mirror of https://github.com/opencv/opencv.git
parent
d636e1128b
commit
13b30d7428
1 changed files with 136 additions and 0 deletions
@ -0,0 +1,136 @@ |
||||
''' |
||||
Digit recognition adjustment. |
||||
Grid search is used to find the best parameters for SVN and KNearest classifiers. |
||||
SVM adjustment follows the guidelines given in |
||||
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf |
||||
|
||||
Threading or cloud computing (with http://www.picloud.com/)) may be used |
||||
to speedup the computation. |
||||
|
||||
Usage: |
||||
digits_adjust.py [--model {svm|knearest}] [--cloud] [--env <PiCloud environment>] |
||||
|
||||
--model {svm|knearest} - select the classifier (SVM is the default) |
||||
--cloud - use PiCloud computing platform (for SVM only) |
||||
--env - cloud environment name |
||||
|
||||
''' |
||||
# TODO dataset preprocessing in cloud |
||||
# TODO cloud env setup tutorial |
||||
|
||||
import numpy as np |
||||
import cv2 |
||||
from multiprocessing.pool import ThreadPool |
||||
|
||||
from digits import * |
||||
|
||||
def cross_validate(model_class, params, samples, labels, kfold = 3, pool = None): |
||||
n = len(samples) |
||||
folds = np.array_split(np.arange(n), kfold) |
||||
def f(i): |
||||
model = model_class(**params) |
||||
test_idx = folds[i] |
||||
train_idx = list(folds) |
||||
train_idx.pop(i) |
||||
train_idx = np.hstack(train_idx) |
||||
train_samples, train_labels = samples[train_idx], labels[train_idx] |
||||
test_samples, test_labels = samples[test_idx], labels[test_idx] |
||||
model.train(train_samples, train_labels) |
||||
resp = model.predict(test_samples) |
||||
score = (resp != test_labels).mean() |
||||
print ".", |
||||
return score |
||||
if pool is None: |
||||
scores = map(f, xrange(kfold)) |
||||
else: |
||||
scores = pool.map(f, xrange(kfold)) |
||||
return np.mean(scores) |
||||
|
||||
def adjust_KNearest(samples, labels): |
||||
print 'adjusting KNearest ...' |
||||
best_err, best_k = np.inf, -1 |
||||
for k in xrange(1, 9): |
||||
err = cross_validate(KNearest, dict(k=k), samples, labels) |
||||
if err < best_err: |
||||
best_err, best_k = err, k |
||||
print 'k = %d, error: %.2f %%' % (k, err*100) |
||||
best_params = dict(k=best_k) |
||||
print 'best params:', best_params |
||||
return best_params |
||||
|
||||
def adjust_SVM(samples, labels, usecloud=False, cloud_env=''): |
||||
Cs = np.logspace(0, 5, 10, base=2) |
||||
gammas = np.logspace(-7, -2, 10, base=2) |
||||
scores = np.zeros((len(Cs), len(gammas))) |
||||
scores[:] = np.nan |
||||
|
||||
if usecloud: |
||||
try: |
||||
import cloud |
||||
except ImportError: |
||||
print 'cloud module is not installed' |
||||
usecloud = False |
||||
if usecloud: |
||||
print 'uploading dataset to cloud...' |
||||
np.savez('train.npz', samples=samples, labels=labels) |
||||
cloud.files.put('train.npz') |
||||
|
||||
print 'adjusting SVM (may take a long time) ...' |
||||
def f(job): |
||||
i, j = job |
||||
params = dict(C = Cs[i], gamma=gammas[j]) |
||||
score = cross_validate(SVM, params, samples, labels) |
||||
return i, j, score |
||||
def fcloud(job): |
||||
i, j = job |
||||
cloud.files.get('train.npz') |
||||
npz = np.load('train.npz') |
||||
params = dict(C = Cs[i], gamma=gammas[j]) |
||||
score = cross_validate(SVM, params, npz['samples'], npz['labels']) |
||||
return i, j, score |
||||
|
||||
if usecloud: |
||||
jids = cloud.map(fcloud, np.ndindex(*scores.shape), _env=cloud_env, _profile=True) |
||||
ires = cloud.iresult(jids) |
||||
else: |
||||
pool = ThreadPool(processes=cv2.getNumberOfCPUs()) |
||||
ires = pool.imap_unordered(f, np.ndindex(*scores.shape)) |
||||
|
||||
for count, (i, j, score) in enumerate(ires): |
||||
scores[i, j] = score |
||||
print '%d / %d (best error: %.2f %%, last: %.2f %%)' % (count+1, scores.size, np.nanmin(scores)*100, score*100) |
||||
print scores |
||||
|
||||
i, j = np.unravel_index(scores.argmin(), scores.shape) |
||||
best_params = dict(C = Cs[i], gamma=gammas[j]) |
||||
print 'best params:', best_params |
||||
print 'best error: %.2f %%' % (scores.min()*100) |
||||
return best_params |
||||
|
||||
if __name__ == '__main__': |
||||
import getopt |
||||
import sys |
||||
|
||||
print __doc__ |
||||
|
||||
args, _ = getopt.getopt(sys.argv[1:], '', ['model=', 'cloud', 'env=']) |
||||
args = dict(args) |
||||
args.setdefault('--model', 'svm') |
||||
args.setdefault('--env', '') |
||||
if args['--model'] not in ['svm', 'knearest']: |
||||
print 'unknown model "%s"' % args['--model'] |
||||
sys.exit(1) |
||||
|
||||
digits, labels = load_digits('digits.png') |
||||
shuffle = np.random.permutation(len(digits)) |
||||
digits, labels = digits[shuffle], labels[shuffle] |
||||
digits2 = map(deskew, digits) |
||||
samples = np.float32(digits2).reshape(-1, SZ*SZ) / 255.0 |
||||
|
||||
t = clock() |
||||
if args['--model'] == 'knearest': |
||||
adjust_KNearest(samples, labels) |
||||
else: |
||||
adjust_SVM(samples, labels, usecloud='--cloud' in args, cloud_env = args['--env']) |
||||
print 'work time: %f s' % (clock() - t) |
||||
|
Loading…
Reference in new issue