parent
f2440ceae6
commit
130546e1d9
13 changed files with 418 additions and 353 deletions
@ -0,0 +1,20 @@ |
||||
Unlabeled |
||||
Road |
||||
Sidewalk |
||||
Building |
||||
Wall |
||||
Fence |
||||
Pole |
||||
TrafficLight |
||||
TrafficSign |
||||
Vegetation |
||||
Terrain |
||||
Sky |
||||
Person |
||||
Rider |
||||
Car |
||||
Truck |
||||
Bus |
||||
Train |
||||
Motorcycle |
||||
Bicycle |
@ -1,138 +0,0 @@ |
||||
#include <opencv2/dnn.hpp> |
||||
#include <opencv2/imgproc.hpp> |
||||
#include <opencv2/highgui.hpp> |
||||
using namespace cv; |
||||
using namespace cv::dnn; |
||||
|
||||
#include <fstream> |
||||
#include <iostream> |
||||
#include <cstdlib> |
||||
using namespace std; |
||||
|
||||
static const string fcnType = "fcn8s"; |
||||
|
||||
static vector<cv::Vec3b> readColors(const string &filename = "pascal-classes.txt") |
||||
{ |
||||
vector<cv::Vec3b> colors; |
||||
|
||||
ifstream fp(filename.c_str()); |
||||
if (!fp.is_open()) |
||||
{ |
||||
cerr << "File with colors not found: " << filename << endl; |
||||
exit(-1); |
||||
} |
||||
|
||||
string line; |
||||
while (!fp.eof()) |
||||
{ |
||||
getline(fp, line); |
||||
if (line.length()) |
||||
{ |
||||
stringstream ss(line); |
||||
|
||||
string name; ss >> name; |
||||
int temp; |
||||
cv::Vec3b color; |
||||
ss >> temp; color[0] = (uchar)temp; |
||||
ss >> temp; color[1] = (uchar)temp; |
||||
ss >> temp; color[2] = (uchar)temp; |
||||
colors.push_back(color); |
||||
} |
||||
} |
||||
|
||||
fp.close(); |
||||
return colors; |
||||
} |
||||
|
||||
static void colorizeSegmentation(const Mat &score, const vector<cv::Vec3b> &colors, cv::Mat &segm) |
||||
{ |
||||
const int rows = score.size[2]; |
||||
const int cols = score.size[3]; |
||||
const int chns = score.size[1]; |
||||
|
||||
cv::Mat maxCl=cv::Mat::zeros(rows, cols, CV_8UC1); |
||||
cv::Mat maxVal(rows, cols, CV_32FC1, cv::Scalar(-FLT_MAX)); |
||||
for (int ch = 0; ch < chns; ch++) |
||||
{ |
||||
for (int row = 0; row < rows; row++) |
||||
{ |
||||
const float *ptrScore = score.ptr<float>(0, ch, row); |
||||
uchar *ptrMaxCl = maxCl.ptr<uchar>(row); |
||||
float *ptrMaxVal = maxVal.ptr<float>(row); |
||||
for (int col = 0; col < cols; col++) |
||||
{ |
||||
if (ptrScore[col] > ptrMaxVal[col]) |
||||
{ |
||||
ptrMaxVal[col] = ptrScore[col]; |
||||
ptrMaxCl[col] = (uchar)ch; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
segm.create(rows, cols, CV_8UC3); |
||||
for (int row = 0; row < rows; row++) |
||||
{ |
||||
const uchar *ptrMaxCl = maxCl.ptr<uchar>(row); |
||||
cv::Vec3b *ptrSegm = segm.ptr<cv::Vec3b>(row); |
||||
for (int col = 0; col < cols; col++) |
||||
{ |
||||
ptrSegm[col] = colors[ptrMaxCl[col]]; |
||||
} |
||||
} |
||||
|
||||
} |
||||
|
||||
int main(int argc, char **argv) |
||||
{ |
||||
String modelTxt = fcnType + "-heavy-pascal.prototxt"; |
||||
String modelBin = fcnType + "-heavy-pascal.caffemodel"; |
||||
String imageFile = (argc > 1) ? argv[1] : "rgb.jpg"; |
||||
|
||||
vector<cv::Vec3b> colors = readColors(); |
||||
|
||||
//! [Initialize network]
|
||||
dnn::Net net = readNetFromCaffe(modelTxt, modelBin); |
||||
//! [Initialize network]
|
||||
|
||||
if (net.empty()) |
||||
{ |
||||
cerr << "Can't load network by using the following files: " << endl; |
||||
cerr << "prototxt: " << modelTxt << endl; |
||||
cerr << "caffemodel: " << modelBin << endl; |
||||
cerr << fcnType << "-heavy-pascal.caffemodel can be downloaded here:" << endl; |
||||
cerr << "http://dl.caffe.berkeleyvision.org/" << fcnType << "-heavy-pascal.caffemodel" << endl; |
||||
exit(-1); |
||||
} |
||||
|
||||
//! [Prepare blob]
|
||||
Mat img = imread(imageFile); |
||||
if (img.empty()) |
||||
{ |
||||
cerr << "Can't read image from the file: " << imageFile << endl; |
||||
exit(-1); |
||||
} |
||||
|
||||
resize(img, img, Size(500, 500), 0, 0, INTER_LINEAR_EXACT); //FCN accepts 500x500 BGR-images
|
||||
Mat inputBlob = blobFromImage(img, 1, Size(), Scalar(), false); //Convert Mat to batch of images
|
||||
//! [Prepare blob]
|
||||
|
||||
//! [Set input blob]
|
||||
net.setInput(inputBlob, "data"); //set the network input
|
||||
//! [Set input blob]
|
||||
|
||||
//! [Make forward pass]
|
||||
double t = (double)cv::getTickCount(); |
||||
Mat score = net.forward("score"); //compute output
|
||||
t = (double)cv::getTickCount() - t; |
||||
printf("processing time: %.1fms\n", t*1000./getTickFrequency()); |
||||
//! [Make forward pass]
|
||||
|
||||
Mat colorize; |
||||
colorizeSegmentation(score, colors, colorize); |
||||
Mat show; |
||||
addWeighted(img, 0.4, colorize, 0.6, 0.0, show); |
||||
imshow("show", show); |
||||
waitKey(0); |
||||
return 0; |
||||
} //main
|
@ -0,0 +1,237 @@ |
||||
#include <fstream> |
||||
#include <sstream> |
||||
|
||||
#include <opencv2/dnn.hpp> |
||||
#include <opencv2/imgproc.hpp> |
||||
#include <opencv2/highgui.hpp> |
||||
|
||||
const char* keys = |
||||
"{ help h | | Print help message. }" |
||||
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}" |
||||
"{ model m | | Path to a binary file of model contains trained weights. " |
||||
"It could be a file with extensions .caffemodel (Caffe), " |
||||
".pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet) }" |
||||
"{ config c | | Path to a text file of model contains network configuration. " |
||||
"It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet) }" |
||||
"{ framework f | | Optional name of an origin framework of the model. Detect it automatically if it does not set. }" |
||||
"{ classes | | Optional path to a text file with names of classes. }" |
||||
"{ colors | | Optional path to a text file with colors for an every class. " |
||||
"An every color is represented with three values from 0 to 255 in BGR channels order. }" |
||||
"{ mean | | Preprocess input image by subtracting mean values. Mean values should be in BGR order and delimited by spaces. }" |
||||
"{ scale | 1 | Preprocess input image by multiplying on a scale factor. }" |
||||
"{ width | | Preprocess input image by resizing to a specific width. }" |
||||
"{ height | | Preprocess input image by resizing to a specific height. }" |
||||
"{ rgb | | Indicate that model works with RGB input images instead BGR ones. }" |
||||
"{ backend | 0 | Choose one of computation backends: " |
||||
"0: default C++ backend, " |
||||
"1: Halide language (http://halide-lang.org/), " |
||||
"2: Intel's Deep Learning Inference Engine (https://software.seek.intel.com/deep-learning-deployment)}" |
||||
"{ target | 0 | Choose one of target computation devices: " |
||||
"0: CPU target (by default)," |
||||
"1: OpenCL }"; |
||||
|
||||
using namespace cv; |
||||
using namespace dnn; |
||||
|
||||
std::vector<std::string> classes; |
||||
std::vector<Vec3b> colors; |
||||
|
||||
void showLegend(); |
||||
|
||||
void colorizeSegmentation(const Mat &score, Mat &segm); |
||||
|
||||
int main(int argc, char** argv) |
||||
{ |
||||
CommandLineParser parser(argc, argv, keys); |
||||
parser.about("Use this script to run semantic segmentation deep learning networks using OpenCV."); |
||||
if (argc == 1 || parser.has("help")) |
||||
{ |
||||
parser.printMessage(); |
||||
return 0; |
||||
} |
||||
|
||||
float scale = parser.get<float>("scale"); |
||||
Scalar mean = parser.get<Scalar>("mean"); |
||||
bool swapRB = parser.get<bool>("rgb"); |
||||
CV_Assert(parser.has("width"), parser.has("height")); |
||||
int inpWidth = parser.get<int>("width"); |
||||
int inpHeight = parser.get<int>("height"); |
||||
String model = parser.get<String>("model"); |
||||
String config = parser.get<String>("config"); |
||||
String framework = parser.get<String>("framework"); |
||||
int backendId = parser.get<int>("backend"); |
||||
int targetId = parser.get<int>("target"); |
||||
|
||||
// Open file with classes names.
|
||||
if (parser.has("classes")) |
||||
{ |
||||
std::string file = parser.get<String>("classes"); |
||||
std::ifstream ifs(file.c_str()); |
||||
if (!ifs.is_open()) |
||||
CV_Error(Error::StsError, "File " + file + " not found"); |
||||
std::string line; |
||||
while (std::getline(ifs, line)) |
||||
{ |
||||
classes.push_back(line); |
||||
} |
||||
} |
||||
|
||||
// Open file with colors.
|
||||
if (parser.has("colors")) |
||||
{ |
||||
std::string file = parser.get<String>("colors"); |
||||
std::ifstream ifs(file.c_str()); |
||||
if (!ifs.is_open()) |
||||
CV_Error(Error::StsError, "File " + file + " not found"); |
||||
std::string line; |
||||
while (std::getline(ifs, line)) |
||||
{ |
||||
std::istringstream colorStr(line.c_str()); |
||||
|
||||
Vec3b color; |
||||
for (int i = 0; i < 3 && !colorStr.eof(); ++i) |
||||
colorStr >> color[i]; |
||||
colors.push_back(color); |
||||
} |
||||
} |
||||
|
||||
CV_Assert(parser.has("model")); |
||||
//! [Read and initialize network]
|
||||
Net net = readNet(model, config, framework); |
||||
net.setPreferableBackend(backendId); |
||||
net.setPreferableTarget(targetId); |
||||
//! [Read and initialize network]
|
||||
|
||||
// Create a window
|
||||
static const std::string kWinName = "Deep learning semantic segmentation in OpenCV"; |
||||
namedWindow(kWinName, WINDOW_NORMAL); |
||||
|
||||
//! [Open a video file or an image file or a camera stream]
|
||||
VideoCapture cap; |
||||
if (parser.has("input")) |
||||
cap.open(parser.get<String>("input")); |
||||
else |
||||
cap.open(0); |
||||
//! [Open a video file or an image file or a camera stream]
|
||||
|
||||
// Process frames.
|
||||
Mat frame, blob; |
||||
while (waitKey(1) < 0) |
||||
{ |
||||
cap >> frame; |
||||
if (frame.empty()) |
||||
{ |
||||
waitKey(); |
||||
break; |
||||
} |
||||
|
||||
//! [Create a 4D blob from a frame]
|
||||
blobFromImage(frame, blob, scale, Size(inpWidth, inpHeight), mean, swapRB, false); |
||||
//! [Create a 4D blob from a frame]
|
||||
|
||||
//! [Set input blob]
|
||||
net.setInput(blob); |
||||
//! [Set input blob]
|
||||
//! [Make forward pass]
|
||||
Mat score = net.forward(); |
||||
//! [Make forward pass]
|
||||
|
||||
Mat segm; |
||||
colorizeSegmentation(score, segm); |
||||
|
||||
resize(segm, segm, frame.size(), 0, 0, INTER_NEAREST); |
||||
addWeighted(frame, 0.1, segm, 0.9, 0.0, frame); |
||||
|
||||
// Put efficiency information.
|
||||
std::vector<double> layersTimes; |
||||
double freq = getTickFrequency() / 1000; |
||||
double t = net.getPerfProfile(layersTimes) / freq; |
||||
std::string label = format("Inference time: %.2f ms", t); |
||||
putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0)); |
||||
|
||||
imshow(kWinName, frame); |
||||
if (!classes.empty()) |
||||
showLegend(); |
||||
} |
||||
return 0; |
||||
} |
||||
|
||||
void colorizeSegmentation(const Mat &score, Mat &segm) |
||||
{ |
||||
const int rows = score.size[2]; |
||||
const int cols = score.size[3]; |
||||
const int chns = score.size[1]; |
||||
|
||||
if (colors.empty()) |
||||
{ |
||||
// Generate colors.
|
||||
colors.push_back(Vec3b()); |
||||
for (int i = 1; i < chns; ++i) |
||||
{ |
||||
Vec3b color; |
||||
for (int j = 0; j < 3; ++j) |
||||
color[j] = (colors[i - 1][j] + rand() % 256) / 2; |
||||
colors.push_back(color); |
||||
} |
||||
} |
||||
else if (chns != (int)colors.size()) |
||||
{ |
||||
CV_Error(Error::StsError, format("Number of output classes does not match " |
||||
"number of colors (%d != %d)", chns, colors.size())); |
||||
} |
||||
|
||||
Mat maxCl = Mat::zeros(rows, cols, CV_8UC1); |
||||
Mat maxVal(rows, cols, CV_32FC1, score.data); |
||||
for (int ch = 1; ch < chns; ch++) |
||||
{ |
||||
for (int row = 0; row < rows; row++) |
||||
{ |
||||
const float *ptrScore = score.ptr<float>(0, ch, row); |
||||
uint8_t *ptrMaxCl = maxCl.ptr<uint8_t>(row); |
||||
float *ptrMaxVal = maxVal.ptr<float>(row); |
||||
for (int col = 0; col < cols; col++) |
||||
{ |
||||
if (ptrScore[col] > ptrMaxVal[col]) |
||||
{ |
||||
ptrMaxVal[col] = ptrScore[col]; |
||||
ptrMaxCl[col] = (uchar)ch; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
segm.create(rows, cols, CV_8UC3); |
||||
for (int row = 0; row < rows; row++) |
||||
{ |
||||
const uchar *ptrMaxCl = maxCl.ptr<uchar>(row); |
||||
Vec3b *ptrSegm = segm.ptr<Vec3b>(row); |
||||
for (int col = 0; col < cols; col++) |
||||
{ |
||||
ptrSegm[col] = colors[ptrMaxCl[col]]; |
||||
} |
||||
} |
||||
} |
||||
|
||||
void showLegend() |
||||
{ |
||||
static const int kBlockHeight = 30; |
||||
static Mat legend; |
||||
if (legend.empty()) |
||||
{ |
||||
const int numClasses = (int)classes.size(); |
||||
if ((int)colors.size() != numClasses) |
||||
{ |
||||
CV_Error(Error::StsError, format("Number of output classes does not match " |
||||
"number of labels (%d != %d)", colors.size(), classes.size())); |
||||
} |
||||
legend.create(kBlockHeight * numClasses, 200, CV_8UC3); |
||||
for (int i = 0; i < numClasses; i++) |
||||
{ |
||||
Mat block = legend.rowRange(i * kBlockHeight, (i + 1) * kBlockHeight); |
||||
block.setTo(colors[i]); |
||||
putText(block, classes[i], Point(0, kBlockHeight / 2), FONT_HERSHEY_SIMPLEX, 0.5, Vec3b(255, 255, 255)); |
||||
} |
||||
namedWindow("Legend", WINDOW_NORMAL); |
||||
imshow("Legend", legend); |
||||
} |
||||
} |
@ -0,0 +1,125 @@ |
||||
import cv2 as cv |
||||
import argparse |
||||
import numpy as np |
||||
import sys |
||||
|
||||
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE) |
||||
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL) |
||||
|
||||
parser = argparse.ArgumentParser(description='Use this script to run semantic segmentation deep learning networks using OpenCV.') |
||||
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.') |
||||
parser.add_argument('--model', required=True, |
||||
help='Path to a binary file of model contains trained weights. ' |
||||
'It could be a file with extensions .caffemodel (Caffe), ' |
||||
'.pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet)') |
||||
parser.add_argument('--config', |
||||
help='Path to a text file of model contains network configuration. ' |
||||
'It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet)') |
||||
parser.add_argument('--framework', choices=['caffe', 'tensorflow', 'torch', 'darknet'], |
||||
help='Optional name of an origin framework of the model. ' |
||||
'Detect it automatically if it does not set.') |
||||
parser.add_argument('--classes', help='Optional path to a text file with names of classes.') |
||||
parser.add_argument('--colors', help='Optional path to a text file with colors for an every class. ' |
||||
'An every color is represented with three values from 0 to 255 in BGR channels order.') |
||||
parser.add_argument('--mean', nargs='+', type=float, default=[0, 0, 0], |
||||
help='Preprocess input image by subtracting mean values. ' |
||||
'Mean values should be in BGR order.') |
||||
parser.add_argument('--scale', type=float, default=1.0, |
||||
help='Preprocess input image by multiplying on a scale factor.') |
||||
parser.add_argument('--width', type=int, required=True, |
||||
help='Preprocess input image by resizing to a specific width.') |
||||
parser.add_argument('--height', type=int, required=True, |
||||
help='Preprocess input image by resizing to a specific height.') |
||||
parser.add_argument('--rgb', action='store_true', |
||||
help='Indicate that model works with RGB input images instead BGR ones.') |
||||
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int, |
||||
help="Choose one of computation backends: " |
||||
"%d: default C++ backend, " |
||||
"%d: Halide language (http://halide-lang.org/), " |
||||
"%d: Intel's Deep Learning Inference Engine (https://software.seek.intel.com/deep-learning-deployment)" % backends) |
||||
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int, |
||||
help='Choose one of target computation devices: ' |
||||
'%d: CPU target (by default), ' |
||||
'%d: OpenCL' % targets) |
||||
args = parser.parse_args() |
||||
|
||||
np.random.seed(324) |
||||
|
||||
# Load names of classes |
||||
classes = None |
||||
if args.classes: |
||||
with open(args.classes, 'rt') as f: |
||||
classes = f.read().rstrip('\n').split('\n') |
||||
|
||||
# Load colors |
||||
colors = None |
||||
if args.colors: |
||||
with open(args.colors, 'rt') as f: |
||||
colors = [np.array(color.split(' '), np.uint8) for color in f.read().rstrip('\n').split('\n')] |
||||
|
||||
legend = None |
||||
def showLegend(classes): |
||||
global legend |
||||
if not classes is None and legend is None: |
||||
blockHeight = 30 |
||||
assert(len(classes) == len(colors)) |
||||
|
||||
legend = np.zeros((blockHeight * len(colors), 200, 3), np.uint8) |
||||
for i in range(len(classes)): |
||||
block = legend[i * blockHeight:(i + 1) * blockHeight] |
||||
block[:,:] = colors[i] |
||||
cv.putText(block, classes[i], (0, blockHeight/2), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255)) |
||||
|
||||
cv.namedWindow('Legend', cv.WINDOW_NORMAL) |
||||
cv.imshow('Legend', legend) |
||||
classes = None |
||||
|
||||
# Load a network |
||||
net = cv.dnn.readNet(args.model, args.config, args.framework) |
||||
net.setPreferableBackend(args.backend) |
||||
net.setPreferableTarget(args.target) |
||||
|
||||
winName = 'Deep learning image classification in OpenCV' |
||||
cv.namedWindow(winName, cv.WINDOW_NORMAL) |
||||
|
||||
cap = cv.VideoCapture(args.input if args.input else 0) |
||||
legend = None |
||||
while cv.waitKey(1) < 0: |
||||
hasFrame, frame = cap.read() |
||||
if not hasFrame: |
||||
cv.waitKey() |
||||
break |
||||
|
||||
# Create a 4D blob from a frame. |
||||
blob = cv.dnn.blobFromImage(frame, args.scale, (args.width, args.height), args.mean, args.rgb, crop=False) |
||||
|
||||
# Run a model |
||||
net.setInput(blob) |
||||
score = net.forward() |
||||
|
||||
numClasses = score.shape[1] |
||||
height = score.shape[2] |
||||
width = score.shape[3] |
||||
|
||||
# Draw segmentation |
||||
if not colors: |
||||
# Generate colors |
||||
colors = [np.array([0, 0, 0], np.uint8)] |
||||
for i in range(1, numClasses): |
||||
colors.append((colors[i - 1] + np.random.randint(0, 256, [3], np.uint8)) / 2) |
||||
|
||||
classIds = np.argmax(score[0], axis=0) |
||||
segm = np.stack([colors[idx] for idx in classIds.flatten()]) |
||||
segm = segm.reshape(height, width, 3) |
||||
|
||||
segm = cv.resize(segm, (frame.shape[1], frame.shape[0]), interpolation=cv.INTER_NEAREST) |
||||
frame = (0.1 * frame + 0.9 * segm).astype(np.uint8) |
||||
|
||||
# Put efficiency information. |
||||
t, _ = net.getPerfProfile() |
||||
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency()) |
||||
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0)) |
||||
|
||||
showLegend(classes) |
||||
|
||||
cv.imshow(winName, frame) |
@ -1,175 +0,0 @@ |
||||
/*
|
||||
Sample of using OpenCV dnn module with Torch ENet model. |
||||
*/ |
||||
|
||||
#include <opencv2/dnn.hpp> |
||||
#include <opencv2/imgproc.hpp> |
||||
#include <opencv2/highgui.hpp> |
||||
using namespace cv; |
||||
using namespace cv::dnn; |
||||
|
||||
#include <fstream> |
||||
#include <iostream> |
||||
#include <cstdlib> |
||||
#include <sstream> |
||||
using namespace std; |
||||
|
||||
const String keys = |
||||
"{help h || Sample app for loading ENet Torch model. " |
||||
"The model and class names list can be downloaded here: " |
||||
"https://www.dropbox.com/sh/dywzk3gyb12hpe5/AAD5YkUa8XgMpHs2gCRgmCVCa }" |
||||
"{model m || path to Torch .net model file (model_best.net) }" |
||||
"{image i || path to image file }" |
||||
"{result r || path to save output blob (optional, binary format, NCHW order) }" |
||||
"{show s || whether to show all output channels or not}" |
||||
"{o_blob || output blob's name. If empty, last blob's name in net is used}"; |
||||
|
||||
static const int kNumClasses = 20; |
||||
|
||||
static const String classes[] = { |
||||
"Background", "Road", "Sidewalk", "Building", "Wall", "Fence", "Pole", |
||||
"TrafficLight", "TrafficSign", "Vegetation", "Terrain", "Sky", "Person", |
||||
"Rider", "Car", "Truck", "Bus", "Train", "Motorcycle", "Bicycle" |
||||
}; |
||||
|
||||
static const Vec3b colors[] = { |
||||
Vec3b(0, 0, 0), Vec3b(244, 126, 205), Vec3b(254, 83, 132), Vec3b(192, 200, 189), |
||||
Vec3b(50, 56, 251), Vec3b(65, 199, 228), Vec3b(240, 178, 193), Vec3b(201, 67, 188), |
||||
Vec3b(85, 32, 33), Vec3b(116, 25, 18), Vec3b(162, 33, 72), Vec3b(101, 150, 210), |
||||
Vec3b(237, 19, 16), Vec3b(149, 197, 72), Vec3b(80, 182, 21), Vec3b(141, 5, 207), |
||||
Vec3b(189, 156, 39), Vec3b(235, 170, 186), Vec3b(133, 109, 144), Vec3b(231, 160, 96) |
||||
}; |
||||
|
||||
static void showLegend(); |
||||
|
||||
static void colorizeSegmentation(const Mat &score, Mat &segm); |
||||
|
||||
int main(int argc, char **argv) |
||||
{ |
||||
CommandLineParser parser(argc, argv, keys); |
||||
|
||||
if (parser.has("help") || argc == 1) |
||||
{ |
||||
parser.printMessage(); |
||||
return 0; |
||||
} |
||||
|
||||
String modelFile = parser.get<String>("model"); |
||||
String imageFile = parser.get<String>("image"); |
||||
|
||||
if (!parser.check()) |
||||
{ |
||||
parser.printErrors(); |
||||
return 0; |
||||
} |
||||
|
||||
String resultFile = parser.get<String>("result"); |
||||
|
||||
//! [Read model and initialize network]
|
||||
dnn::Net net = dnn::readNetFromTorch(modelFile); |
||||
|
||||
//! [Prepare blob]
|
||||
Mat img = imread(imageFile), input; |
||||
if (img.empty()) |
||||
{ |
||||
std::cerr << "Can't read image from the file: " << imageFile << std::endl; |
||||
exit(-1); |
||||
} |
||||
|
||||
Mat inputBlob = blobFromImage(img, 1./255, Size(1024, 512), Scalar(), true, false); //Convert Mat to batch of images
|
||||
//! [Prepare blob]
|
||||
|
||||
//! [Set input blob]
|
||||
net.setInput(inputBlob); //set the network input
|
||||
//! [Set input blob]
|
||||
|
||||
TickMeter tm; |
||||
|
||||
String oBlob = net.getLayerNames().back(); |
||||
if (!parser.get<String>("o_blob").empty()) |
||||
{ |
||||
oBlob = parser.get<String>("o_blob"); |
||||
} |
||||
|
||||
//! [Make forward pass]
|
||||
tm.start(); |
||||
Mat result = net.forward(oBlob); |
||||
tm.stop(); |
||||
|
||||
if (!resultFile.empty()) { |
||||
CV_Assert(result.isContinuous()); |
||||
|
||||
ofstream fout(resultFile.c_str(), ios::out | ios::binary); |
||||
fout.write((char*)result.data, result.total() * sizeof(float)); |
||||
fout.close(); |
||||
} |
||||
|
||||
std::cout << "Output blob: " << result.size[0] << " x " << result.size[1] << " x " << result.size[2] << " x " << result.size[3] << "\n"; |
||||
std::cout << "Inference time, ms: " << tm.getTimeMilli() << std::endl; |
||||
|
||||
if (parser.has("show")) |
||||
{ |
||||
Mat segm, show; |
||||
colorizeSegmentation(result, segm); |
||||
showLegend(); |
||||
|
||||
cv::resize(segm, segm, img.size(), 0, 0, cv::INTER_NEAREST); |
||||
addWeighted(img, 0.1, segm, 0.9, 0.0, show); |
||||
|
||||
imshow("Result", show); |
||||
waitKey(); |
||||
} |
||||
return 0; |
||||
} //main
|
||||
|
||||
static void showLegend() |
||||
{ |
||||
static const int kBlockHeight = 30; |
||||
|
||||
cv::Mat legend(kBlockHeight * kNumClasses, 200, CV_8UC3); |
||||
for(int i = 0; i < kNumClasses; i++) |
||||
{ |
||||
cv::Mat block = legend.rowRange(i * kBlockHeight, (i + 1) * kBlockHeight); |
||||
block.setTo(colors[i]); |
||||
putText(block, classes[i], Point(0, kBlockHeight / 2), FONT_HERSHEY_SIMPLEX, 0.5, Vec3b(255, 255, 255)); |
||||
} |
||||
imshow("Legend", legend); |
||||
} |
||||
|
||||
static void colorizeSegmentation(const Mat &score, Mat &segm) |
||||
{ |
||||
const int rows = score.size[2]; |
||||
const int cols = score.size[3]; |
||||
const int chns = score.size[1]; |
||||
|
||||
Mat maxCl = Mat::zeros(rows, cols, CV_8UC1); |
||||
Mat maxVal(rows, cols, CV_32FC1, score.data); |
||||
for (int ch = 1; ch < chns; ch++) |
||||
{ |
||||
for (int row = 0; row < rows; row++) |
||||
{ |
||||
const float *ptrScore = score.ptr<float>(0, ch, row); |
||||
uint8_t *ptrMaxCl = maxCl.ptr<uint8_t>(row); |
||||
float *ptrMaxVal = maxVal.ptr<float>(row); |
||||
for (int col = 0; col < cols; col++) |
||||
{ |
||||
if (ptrScore[col] > ptrMaxVal[col]) |
||||
{ |
||||
ptrMaxVal[col] = ptrScore[col]; |
||||
ptrMaxCl[col] = (uchar)ch; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
segm.create(rows, cols, CV_8UC3); |
||||
for (int row = 0; row < rows; row++) |
||||
{ |
||||
const uchar *ptrMaxCl = maxCl.ptr<uchar>(row); |
||||
Vec3b *ptrSegm = segm.ptr<Vec3b>(row); |
||||
for (int col = 0; col < cols; col++) |
||||
{ |
||||
ptrSegm[col] = colors[ptrMaxCl[col]]; |
||||
} |
||||
} |
||||
} |
Loading…
Reference in new issue