|
|
|
@ -56,6 +56,25 @@ enum |
|
|
|
|
SUM_1 = 0, SUM_2 = 1 |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
static bool extractFirstChannel_32F(InputArray _image, OutputArray _result, int cn) |
|
|
|
|
{ |
|
|
|
|
UMat image = _image.getUMat(); |
|
|
|
|
UMat result = _result.getUMat(); |
|
|
|
|
|
|
|
|
|
int depth = image.depth(); |
|
|
|
|
|
|
|
|
|
ocl::Device dev = ocl::Device::getDefault(); |
|
|
|
|
int pxPerWIy = (dev.isIntel() && (dev.type() & ocl::Device::TYPE_GPU)) ? 4 : 1; |
|
|
|
|
|
|
|
|
|
ocl::Kernel k("extractFirstChannel", ocl::imgproc::match_template_oclsrc, format("-D FIRST_CHANNEL -D T1=%s -D cn=%d -D PIX_PER_WI_Y=%d", |
|
|
|
|
ocl::typeToStr(depth), cn, pxPerWIy)); |
|
|
|
|
if (k.empty()) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
size_t globalsize[2] = {result.cols, (result.rows+pxPerWIy-1)/pxPerWIy}; |
|
|
|
|
return k.args(ocl::KernelArg::ReadOnlyNoSize(image), ocl::KernelArg::WriteOnly(result)).run( 2, globalsize, NULL, false); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static bool sumTemplate(InputArray _src, UMat & result) |
|
|
|
|
{ |
|
|
|
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); |
|
|
|
@ -88,6 +107,160 @@ static bool sumTemplate(InputArray _src, UMat & result) |
|
|
|
|
return k.run(1, &globalsize, &wgs, false); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static bool useNaive(int method, int depth, Size size) |
|
|
|
|
{ |
|
|
|
|
/* if (method == TM_SQDIFF && (depth == CV_32F))
|
|
|
|
|
{ |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
else*/ if(method == TM_CCORR || method == TM_SQDIFF ) |
|
|
|
|
{ |
|
|
|
|
return size.height < 18 && size.width < 18; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
struct ConvolveBuf |
|
|
|
|
{ |
|
|
|
|
Size result_size; |
|
|
|
|
Size block_size; |
|
|
|
|
Size user_block_size; |
|
|
|
|
Size dft_size; |
|
|
|
|
|
|
|
|
|
UMat image_spect, templ_spect, result_spect; |
|
|
|
|
UMat image_block, templ_block, result_data; |
|
|
|
|
|
|
|
|
|
void create(Size image_size, Size templ_size); |
|
|
|
|
static Size estimateBlockSize(Size result_size, Size templ_size); |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
void ConvolveBuf::create(Size image_size, Size templ_size) |
|
|
|
|
{ |
|
|
|
|
result_size = Size(image_size.width - templ_size.width + 1, |
|
|
|
|
image_size.height - templ_size.height + 1); |
|
|
|
|
|
|
|
|
|
block_size = user_block_size; |
|
|
|
|
if (user_block_size.width == 0 || user_block_size.height == 0) |
|
|
|
|
block_size = estimateBlockSize(result_size, templ_size); |
|
|
|
|
|
|
|
|
|
dft_size.width = 1 << int(ceil(std::log(block_size.width + templ_size.width - 1.) / std::log(2.))); |
|
|
|
|
dft_size.height = 1 << int(ceil(std::log(block_size.height + templ_size.height - 1.) / std::log(2.))); |
|
|
|
|
|
|
|
|
|
dft_size.width = getOptimalDFTSize(block_size.width + templ_size.width - 1); |
|
|
|
|
dft_size.height = getOptimalDFTSize(block_size.height + templ_size.height - 1); |
|
|
|
|
|
|
|
|
|
// To avoid wasting time doing small DFTs
|
|
|
|
|
dft_size.width = std::max(dft_size.width, 512); |
|
|
|
|
dft_size.height = std::max(dft_size.height, 512); |
|
|
|
|
|
|
|
|
|
image_block.create(dft_size, CV_32F); |
|
|
|
|
templ_block.create(dft_size, CV_32F); |
|
|
|
|
result_data.create(dft_size, CV_32F); |
|
|
|
|
|
|
|
|
|
image_spect.create(dft_size.height, dft_size.width / 2 + 1, CV_32FC2); |
|
|
|
|
templ_spect.create(dft_size.height, dft_size.width / 2 + 1, CV_32FC2); |
|
|
|
|
result_spect.create(dft_size.height, dft_size.width / 2 + 1, CV_32FC2); |
|
|
|
|
|
|
|
|
|
// Use maximum result matrix block size for the estimated DFT block size
|
|
|
|
|
block_size.width = std::min(dft_size.width - templ_size.width + 1, result_size.width); |
|
|
|
|
block_size.height = std::min(dft_size.height - templ_size.height + 1, result_size.height); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Size ConvolveBuf::estimateBlockSize(Size result_size, Size /*templ_size*/) |
|
|
|
|
{ |
|
|
|
|
int width = (result_size.width + 2) / 3; |
|
|
|
|
int height = (result_size.height + 2) / 3; |
|
|
|
|
width = std::min(width, result_size.width); |
|
|
|
|
height = std::min(height, result_size.height); |
|
|
|
|
return Size(width, height); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static bool convolve_dft(InputArray _image, InputArray _templ, OutputArray _result) |
|
|
|
|
{ |
|
|
|
|
ConvolveBuf buf; |
|
|
|
|
CV_Assert(_image.type() == CV_32F); |
|
|
|
|
CV_Assert(_templ.type() == CV_32F); |
|
|
|
|
|
|
|
|
|
buf.create(_image.size(), _templ.size()); |
|
|
|
|
_result.create(buf.result_size, CV_32F); |
|
|
|
|
|
|
|
|
|
UMat image = _image.getUMat(); |
|
|
|
|
UMat templ = _templ.getUMat(); |
|
|
|
|
|
|
|
|
|
UMat result = _result.getUMat(); |
|
|
|
|
|
|
|
|
|
Size& block_size = buf.block_size; |
|
|
|
|
Size& dft_size = buf.dft_size; |
|
|
|
|
|
|
|
|
|
UMat& image_block = buf.image_block; |
|
|
|
|
UMat& templ_block = buf.templ_block; |
|
|
|
|
UMat& result_data = buf.result_data; |
|
|
|
|
|
|
|
|
|
UMat& image_spect = buf.image_spect; |
|
|
|
|
UMat& templ_spect = buf.templ_spect; |
|
|
|
|
UMat& result_spect = buf.result_spect; |
|
|
|
|
|
|
|
|
|
UMat templ_roi = templ; |
|
|
|
|
copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0, |
|
|
|
|
templ_block.cols - templ_roi.cols, BORDER_ISOLATED); |
|
|
|
|
|
|
|
|
|
dft(templ_block, templ_spect, 0); |
|
|
|
|
|
|
|
|
|
// Process all blocks of the result matrix
|
|
|
|
|
for (int y = 0; y < result.rows; y += block_size.height) |
|
|
|
|
{ |
|
|
|
|
for (int x = 0; x < result.cols; x += block_size.width) |
|
|
|
|
{ |
|
|
|
|
Size image_roi_size(std::min(x + dft_size.width, image.cols) - x, |
|
|
|
|
std::min(y + dft_size.height, image.rows) - y); |
|
|
|
|
Rect roi0(x, y, image_roi_size.width, image_roi_size.height); |
|
|
|
|
|
|
|
|
|
UMat image_roi(image, roi0); |
|
|
|
|
|
|
|
|
|
copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows, |
|
|
|
|
0, image_block.cols - image_roi.cols, BORDER_ISOLATED); |
|
|
|
|
|
|
|
|
|
dft(image_block, image_spect, 0); |
|
|
|
|
|
|
|
|
|
mulSpectrums(image_spect, templ_spect, result_spect, 0, true); |
|
|
|
|
|
|
|
|
|
dft(result_spect, result_data, cv::DFT_INVERSE | cv::DFT_REAL_OUTPUT | cv::DFT_SCALE); |
|
|
|
|
|
|
|
|
|
Size result_roi_size(std::min(x + block_size.width, result.cols) - x, |
|
|
|
|
std::min(y + block_size.height, result.rows) - y); |
|
|
|
|
|
|
|
|
|
Rect roi1(x, y, result_roi_size.width, result_roi_size.height); |
|
|
|
|
Rect roi2(0, 0, result_roi_size.width, result_roi_size.height); |
|
|
|
|
|
|
|
|
|
UMat result_roi(result, roi1); |
|
|
|
|
UMat result_block(result_data, roi2); |
|
|
|
|
|
|
|
|
|
result_block.copyTo(result_roi); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static bool convolve_32F(InputArray _image, InputArray _templ, OutputArray _result) |
|
|
|
|
{ |
|
|
|
|
_result.create(_image.rows() - _templ.rows() + 1, _image.cols() - _templ.cols() + 1, CV_32F); |
|
|
|
|
|
|
|
|
|
if (_image.channels() == 1) |
|
|
|
|
return(convolve_dft(_image, _templ, _result)); |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
UMat image = _image.getUMat(); |
|
|
|
|
UMat templ = _templ.getUMat(); |
|
|
|
|
UMat result_(image.rows-templ.rows+1,(image.cols-templ.cols+1)*image.channels(), CV_32F); |
|
|
|
|
bool ok = convolve_dft(image.reshape(1), templ.reshape(1), result_); |
|
|
|
|
if (ok==false) |
|
|
|
|
return false; |
|
|
|
|
UMat result = _result.getUMat(); |
|
|
|
|
return (extractFirstChannel_32F(result_, _result, _image.channels())); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static bool matchTemplateNaive_CCORR(InputArray _image, InputArray _templ, OutputArray _result) |
|
|
|
|
{ |
|
|
|
|
int type = _image.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); |
|
|
|
@ -111,6 +284,30 @@ static bool matchTemplateNaive_CCORR(InputArray _image, InputArray _templ, Outpu |
|
|
|
|
return k.run(2, globalsize, NULL, false); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static bool matchTemplate_CCORR(InputArray _image, InputArray _templ, OutputArray _result) |
|
|
|
|
{ |
|
|
|
|
if (useNaive(TM_CCORR, _image.depth(), _templ.size())) |
|
|
|
|
return( matchTemplateNaive_CCORR(_image, _templ, _result)); |
|
|
|
|
|
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
if(_image.depth() == CV_8U && _templ.depth() == CV_8U) |
|
|
|
|
{ |
|
|
|
|
UMat imagef, templf; |
|
|
|
|
UMat image = _image.getUMat(); |
|
|
|
|
UMat templ = _templ.getUMat(); |
|
|
|
|
image.convertTo(imagef, CV_32F); |
|
|
|
|
templ.convertTo(templf, CV_32F); |
|
|
|
|
return(convolve_32F(imagef, templf, _result)); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
return(convolve_32F(_image, _templ, _result)); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static bool matchTemplate_CCORR_NORMED(InputArray _image, InputArray _templ, OutputArray _result) |
|
|
|
|
{ |
|
|
|
|
matchTemplate(_image, _templ, _result, CV_TM_CCORR); |
|
|
|
@ -165,6 +362,41 @@ static bool matchTemplateNaive_SQDIFF(InputArray _image, InputArray _templ, Outp |
|
|
|
|
return k.run(2, globalsize, NULL, false); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static bool matchTemplate_SQDIFF(InputArray _image, InputArray _templ, OutputArray _result) |
|
|
|
|
{ |
|
|
|
|
if (useNaive(TM_SQDIFF, _image.depth(), _templ.size())) |
|
|
|
|
return( matchTemplateNaive_SQDIFF(_image, _templ, _result)); |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
matchTemplate(_image, _templ, _result, CV_TM_CCORR); |
|
|
|
|
|
|
|
|
|
int type = _image.type(), cn = CV_MAT_CN(type); |
|
|
|
|
|
|
|
|
|
ocl::Kernel k("matchTemplate_Prepared_SQDIFF", ocl::imgproc::match_template_oclsrc, |
|
|
|
|
format("-D SQDIFF_PREPARED -D T=%s -D cn=%d", ocl::typeToStr(type), cn)); |
|
|
|
|
if (k.empty()) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
UMat image = _image.getUMat(), templ = _templ.getUMat(); |
|
|
|
|
_result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F); |
|
|
|
|
UMat result = _result.getUMat(); |
|
|
|
|
|
|
|
|
|
UMat image_sums, image_sqsums; |
|
|
|
|
integral(image.reshape(1), image_sums, image_sqsums, CV_32F, CV_32F); |
|
|
|
|
|
|
|
|
|
UMat templ_sqsum; |
|
|
|
|
if (!sumTemplate(_templ, templ_sqsum)) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sqsums), ocl::KernelArg::ReadWrite(result), |
|
|
|
|
templ.rows, templ.cols, ocl::KernelArg::PtrReadOnly(templ_sqsum)); |
|
|
|
|
|
|
|
|
|
size_t globalsize[2] = { result.cols, result.rows }; |
|
|
|
|
|
|
|
|
|
return k.run(2, globalsize, NULL, false); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static bool matchTemplate_SQDIFF_NORMED(InputArray _image, InputArray _templ, OutputArray _result) |
|
|
|
|
{ |
|
|
|
|
matchTemplate(_image, _templ, _result, CV_TM_CCORR); |
|
|
|
@ -313,7 +545,7 @@ static bool ocl_matchTemplate( InputArray _img, InputArray _templ, OutputArray _ |
|
|
|
|
|
|
|
|
|
static const Caller callers[] = |
|
|
|
|
{ |
|
|
|
|
matchTemplateNaive_SQDIFF, matchTemplate_SQDIFF_NORMED, matchTemplateNaive_CCORR, |
|
|
|
|
matchTemplate_SQDIFF, matchTemplate_SQDIFF_NORMED, matchTemplate_CCORR, |
|
|
|
|
matchTemplate_CCORR_NORMED, matchTemplate_CCOEFF, matchTemplate_CCOEFF_NORMED |
|
|
|
|
}; |
|
|
|
|
const Caller caller = callers[method]; |
|
|
|
|