|
|
|
@ -16,105 +16,90 @@ |
|
|
|
|
using namespace std; |
|
|
|
|
using namespace cv; |
|
|
|
|
|
|
|
|
|
void er_draw(Mat &src, Mat &dst, ERStat& er); |
|
|
|
|
void show_help_and_exit(const char *cmd); |
|
|
|
|
void groups_draw(Mat &src, vector<Rect> &groups); |
|
|
|
|
void er_draw(Mat &src, Mat &dst, ERStat& er); |
|
|
|
|
|
|
|
|
|
void er_draw(Mat &src, Mat &dst, ERStat& er) |
|
|
|
|
int main(int argc, const char * argv[]) |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
if (er.parent != NULL) // deprecate the root region
|
|
|
|
|
{ |
|
|
|
|
int newMaskVal = 255; |
|
|
|
|
int flags = 4 + (newMaskVal << 8) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY; |
|
|
|
|
floodFill(src,dst,Point(er.pixel%src.cols,er.pixel/src.cols),Scalar(255),0,Scalar(er.level),Scalar(0),flags); |
|
|
|
|
} |
|
|
|
|
if (argc < 2) show_help_and_exit(argv[0]); |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int main(int argc, const char * argv[]) |
|
|
|
|
{ |
|
|
|
|
Mat src = imread(argv[1]); |
|
|
|
|
|
|
|
|
|
// Extract channels to be processed individually
|
|
|
|
|
vector<Mat> channels; |
|
|
|
|
computeNMChannels(src, channels); |
|
|
|
|
|
|
|
|
|
vector<ERStat> regions; |
|
|
|
|
int cn = (int)channels.size(); |
|
|
|
|
// Append negative channels to detect ER- (bright regions over dark background)
|
|
|
|
|
for (int c = 0; c < cn-1; c++) |
|
|
|
|
channels.push_back(255-channels[c]); |
|
|
|
|
|
|
|
|
|
if (argc < 2) { |
|
|
|
|
cout << "Demo program of the Extremal Region Filter algorithm described in " << endl; |
|
|
|
|
cout << "Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012" << endl << endl; |
|
|
|
|
cout << " Usage: " << argv[0] << " input_image <optional_groundtruth_image>" << endl; |
|
|
|
|
cout << " Default classifier files (trained_classifierNM*.xml) should be in ./" << endl; |
|
|
|
|
return -1; |
|
|
|
|
} |
|
|
|
|
// Create ERFilter objects with the 1st and 2nd stage default classifiers
|
|
|
|
|
Ptr<ERFilter> er_filter1 = createERFilterNM1(loadClassifierNM1("trained_classifierNM1.xml"),8,0.00025,0.13,0.4,true,0.1); |
|
|
|
|
Ptr<ERFilter> er_filter2 = createERFilterNM2(loadClassifierNM2("trained_classifierNM2.xml"),0.3); |
|
|
|
|
|
|
|
|
|
Mat original = imread(argv[1]); |
|
|
|
|
Mat gt; |
|
|
|
|
if (argc > 2) |
|
|
|
|
vector<vector<ERStat> > regions(channels.size()); |
|
|
|
|
// Apply the default cascade classifier to each independent channel (could be done in parallel)
|
|
|
|
|
for (int c=0; c<(int)channels.size(); c++) |
|
|
|
|
{ |
|
|
|
|
gt = imread(argv[2]); |
|
|
|
|
cvtColor(gt, gt, COLOR_RGB2GRAY); |
|
|
|
|
threshold(gt, gt, 254, 255, THRESH_BINARY); |
|
|
|
|
er_filter1->run(channels[c], regions[c]); |
|
|
|
|
er_filter2->run(channels[c], regions[c]); |
|
|
|
|
} |
|
|
|
|
Mat grey(original.size(),CV_8UC1); |
|
|
|
|
cvtColor(original,grey,COLOR_RGB2GRAY); |
|
|
|
|
|
|
|
|
|
double t = (double)getTickCount(); |
|
|
|
|
|
|
|
|
|
// Build ER tree and filter with the 1st stage default classifier
|
|
|
|
|
Ptr<ERFilter> er_filter1 = createERFilterNM1(loadClassifierNM1("trained_classifierNM1.xml")); |
|
|
|
|
// Detect character groups
|
|
|
|
|
vector<Rect> groups; |
|
|
|
|
erGrouping(channels, regions, groups); |
|
|
|
|
|
|
|
|
|
er_filter1->run(grey, regions); |
|
|
|
|
|
|
|
|
|
t = (double)getTickCount() - t; |
|
|
|
|
cout << " --------------------------------------------------------------------------------------------------" << endl; |
|
|
|
|
cout << "\t FIRST STAGE CLASSIFIER done in " << t * 1000. / getTickFrequency() << " ms." << endl; |
|
|
|
|
cout << " --------------------------------------------------------------------------------------------------" << endl; |
|
|
|
|
cout << setw(9) << regions.size()+er_filter1->getNumRejected() << "\t Extremal Regions extracted " << endl; |
|
|
|
|
cout << setw(9) << regions.size() << "\t Extremal Regions selected by the first stage of the sequential classifier." << endl; |
|
|
|
|
cout << "\t \t (saving into out_second_stage.jpg)" << endl; |
|
|
|
|
cout << " --------------------------------------------------------------------------------------------------" << endl; |
|
|
|
|
// draw groups
|
|
|
|
|
groups_draw(src, groups); |
|
|
|
|
imshow("grouping",src); |
|
|
|
|
waitKey(-1); |
|
|
|
|
|
|
|
|
|
// memory clean-up
|
|
|
|
|
er_filter1.release(); |
|
|
|
|
|
|
|
|
|
// draw regions
|
|
|
|
|
Mat mask = Mat::zeros(grey.rows+2,grey.cols+2,CV_8UC1); |
|
|
|
|
for (int r=0; r<(int)regions.size(); r++) |
|
|
|
|
er_draw(grey, mask, regions.at(r)); |
|
|
|
|
mask = 255-mask; |
|
|
|
|
imwrite("out_first_stage.jpg", mask); |
|
|
|
|
|
|
|
|
|
if (argc > 2) |
|
|
|
|
er_filter2.release(); |
|
|
|
|
regions.clear(); |
|
|
|
|
if (!groups.empty()) |
|
|
|
|
{ |
|
|
|
|
Mat tmp_mask = (255-gt) & (255-mask(Rect(Point(1,1),Size(mask.cols-2,mask.rows-2)))); |
|
|
|
|
cout << "Recall for the 1st stage filter = " << (float)countNonZero(tmp_mask) / countNonZero(255-gt) << endl; |
|
|
|
|
groups.clear(); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
t = (double)getTickCount(); |
|
|
|
|
|
|
|
|
|
// Default second stage classifier
|
|
|
|
|
Ptr<ERFilter> er_filter2 = createERFilterNM2(loadClassifierNM2("trained_classifierNM2.xml")); |
|
|
|
|
er_filter2->run(grey, regions); |
|
|
|
|
|
|
|
|
|
t = (double)getTickCount() - t; |
|
|
|
|
cout << " --------------------------------------------------------------------------------------------------" << endl; |
|
|
|
|
cout << "\t SECOND STAGE CLASSIFIER done in " << t * 1000. / getTickFrequency() << " ms." << endl; |
|
|
|
|
cout << " --------------------------------------------------------------------------------------------------" << endl; |
|
|
|
|
cout << setw(9) << regions.size() << "\t Extremal Regions selected by the second stage of the sequential classifier." << endl; |
|
|
|
|
cout << "\t \t (saving into out_second_stage.jpg)" << endl; |
|
|
|
|
cout << " --------------------------------------------------------------------------------------------------" << endl; |
|
|
|
|
// helper functions
|
|
|
|
|
|
|
|
|
|
er_filter2.release(); |
|
|
|
|
|
|
|
|
|
// draw regions
|
|
|
|
|
mask = mask*0; |
|
|
|
|
for (int r=0; r<(int)regions.size(); r++) |
|
|
|
|
er_draw(grey, mask, regions.at(r)); |
|
|
|
|
mask = 255-mask; |
|
|
|
|
imwrite("out_second_stage.jpg", mask); |
|
|
|
|
void show_help_and_exit(const char *cmd) |
|
|
|
|
{ |
|
|
|
|
cout << endl << cmd << endl << endl; |
|
|
|
|
cout << "Demo program of the Extremal Region Filter algorithm described in " << endl; |
|
|
|
|
cout << "Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012" << endl << endl; |
|
|
|
|
cout << " Usage: " << cmd << " <input_image> " << endl; |
|
|
|
|
cout << " Default classifier files (trained_classifierNM*.xml) must be in current directory" << endl << endl; |
|
|
|
|
exit(-1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (argc > 2) |
|
|
|
|
void groups_draw(Mat &src, vector<Rect> &groups) |
|
|
|
|
{ |
|
|
|
|
for (int i=groups.size()-1; i>=0; i--) |
|
|
|
|
{ |
|
|
|
|
Mat tmp_mask = (255-gt) & (255-mask(Rect(Point(1,1),Size(mask.cols-2,mask.rows-2)))); |
|
|
|
|
cout << "Recall for the 2nd stage filter = " << (float)countNonZero(tmp_mask) / countNonZero(255-gt) << endl; |
|
|
|
|
if (src.type() == CV_8UC3) |
|
|
|
|
rectangle(src,groups.at(i).tl(),groups.at(i).br(),Scalar( 0, 255, 255 ), 3, 8 ); |
|
|
|
|
else |
|
|
|
|
rectangle(src,groups.at(i).tl(),groups.at(i).br(),Scalar( 255 ), 3, 8 ); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
regions.clear(); |
|
|
|
|
void er_draw(Mat &src, Mat &dst, ERStat& er) |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
if (er.parent != NULL) // deprecate the root region
|
|
|
|
|
{ |
|
|
|
|
int newMaskVal = 255; |
|
|
|
|
int flags = 4 + (newMaskVal << 8) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY; |
|
|
|
|
floodFill(src,dst,Point(er.pixel%src.cols,er.pixel/src.cols),Scalar(255),0,Scalar(er.level),Scalar(0),flags); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|