images for testing your model. |
||||||
|
# But so many people were confused, when I sliced an image |
||||||
|
# off in the C++ version, so I am just using an image we |
||||||
|
# have trained with. |
||||||
|
# |
||||||
|
# model.predict is going to return the predicted label and |
||||||
|
# the associated confidence: |
||||||
|
[p_label, p_confidence] = model.predict(np.asarray(X[0])) |
||||||
|
# Print it: |
||||||
|
print "Predicted label = %d (confidence=%.2f)" % (p_label, p_confidence) |
||||||
|
# Cool! Finally we'll plot the Eigenfaces, because that's |
||||||
|
# what most people read in the papers are keen to see. |
||||||
|
# |
||||||
|
# Just like in C++ you have access to all model internal |
||||||
|
# data, because the cv::FaceRecognizer is a cv::Algorithm. |
||||||
|
# |
||||||
|
# You can see the available parameters with getParams(): |
||||||
|
print model.getParams() |
||||||
|
# Now let's get some data: |
||||||
|
mean = model.getMat("mean") |
||||||
|
eigenvectors = model.getMat("eigenvectors") |
||||||
|
# We'll save the mean, by first normalizing it: |
||||||
|
mean_norm = normalize(mean, 0, 255) |
||||||
|
mean_resized = mean_norm.reshape(X[0].shape) |
||||||
|
imsave(mean_resized, "Mean Face", "mean.png") |
||||||
|
# Turn the first (at most) 16 eigenvectors into grayscale |
||||||
|
# images. You could also use cv::normalize here, but sticking |
||||||
|
# to NumPy is much easier for now. |
||||||
|
# Note: eigenvectors are stored by column: |
||||||
|
SubplotData = [] |
||||||
|
for i in xrange(min(len(X), 16)): |
||||||
|
eigenvector_i = eigenvectors[:,i].reshape(X[0].shape) |
||||||
|
SubplotData.append(normalize(eigenvector_i, 0, 255)) |
||||||
|
# Plot them and store the plot to "python_eigenfaces.png" |
||||||
|
subplot(title="Eigenfaces AT&T Facedatabase", images=SubplotData, rows=4, cols=4, sptitle="Eigenface", colormap=cm.jet, filename="eigenfaces.png") |
Loading…
Reference in new issue