Fix LSTM from ONNX with batch==1

pull/16817/head
Dmitry Kurtaev 5 years ago
parent 8d69dbdf49
commit 11d565ca62
  1. 9
      modules/dnn/src/layers/recurrent_layers.cpp
  2. 97
      modules/dnn/src/onnx/onnx_importer.cpp

@ -110,10 +110,11 @@ public:
const Mat& Wh = blobs[0]; const Mat& Wh = blobs[0];
const Mat& Wx = blobs[1]; const Mat& Wx = blobs[1];
const Mat& bias = blobs[2]; const Mat& bias = blobs[2];
CV_Assert(Wh.dims == 2 && Wx.dims == 2); CV_CheckEQ(Wh.dims, 2, "");
CV_Assert(Wh.rows == Wx.rows); CV_CheckEQ(Wx.dims, 2, "");
CV_Assert(Wh.rows == 4*Wh.cols); CV_CheckEQ(Wh.rows, Wx.rows, "");
CV_Assert(Wh.rows == (int)bias.total()); CV_CheckEQ(Wh.rows, 4*Wh.cols, "");
CV_CheckEQ(Wh.rows, (int)bias.total(), "");
CV_Assert(Wh.type() == Wx.type() && Wx.type() == bias.type()); CV_Assert(Wh.type() == Wx.type() && Wx.type() == bias.type());
// Peephole weights. // Peephole weights.

@ -49,6 +49,11 @@ class ONNXImporter
LayerParams getLayerParams(const opencv_onnx::NodeProto& node_proto); LayerParams getLayerParams(const opencv_onnx::NodeProto& node_proto);
bool isCeilMode(const LayerParams& layerParams); bool isCeilMode(const LayerParams& layerParams);
void addLayer(Net& dstNet, LayerParams& layerParams,
const opencv_onnx::NodeProto& node_proto,
std::map<std::string, LayerInfo>& layer_id,
std::map<std::string, MatShape>& outShapes);
public: public:
ONNXImporter(const char *onnxFile) ONNXImporter(const char *onnxFile)
@ -259,6 +264,42 @@ Mat ONNXImporter::getBlob(const opencv_onnx::NodeProto& node_proto,
return constBlob->second; return constBlob->second;
} }
void ONNXImporter::addLayer(Net& dstNet, LayerParams& layerParams,
const opencv_onnx::NodeProto& node_proto,
std::map<std::string, LayerInfo>& layer_id,
std::map<std::string, MatShape>& outShapes)
{
std::map<std::string, LayerInfo>::iterator layerId;
std::map<std::string, MatShape>::iterator shapeIt;
int id = dstNet.addLayer(layerParams.name, layerParams.type, layerParams);
for (int i = 0; i < node_proto.output_size(); ++i)
{
layer_id.insert(std::make_pair(node_proto.output(i), LayerInfo(id, i)));
}
std::vector<MatShape> layerInpShapes, layerOutShapes, layerInternalShapes;
int inpNum = 0;
for (int j = 0; j < node_proto.input_size(); j++) {
layerId = layer_id.find(node_proto.input(j));
if (layerId != layer_id.end()) {
dstNet.connect(layerId->second.layerId, layerId->second.outputId, id, inpNum);
++inpNum;
// Collect input shapes.
shapeIt = outShapes.find(node_proto.input(j));
CV_Assert(shapeIt != outShapes.end());
layerInpShapes.push_back(shapeIt->second);
}
}
// Compute shape of output blob for this layer.
Ptr<Layer> layer = dstNet.getLayer(id);
layer->getMemoryShapes(layerInpShapes, 0, layerOutShapes, layerInternalShapes);
for (int i = 0; i < node_proto.output_size() && i < (int)layerOutShapes.size(); ++i)
{
outShapes[node_proto.output(i)] = layerOutShapes[i];
}
}
void ONNXImporter::populateNet(Net dstNet) void ONNXImporter::populateNet(Net dstNet)
{ {
CV_Assert(model_proto.has_graph()); CV_Assert(model_proto.has_graph());
@ -581,13 +622,16 @@ void ONNXImporter::populateNet(Net dstNet)
} }
else if (layer_type == "LSTM") else if (layer_type == "LSTM")
{ {
LayerParams lstmParams = layerParams;
lstmParams.name += "/lstm";
// https://pytorch.org/docs/stable/nn.html#lstm // https://pytorch.org/docs/stable/nn.html#lstm
CV_Assert(node_proto.input_size() == 7); CV_Assert(node_proto.input_size() == 7);
Mat Wx = getBlob(node_proto, constBlobs, 1); Mat Wx = getBlob(node_proto, constBlobs, 1);
Mat Wh = getBlob(node_proto, constBlobs, 2); Mat Wh = getBlob(node_proto, constBlobs, 2);
Mat b = getBlob(node_proto, constBlobs, 3); Mat b = getBlob(node_proto, constBlobs, 3);
const int numHidden = Wh.size[2]; const int numHidden = lstmParams.get<int>("hidden_size");
Wx = Wx.reshape(1, Wx.size[1]); Wx = Wx.reshape(1, Wx.size[1]);
Wh = Wh.reshape(1, Wh.size[1]); Wh = Wh.reshape(1, Wh.size[1]);
@ -612,10 +656,24 @@ void ONNXImporter::populateNet(Net dstNet)
} }
std::swap(biasData[numHidden + j], biasData[numHidden * 2 + j]); std::swap(biasData[numHidden + j], biasData[numHidden * 2 + j]);
} }
layerParams.blobs.resize(3);
layerParams.blobs[0] = Wh; lstmParams.blobs.resize(3);
layerParams.blobs[1] = Wx; lstmParams.blobs[0] = Wh;
layerParams.blobs[2] = b; lstmParams.blobs[1] = Wx;
lstmParams.blobs[2] = b;
node_proto.set_output(0, lstmParams.name); // set different name so output shapes will be registered on that name
addLayer(dstNet, lstmParams, node_proto, layer_id, outShapes);
MatShape lstmShape = outShapes[node_proto.output(0)];
// Add fake 1 as it is done in ONNX
lstmShape.insert(lstmShape.begin() + 1, 1);
layerParams.type = "Reshape";
layerParams.set("dim", DictValue::arrayInt(&lstmShape[0], lstmShape.size()));
node_proto.set_input(0, lstmParams.name); // redirect input to LSTM
node_proto.set_output(0, layerParams.name); // keep origin LSTM's name
} }
else if (layer_type == "ImageScaler") else if (layer_type == "ImageScaler")
{ {
@ -1228,34 +1286,7 @@ void ONNXImporter::populateNet(Net dstNet)
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, j)); layerParams.blobs.push_back(getBlob(node_proto, constBlobs, j));
} }
} }
addLayer(dstNet, layerParams, node_proto, layer_id, outShapes);
int id = dstNet.addLayer(layerParams.name, layerParams.type, layerParams);
for (int i = 0; i < node_proto.output_size(); ++i)
{
layer_id.insert(std::make_pair(node_proto.output(i), LayerInfo(id, i)));
}
std::vector<MatShape> layerInpShapes, layerOutShapes, layerInternalShapes;
int inpNum = 0;
for (int j = 0; j < node_proto.input_size(); j++) {
layerId = layer_id.find(node_proto.input(j));
if (layerId != layer_id.end()) {
dstNet.connect(layerId->second.layerId, layerId->second.outputId, id, inpNum);
++inpNum;
// Collect input shapes.
shapeIt = outShapes.find(node_proto.input(j));
CV_Assert(shapeIt != outShapes.end());
layerInpShapes.push_back(shapeIt->second);
}
}
// Compute shape of output blob for this layer.
Ptr<Layer> layer = dstNet.getLayer(id);
layer->getMemoryShapes(layerInpShapes, 0, layerOutShapes, layerInternalShapes);
for (int i = 0; i < node_proto.output_size() && i < (int)layerOutShapes.size(); ++i)
{
outShapes[node_proto.output(i)] = layerOutShapes[i];
}
} }
} }

Loading…
Cancel
Save