Merge pull request #15122 from pmur:fast-math-improvements

pull/15309/head
Alexander Alekhin 5 years ago
commit 13ecd5bb25
  1. 113
      modules/core/include/opencv2/core/fast_math.hpp
  2. 78
      modules/core/perf/perf_cvround.cpp
  3. 54
      modules/core/test/test_math.cpp

@ -74,7 +74,15 @@
# include "tegra_round.hpp"
#endif
#if defined __GNUC__ && defined __arm__ && (defined __ARM_PCS_VFP || defined __ARM_VFPV3__ || defined __ARM_NEON__) && !defined __SOFTFP__ && !defined(__CUDACC__)
#if defined __PPC64__ && defined __GNUC__ && defined _ARCH_PWR8 && !defined (__CUDACC__)
# include <altivec.h>
#endif
#if ((defined _MSC_VER && defined _M_ARM) || defined CV_ICC || \
defined __GNUC__) && defined HAVE_TEGRA_OPTIMIZATION
#define CV_INLINE_ROUND_DBL(value) TEGRA_ROUND_DBL(value);
#define CV_INLINE_ROUND_FLT(value) TEGRA_ROUND_FLT(value);
#elif defined __GNUC__ && defined __arm__ && (defined __ARM_PCS_VFP || defined __ARM_VFPV3__ || defined __ARM_NEON__) && !defined __SOFTFP__ && !defined(__CUDACC__)
// 1. general scheme
#define ARM_ROUND(_value, _asm_string) \
int res; \
@ -84,12 +92,55 @@
return res
// 2. version for double
#ifdef __clang__
#define ARM_ROUND_DBL(value) ARM_ROUND(value, "vcvtr.s32.f64 %[temp], %[value] \n vmov %[res], %[temp]")
#define CV_INLINE_ROUND_DBL(value) ARM_ROUND(value, "vcvtr.s32.f64 %[temp], %[value] \n vmov %[res], %[temp]")
#else
#define ARM_ROUND_DBL(value) ARM_ROUND(value, "vcvtr.s32.f64 %[temp], %P[value] \n vmov %[res], %[temp]")
#define CV_INLINE_ROUND_DBL(value) ARM_ROUND(value, "vcvtr.s32.f64 %[temp], %P[value] \n vmov %[res], %[temp]")
#endif
// 3. version for float
#define ARM_ROUND_FLT(value) ARM_ROUND(value, "vcvtr.s32.f32 %[temp], %[value]\n vmov %[res], %[temp]")
#define CV_INLINE_ROUND_FLT(value) ARM_ROUND(value, "vcvtr.s32.f32 %[temp], %[value]\n vmov %[res], %[temp]")
#elif defined __PPC64__ && defined __GNUC__ && defined _ARCH_PWR8 && !defined (__CUDACC__)
// P8 and newer machines can convert fp32/64 to int quickly.
#define CV_INLINE_ROUND_DBL(value) \
int out; \
double temp; \
__asm__( "fctiw %[temp],%[in]\n\tmffprwz %[out],%[temp]\n\t" : [out] "=r" (out), [temp] "=d" (temp) : [in] "d" ((double)(value)) : ); \
return out;
// FP32 also works with FP64 routine above
#define CV_INLINE_ROUND_FLT(value) CV_INLINE_ROUND_DBL(value)
#ifdef _ARCH_PWR9
#define CV_INLINE_ISINF_DBL(value) return scalar_test_data_class(value, 0x30);
#define CV_INLINE_ISNAN_DBL(value) return scalar_test_data_class(value, 0x40);
#define CV_INLINE_ISINF_FLT(value) CV_INLINE_ISINF_DBL(value)
#define CV_INLINE_ISNAN_FLT(value) CV_INLINE_ISNAN_DBL(value)
#endif
#elif defined CV_ICC || defined __GNUC__
#define CV_INLINE_ROUND_DBL(value) return (int)(lrint(value));
#define CV_INLINE_ROUND_FLT(value) return (int)(lrintf(value));
#endif
#if defined __PPC64__ && !defined OPENCV_USE_FASTMATH_GCC_BUILTINS
/* Let GCC inline C math functions when available. Dedicated hardware is available to
round and covert FP values. */
#define OPENCV_USE_FASTMATH_GCC_BUILTINS
#endif
/* Enable GCC builtin math functions if possible, desired, and available.
Note, not all math functions inline equally. E.g lrint will not inline
without the -fno-math-errno option. */
#if defined OPENCV_USE_FASTMATH_GCC_BUILTINS && defined __GNUC__ && !defined __clang__ && !defined (__CUDACC__)
#define _OPENCV_FASTMATH_ENABLE_GCC_MATH_BUILTINS
#endif
/* Allow overrides for some functions which may benefit from tuning. Likewise,
note that isinf is not used as the return value is signed. */
#if defined _OPENCV_FASTMATH_ENABLE_GCC_MATH_BUILTINS && !defined CV_INLINE_ISNAN_DBL
#define CV_INLINE_ISNAN_DBL(value) return __builtin_isnan(value);
#endif
#if defined _OPENCV_FASTMATH_ENABLE_GCC_MATH_BUILTINS && !defined CV_INLINE_ISNAN_FLT
#define CV_INLINE_ISNAN_FLT(value) return __builtin_isnanf(value);
#endif
/** @brief Rounds floating-point number to the nearest integer
@ -112,15 +163,8 @@ cvRound( double value )
fistp t;
}
return t;
#elif ((defined _MSC_VER && defined _M_ARM) || defined CV_ICC || \
defined __GNUC__) && defined HAVE_TEGRA_OPTIMIZATION
TEGRA_ROUND_DBL(value);
#elif defined CV_ICC || defined __GNUC__
# if defined ARM_ROUND_DBL
ARM_ROUND_DBL(value);
# else
return (int)lrint(value);
# endif
#elif defined CV_INLINE_ROUND_DBL
CV_INLINE_ROUND_DBL(value);
#else
/* it's ok if round does not comply with IEEE754 standard;
the tests should allow +/-1 difference when the tested functions use round */
@ -138,8 +182,12 @@ cvRound( double value )
*/
CV_INLINE int cvFloor( double value )
{
#if defined _OPENCV_FASTMATH_ENABLE_GCC_MATH_BUILTINS
return __builtin_floor(value);
#else
int i = (int)value;
return i - (i > value);
#endif
}
/** @brief Rounds floating-point number to the nearest integer not smaller than the original.
@ -151,8 +199,12 @@ CV_INLINE int cvFloor( double value )
*/
CV_INLINE int cvCeil( double value )
{
#if defined _OPENCV_FASTMATH_ENABLE_GCC_MATH_BUILTINS
return __builtin_ceil(value);
#else
int i = (int)value;
return i + (i < value);
#endif
}
/** @brief Determines if the argument is Not A Number.
@ -163,10 +215,14 @@ CV_INLINE int cvCeil( double value )
otherwise. */
CV_INLINE int cvIsNaN( double value )
{
#if defined CV_INLINE_ISNAN_DBL
CV_INLINE_ISNAN_DBL(value);
#else
Cv64suf ieee754;
ieee754.f = value;
return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) +
((unsigned)ieee754.u != 0) > 0x7ff00000;
#endif
}
/** @brief Determines if the argument is Infinity.
@ -177,10 +233,14 @@ CV_INLINE int cvIsNaN( double value )
and 0 otherwise. */
CV_INLINE int cvIsInf( double value )
{
#if defined CV_INLINE_ISINF_DBL
CV_INLINE_ISINF_DBL(value);
#else
Cv64suf ieee754;
ieee754.f = value;
return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) == 0x7ff00000 &&
(unsigned)ieee754.u == 0;
#endif
}
#ifdef __cplusplus
@ -200,15 +260,8 @@ CV_INLINE int cvRound(float value)
fistp t;
}
return t;
#elif ((defined _MSC_VER && defined _M_ARM) || defined CV_ICC || \
defined __GNUC__) && defined HAVE_TEGRA_OPTIMIZATION
TEGRA_ROUND_FLT(value);
#elif defined CV_ICC || defined __GNUC__
# if defined ARM_ROUND_FLT
ARM_ROUND_FLT(value);
# else
return (int)lrintf(value);
# endif
#elif defined CV_INLINE_ROUND_FLT
CV_INLINE_ROUND_FLT(value);
#else
/* it's ok if round does not comply with IEEE754 standard;
the tests should allow +/-1 difference when the tested functions use round */
@ -225,8 +278,12 @@ CV_INLINE int cvRound( int value )
/** @overload */
CV_INLINE int cvFloor( float value )
{
#if defined _OPENCV_FASTMATH_ENABLE_GCC_MATH_BUILTINS
return __builtin_floorf(value);
#else
int i = (int)value;
return i - (i > value);
#endif
}
/** @overload */
@ -238,8 +295,12 @@ CV_INLINE int cvFloor( int value )
/** @overload */
CV_INLINE int cvCeil( float value )
{
#if defined _OPENCV_FASTMATH_ENABLE_GCC_MATH_BUILTINS
return __builtin_ceilf(value);
#else
int i = (int)value;
return i + (i < value);
#endif
}
/** @overload */
@ -251,17 +312,25 @@ CV_INLINE int cvCeil( int value )
/** @overload */
CV_INLINE int cvIsNaN( float value )
{
#if defined CV_INLINE_ISNAN_FLT
CV_INLINE_ISNAN_FLT(value);
#else
Cv32suf ieee754;
ieee754.f = value;
return (ieee754.u & 0x7fffffff) > 0x7f800000;
#endif
}
/** @overload */
CV_INLINE int cvIsInf( float value )
{
#if defined CV_INLINE_ISINF_FLT
CV_INLINE_ISINF_FLT(value);
#else
Cv32suf ieee754;
ieee754.f = value;
return (ieee754.u & 0x7fffffff) == 0x7f800000;
#endif
}
#endif // __cplusplus

@ -4,42 +4,52 @@ namespace opencv_test
{
using namespace perf;
template <typename T>
static void CvRoundMat(const cv::Mat & src, cv::Mat & dst)
{
for (int y = 0; y < dst.rows; ++y)
{
const T * sptr = src.ptr<T>(y);
int * dptr = dst.ptr<int>(y);
for (int x = 0; x < dst.cols; ++x)
dptr[x] = cvRound(sptr[x]);
#define DECL_ROUND_TEST(NAME, OP, EXTRA) \
template <typename T> \
static void OP ## Mat(const cv::Mat & src, cv::Mat & dst) \
{ \
for (int y = 0; y < dst.rows; ++y) \
{ \
const T * sptr = src.ptr<T>(y); \
int * dptr = dst.ptr<int>(y); \
\
for (int x = 0; x < dst.cols; ++x) \
dptr[x] = OP(sptr[x]) EXTRA; \
} \
} \
\
PERF_TEST_P(Size_MatType, CvRound_Float ## NAME, \
testing::Combine(testing::Values(TYPICAL_MAT_SIZES), \
testing::Values(CV_32FC1, CV_64FC1))) \
{ \
Size size = get<0>(GetParam()); \
int type = get<1>(GetParam()), depth = CV_MAT_DEPTH(type); \
\
cv::Mat src(size, type), dst(size, CV_32SC1); \
\
declare.in(src, WARMUP_RNG).out(dst); \
\
if (depth == CV_32F) \
{ \
TEST_CYCLE() \
OP ## Mat<float>(src, dst); \
} \
else if (depth == CV_64F) \
{ \
TEST_CYCLE() \
OP ## Mat<double>(src, dst); \
} \
\
SANITY_CHECK_NOTHING(); \
}
}
PERF_TEST_P(Size_MatType, CvRound_Float,
testing::Combine(testing::Values(TYPICAL_MAT_SIZES),
testing::Values(CV_32FC1, CV_64FC1)))
{
Size size = get<0>(GetParam());
int type = get<1>(GetParam()), depth = CV_MAT_DEPTH(type);
cv::Mat src(size, type), dst(size, CV_32SC1);
declare.in(src, WARMUP_RNG).out(dst);
if (depth == CV_32F)
{
TEST_CYCLE()
CvRoundMat<float>(src, dst);
}
else if (depth == CV_64F)
{
TEST_CYCLE()
CvRoundMat<double>(src, dst);
}
DECL_ROUND_TEST(,cvRound,)
DECL_ROUND_TEST(_Ceil,cvCeil,)
DECL_ROUND_TEST(_Floor,cvFloor,)
SANITY_CHECK_NOTHING();
}
/* For FP classification tests, try to test them in way which uses
branching logic and avoids extra FP logic. */
DECL_ROUND_TEST(_NaN,cvIsNaN, ? 1 : 2)
DECL_ROUND_TEST(_Inf,cvIsInf, ? 1 : 2)
} // namespace

@ -3923,5 +3923,59 @@ TEST(Core_SoftFloat, CvRound)
}
}
template<typename T>
static void checkRounding(T in, int outCeil, int outFloor)
{
EXPECT_EQ(outCeil,cvCeil(in));
EXPECT_EQ(outFloor,cvFloor(in));
/* cvRound is not expected to be IEEE compliant. The implementation
should round to one of the above. */
EXPECT_TRUE((cvRound(in) == outCeil) || (cvRound(in) == outFloor));
}
TEST(Core_FastMath, InlineRoundingOps)
{
struct
{
double in;
int outCeil;
int outFloor;
} values[] =
{
// Values are chosen to convert to binary float 32/64 exactly
{ 1.0, 1, 1 },
{ 1.5, 2, 1 },
{ -1.5, -1, -2}
};
for (int i = 0, maxi = sizeof(values) / sizeof(values[0]); i < maxi; i++)
{
checkRounding<double>(values[i].in, values[i].outCeil, values[i].outFloor);
checkRounding<float>((float)values[i].in, values[i].outCeil, values[i].outFloor);
}
}
TEST(Core_FastMath, InlineNaN)
{
EXPECT_EQ( cvIsNaN((float) NAN), 1);
EXPECT_EQ( cvIsNaN((float) -NAN), 1);
EXPECT_EQ( cvIsNaN(0.0f), 0);
EXPECT_EQ( cvIsNaN((double) NAN), 1);
EXPECT_EQ( cvIsNaN((double) -NAN), 1);
EXPECT_EQ( cvIsNaN(0.0), 0);
}
TEST(Core_FastMath, InlineIsInf)
{
// Assume HUGE_VAL is infinity. Strictly speaking, may not always be true.
EXPECT_EQ( cvIsInf((float) HUGE_VAL), 1);
EXPECT_EQ( cvIsInf((float) -HUGE_VAL), 1);
EXPECT_EQ( cvIsInf(0.0f), 0);
EXPECT_EQ( cvIsInf((double) HUGE_VAL), 1);
EXPECT_EQ( cvIsInf((double) -HUGE_VAL), 1);
EXPECT_EQ( cvIsInf(0.0), 0);
}
}} // namespace
/* End of file. */

Loading…
Cancel
Save