mirror of https://github.com/opencv/opencv.git
Merge pull request #18335 from chargerKong:master
Ordinary quaternion * version 1.0 * add assumeUnit; add UnitTest; check boundary value; fix the func using method: func(obj); fix 4x4; add rodrigues vector transformation; fix mat to quat; * fix blank and tab * fix blank and tab modify test;cpp to hpp * mainly improve comment; add rvec2Quat;fix toRodrigues; fix throw to CV_Error * fix bug of quatd * int; combine hpp and cpp; fix << overload error in win system; modify include in test file; * move implementation to quaternion.ini.hpp; change some constructor to createFrom* function; change Rodrigues vector to rotation vector; change the matexpr to mat of 3x3 return type; improve comments; * try fix log function error in win * add enums for assumeUnit; improve docs; add using std::cos funcs * remove using std::* from header; add std::* in affine.hpp,warpers_inl.hpp; * quat: coding style * quat: AssumeType => QuatAssumeTypepull/18881/head
parent
adafb20d1e
commit
11cfa64a10
5 changed files with 2302 additions and 4 deletions
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,849 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2020, Huawei Technologies Co., Ltd. All rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// Author: Liangqian Kong <chargerKong@126.com>
|
||||
// Longbu Wang <riskiest@gmail.com>
|
||||
|
||||
#ifndef OPENCV_CORE_QUATERNION_INL_HPP |
||||
#define OPENCV_CORE_QUATERNION_INL_HPP |
||||
|
||||
#ifndef OPENCV_CORE_QUATERNION_HPP |
||||
#erorr This is not a standalone header. Include quaternion.hpp instead. |
||||
#endif |
||||
|
||||
//@cond IGNORE
|
||||
///////////////////////////////////////////////////////////////////////////////////////
|
||||
//Implementation
|
||||
namespace cv { |
||||
|
||||
template <typename T> |
||||
Quat<T>::Quat() : w(0), x(0), y(0), z(0) {} |
||||
|
||||
template <typename T> |
||||
Quat<T>::Quat(const Vec<T, 4> &coeff):w(coeff[0]), x(coeff[1]), y(coeff[2]), z(coeff[3]){} |
||||
|
||||
template <typename T> |
||||
Quat<T>::Quat(const T qw, const T qx, const T qy, const T qz):w(qw), x(qx), y(qy), z(qz){} |
||||
|
||||
template <typename T> |
||||
Quat<T> Quat<T>::createFromAngleAxis(const T angle, const Vec<T, 3> &axis) |
||||
{ |
||||
T w, x, y, z; |
||||
T vNorm = std::sqrt(axis.dot(axis)); |
||||
if (vNorm < CV_QUAT_EPS) |
||||
{ |
||||
CV_Error(Error::StsBadArg, "this quaternion does not represent a rotation"); |
||||
} |
||||
const T angle_half = angle * 0.5; |
||||
w = std::cos(angle_half); |
||||
const T sin_v = std::sin(angle_half); |
||||
const T sin_norm = sin_v / vNorm; |
||||
x = sin_norm * axis[0]; |
||||
y = sin_norm * axis[1]; |
||||
z = sin_norm * axis[2]; |
||||
return Quat<T>(w, x, y, z); |
||||
} |
||||
|
||||
template <typename T> |
||||
Quat<T> Quat<T>::createFromRotMat(InputArray _R) |
||||
{ |
||||
CV_CheckTypeEQ(_R.type(), cv::traits::Type<T>::value, ""); |
||||
if (_R.rows() != 3 || _R.cols() != 3) |
||||
{ |
||||
CV_Error(Error::StsBadArg, "Cannot convert matrix to quaternion: rotation matrix should be a 3x3 matrix"); |
||||
} |
||||
Matx<T, 3, 3> R; |
||||
_R.copyTo(R); |
||||
|
||||
T S, w, x, y, z; |
||||
T trace = R(0, 0) + R(1, 1) + R(2, 2); |
||||
if (trace > 0) |
||||
{ |
||||
S = std::sqrt(trace + 1) * 2; |
||||
x = (R(1, 2) - R(2, 1)) / S; |
||||
y = (R(2, 0) - R(0, 2)) / S; |
||||
z = (R(0, 1) - R(1, 0)) / S; |
||||
w = -0.25 * S; |
||||
} |
||||
else if (R(0, 0) > R(1, 1) && R(0, 0) > R(2, 2)) |
||||
{ |
||||
|
||||
S = std::sqrt(1.0 + R(0, 0) - R(1, 1) - R(2, 2)) * 2; |
||||
x = -0.25 * S; |
||||
y = -(R(1, 0) + R(0, 1)) / S; |
||||
z = -(R(0, 2) + R(2, 0)) / S; |
||||
w = (R(1, 2) - R(2, 1)) / S; |
||||
} |
||||
else if (R(1, 1) > R(2, 2)) |
||||
{ |
||||
S = std::sqrt(1.0 - R(0, 0) + R(1, 1) - R(2, 2)) * 2; |
||||
x = (R(0, 1) + R(1, 0)) / S; |
||||
y = 0.25 * S; |
||||
z = (R(1, 2) + R(2, 1)) / S; |
||||
w = (R(0, 2) - R(2, 0)) / S; |
||||
} |
||||
else |
||||
{ |
||||
S = std::sqrt(1.0 - R(0, 0) - R(1, 1) + R(2, 2)) * 2; |
||||
x = (R(0, 2) + R(2, 0)) / S; |
||||
y = (R(1, 2) + R(2, 1)) / S; |
||||
z = 0.25 * S; |
||||
w = -(R(0, 1) - R(1, 0)) / S; |
||||
} |
||||
return Quat<T> (w, x, y, z); |
||||
} |
||||
|
||||
template <typename T> |
||||
Quat<T> Quat<T>::createFromRvec(InputArray _rvec) |
||||
{ |
||||
if (!((_rvec.cols() == 1 && _rvec.rows() == 3) || (_rvec.cols() == 3 && _rvec.rows() == 1))) { |
||||
CV_Error(Error::StsBadArg, "Cannot convert rotation vector to quaternion: The length of rotation vector should be 3"); |
||||
} |
||||
Vec<T, 3> rvec; |
||||
_rvec.copyTo(rvec); |
||||
T psi = std::sqrt(rvec.dot(rvec)); |
||||
if (abs(psi) < CV_QUAT_EPS) { |
||||
return Quat<T> (1, 0, 0, 0); |
||||
} |
||||
Vec<T, 3> axis = rvec / psi; |
||||
return createFromAngleAxis(psi, axis); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::operator-() const |
||||
{ |
||||
return Quat<T>(-w, -x, -y, -z); |
||||
} |
||||
|
||||
|
||||
template <typename T> |
||||
inline bool Quat<T>::operator==(const Quat<T> &q) const |
||||
{ |
||||
return (abs(w - q.w) < CV_QUAT_EPS && abs(x - q.x) < CV_QUAT_EPS && abs(y - q.y) < CV_QUAT_EPS && abs(z - q.z) < CV_QUAT_EPS); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::operator+(const Quat<T> &q1) const |
||||
{ |
||||
return Quat<T>(w + q1.w, x + q1.x, y + q1.y, z + q1.z); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::operator-(const Quat<T> &q1) const |
||||
{ |
||||
return Quat<T>(w - q1.w, x - q1.x, y - q1.y, z - q1.z); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T>& Quat<T>::operator+=(const Quat<T> &q1) |
||||
{ |
||||
w += q1.w; |
||||
x += q1.x; |
||||
y += q1.y; |
||||
z += q1.z; |
||||
return *this; |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T>& Quat<T>::operator-=(const Quat<T> &q1) |
||||
{ |
||||
w -= q1.w; |
||||
x -= q1.x; |
||||
y -= q1.y; |
||||
z -= q1.z; |
||||
return *this; |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::operator*(const Quat<T> &q1) const |
||||
{ |
||||
Vec<T, 4> q{w, x, y, z}; |
||||
Vec<T, 4> q2{q1.w, q1.x, q1.y, q1.z}; |
||||
return Quat<T>(q * q2); |
||||
} |
||||
|
||||
|
||||
template <typename T, typename S> |
||||
Quat<T> operator*(const Quat<T> &q1, const S a) |
||||
{ |
||||
return Quat<T>(a * q1.w, a * q1.x, a * q1.y, a * q1.z); |
||||
} |
||||
|
||||
template <typename T, typename S> |
||||
Quat<T> operator*(const S a, const Quat<T> &q1) |
||||
{ |
||||
return Quat<T>(a * q1.w, a * q1.x, a * q1.y, a * q1.z); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T>& Quat<T>::operator*=(const Quat<T> &q1) |
||||
{ |
||||
T qw, qx, qy, qz; |
||||
qw = w * q1.w - x * q1.x - y * q1.y - z * q1.z; |
||||
qx = x * q1.w + w * q1.x + y * q1.z - z * q1.y; |
||||
qy = y * q1.w + w * q1.y + z * q1.x - x * q1.z; |
||||
qz = z * q1.w + w * q1.z + x * q1.y - y * q1.x; |
||||
w = qw; |
||||
x = qx; |
||||
y = qy; |
||||
z = qz; |
||||
return *this; |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T>& Quat<T>::operator/=(const Quat<T> &q1) |
||||
{ |
||||
Quat<T> q(*this * q1.inv()); |
||||
w = q.w; |
||||
x = q.x; |
||||
y = q.y; |
||||
z = q.z; |
||||
return *this; |
||||
} |
||||
template <typename T> |
||||
Quat<T>& Quat<T>::operator*=(const T &q1) |
||||
{ |
||||
w *= q1; |
||||
x *= q1; |
||||
y *= q1; |
||||
z *= q1; |
||||
return *this; |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T>& Quat<T>::operator/=(const T &a) |
||||
{ |
||||
const T a_inv = 1.0 / a; |
||||
w *= a_inv; |
||||
x *= a_inv; |
||||
y *= a_inv; |
||||
z *= a_inv; |
||||
return *this; |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::operator/(const T &a) const |
||||
{ |
||||
const T a_inv = 1.0 / a; |
||||
return Quat<T>(w * a_inv, x * a_inv, y * a_inv, z * a_inv); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::operator/(const Quat<T> &q) const |
||||
{ |
||||
return *this * q.inv(); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline const T& Quat<T>::operator[](std::size_t n) const |
||||
{ |
||||
switch (n) { |
||||
case 0: |
||||
return w; |
||||
case 1: |
||||
return x; |
||||
case 2: |
||||
return y; |
||||
case 3: |
||||
return z; |
||||
default: |
||||
CV_Error(Error::StsOutOfRange, "subscript exceeds the index range"); |
||||
} |
||||
} |
||||
|
||||
template <typename T> |
||||
inline T& Quat<T>::operator[](std::size_t n) |
||||
{ |
||||
switch (n) { |
||||
case 0: |
||||
return w; |
||||
case 1: |
||||
return x; |
||||
case 2: |
||||
return y; |
||||
case 3: |
||||
return z; |
||||
default: |
||||
CV_Error(Error::StsOutOfRange, "subscript exceeds the index range"); |
||||
} |
||||
} |
||||
|
||||
template <typename T> |
||||
std::ostream & operator<<(std::ostream &os, const Quat<T> &q) |
||||
{ |
||||
os << "Quat " << Vec<T, 4>{q.w, q.x, q.y, q.z}; |
||||
return os; |
||||
} |
||||
|
||||
template <typename T> |
||||
inline T Quat<T>::at(size_t index) const |
||||
{ |
||||
return (*this)[index]; |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::conjugate() const |
||||
{ |
||||
return Quat<T>(w, -x, -y, -z); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline T Quat<T>::norm() const |
||||
{ |
||||
return std::sqrt(dot(*this)); |
||||
} |
||||
|
||||
template <typename T> |
||||
Quat<T> exp(const Quat<T> &q) |
||||
{ |
||||
return q.exp(); |
||||
} |
||||
|
||||
template <typename T> |
||||
Quat<T> Quat<T>::exp() const |
||||
{ |
||||
Vec<T, 3> v{x, y, z}; |
||||
T normV = std::sqrt(v.dot(v)); |
||||
T k = normV < CV_QUAT_EPS ? 1 : std::sin(normV) / normV; |
||||
return std::exp(w) * Quat<T>(std::cos(normV), v[0] * k, v[1] * k, v[2] * k); |
||||
} |
||||
|
||||
template <typename T> |
||||
Quat<T> log(const Quat<T> &q, QuatAssumeType assumeUnit) |
||||
{ |
||||
return q.log(assumeUnit); |
||||
} |
||||
|
||||
template <typename T> |
||||
Quat<T> Quat<T>::log(QuatAssumeType assumeUnit) const |
||||
{ |
||||
Vec<T, 3> v{x, y, z}; |
||||
T vNorm = std::sqrt(v.dot(v)); |
||||
if (assumeUnit) |
||||
{ |
||||
T k = vNorm < CV_QUAT_EPS ? 1 : std::acos(w) / vNorm; |
||||
return Quat<T>(0, v[0] * k, v[1] * k, v[2] * k); |
||||
} |
||||
T qNorm = norm(); |
||||
if (qNorm < CV_QUAT_EPS) |
||||
{ |
||||
CV_Error(Error::StsBadArg, "Cannot apply this quaternion to log function: undefined"); |
||||
} |
||||
T k = vNorm < CV_QUAT_EPS ? 1 : std::acos(w / qNorm) / vNorm; |
||||
return Quat<T>(std::log(qNorm), v[0] * k, v[1] * k, v[2] *k); |
||||
} |
||||
|
||||
template <typename T, typename _T> |
||||
inline Quat<T> power(const Quat<T> &q1, _T alpha, QuatAssumeType assumeUnit) |
||||
{ |
||||
return q1.power(alpha, assumeUnit); |
||||
} |
||||
|
||||
template <typename T> |
||||
template <typename _T> |
||||
inline Quat<T> Quat<T>::power(_T alpha, QuatAssumeType assumeUnit) const |
||||
{ |
||||
if (x * x + y * y + z * z > CV_QUAT_EPS) |
||||
{ |
||||
T angle = getAngle(assumeUnit); |
||||
Vec<T, 3> axis = getAxis(assumeUnit); |
||||
if (assumeUnit) |
||||
{ |
||||
return createFromAngleAxis(alpha * angle, axis); |
||||
} |
||||
return std::pow(norm(), alpha) * createFromAngleAxis(alpha * angle, axis); |
||||
} |
||||
else |
||||
{ |
||||
return std::pow(norm(), alpha) * Quat<T>(w, x, y, z); |
||||
} |
||||
} |
||||
|
||||
|
||||
template <typename T> |
||||
inline Quat<T> sqrt(const Quat<T> &q, QuatAssumeType assumeUnit) |
||||
{ |
||||
return q.sqrt(assumeUnit); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::sqrt(QuatAssumeType assumeUnit) const |
||||
{ |
||||
return power(0.5, assumeUnit); |
||||
} |
||||
|
||||
|
||||
template <typename T> |
||||
inline Quat<T> power(const Quat<T> &p, const Quat<T> &q, QuatAssumeType assumeUnit) |
||||
{ |
||||
return p.power(q, assumeUnit); |
||||
} |
||||
|
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::power(const Quat<T> &q, QuatAssumeType assumeUnit) const |
||||
{ |
||||
return cv::exp(q * log(assumeUnit)); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline T Quat<T>::dot(Quat<T> q1) const |
||||
{ |
||||
return w * q1.w + x * q1.x + y * q1.y + z * q1.z; |
||||
} |
||||
|
||||
|
||||
template <typename T> |
||||
inline Quat<T> crossProduct(const Quat<T> &p, const Quat<T> &q) |
||||
{ |
||||
return p.crossProduct(q); |
||||
} |
||||
|
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::crossProduct(const Quat<T> &q) const |
||||
{ |
||||
return Quat<T> (0, y * q.z - z * q.y, z * q.x - x * q.z, x * q.y - q.x * y); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::normalize() const |
||||
{ |
||||
T normVal = norm(); |
||||
if (normVal < CV_QUAT_EPS) |
||||
{ |
||||
CV_Error(Error::StsBadArg, "Cannot normalize this quaternion: the norm is too small."); |
||||
} |
||||
return Quat<T>(w / normVal, x / normVal, y / normVal, z / normVal) ; |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> inv(const Quat<T> &q, QuatAssumeType assumeUnit) |
||||
{ |
||||
return q.inv(assumeUnit); |
||||
} |
||||
|
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::inv(QuatAssumeType assumeUnit) const |
||||
{ |
||||
if (assumeUnit) |
||||
{ |
||||
return conjugate(); |
||||
} |
||||
T norm2 = dot(*this); |
||||
if (norm2 < CV_QUAT_EPS) |
||||
{ |
||||
CV_Error(Error::StsBadArg, "This quaternion do not have inverse quaternion"); |
||||
} |
||||
return conjugate() / norm2; |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> sinh(const Quat<T> &q) |
||||
{ |
||||
return q.sinh(); |
||||
} |
||||
|
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::sinh() const |
||||
{ |
||||
Vec<T, 3> v{x, y ,z}; |
||||
T vNorm = std::sqrt(v.dot(v)); |
||||
T k = vNorm < CV_QUAT_EPS ? 1 : std::cosh(w) * std::sin(vNorm) / vNorm; |
||||
return Quat<T>(std::sinh(w) * std::cos(vNorm), v[0] * k, v[1] * k, v[2] * k); |
||||
} |
||||
|
||||
|
||||
template <typename T> |
||||
inline Quat<T> cosh(const Quat<T> &q) |
||||
{ |
||||
return q.cosh(); |
||||
} |
||||
|
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::cosh() const |
||||
{ |
||||
Vec<T, 3> v{x, y ,z}; |
||||
T vNorm = std::sqrt(v.dot(v)); |
||||
T k = vNorm < CV_QUAT_EPS ? 1 : std::sinh(w) * std::sin(vNorm) / vNorm; |
||||
return Quat<T>(std::cosh(w) * std::cos(vNorm), v[0] * k, v[1] * k, v[2] * k); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> tanh(const Quat<T> &q) |
||||
{ |
||||
return q.tanh(); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::tanh() const |
||||
{ |
||||
return sinh() * cosh().inv(); |
||||
} |
||||
|
||||
|
||||
template <typename T> |
||||
inline Quat<T> sin(const Quat<T> &q) |
||||
{ |
||||
return q.sin(); |
||||
} |
||||
|
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::sin() const |
||||
{ |
||||
Vec<T, 3> v{x, y ,z}; |
||||
T vNorm = std::sqrt(v.dot(v)); |
||||
T k = vNorm < CV_QUAT_EPS ? 1 : std::cos(w) * std::sinh(vNorm) / vNorm; |
||||
return Quat<T>(std::sin(w) * std::cosh(vNorm), v[0] * k, v[1] * k, v[2] * k); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> cos(const Quat<T> &q) |
||||
{ |
||||
return q.cos(); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::cos() const |
||||
{ |
||||
Vec<T, 3> v{x, y ,z}; |
||||
T vNorm = std::sqrt(v.dot(v)); |
||||
T k = vNorm < CV_QUAT_EPS ? 1 : std::sin(w) * std::sinh(vNorm) / vNorm; |
||||
return Quat<T>(std::cos(w) * std::cosh(vNorm), -v[0] * k, -v[1] * k, -v[2] * k); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> tan(const Quat<T> &q) |
||||
{ |
||||
return q.tan(); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::tan() const |
||||
{ |
||||
return sin() * cos().inv(); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> asinh(const Quat<T> &q) |
||||
{ |
||||
return q.asinh(); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::asinh() const |
||||
{ |
||||
return cv::log(*this + cv::power(*this * *this + Quat<T>(1, 0, 0, 0), 0.5)); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> acosh(const Quat<T> &q) |
||||
{ |
||||
return q.acosh(); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::acosh() const |
||||
{ |
||||
return cv::log(*this + cv::power(*this * *this - Quat<T>(1,0,0,0), 0.5)); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> atanh(const Quat<T> &q) |
||||
{ |
||||
return q.atanh(); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::atanh() const |
||||
{ |
||||
Quat<T> ident(1, 0, 0, 0); |
||||
Quat<T> c1 = (ident + *this).log(); |
||||
Quat<T> c2 = (ident - *this).log(); |
||||
return 0.5 * (c1 - c2); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> asin(const Quat<T> &q) |
||||
{ |
||||
return q.asin(); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::asin() const |
||||
{ |
||||
Quat<T> v(0, x, y, z); |
||||
T vNorm = v.norm(); |
||||
T k = vNorm < CV_QUAT_EPS ? 1 : vNorm; |
||||
return -v / k * (*this * v / k).asinh(); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> acos(const Quat<T> &q) |
||||
{ |
||||
return q.acos(); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::acos() const |
||||
{ |
||||
Quat<T> v(0, x, y, z); |
||||
T vNorm = v.norm(); |
||||
T k = vNorm < CV_QUAT_EPS ? 1 : vNorm; |
||||
return -v / k * acosh(); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> atan(const Quat<T> &q) |
||||
{ |
||||
return q.atan(); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::atan() const |
||||
{ |
||||
Quat<T> v(0, x, y, z); |
||||
T vNorm = v.norm(); |
||||
T k = vNorm < CV_QUAT_EPS ? 1 : vNorm; |
||||
return -v / k * (*this * v / k).atanh(); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline T Quat<T>::getAngle(QuatAssumeType assumeUnit) const |
||||
{ |
||||
if (assumeUnit) |
||||
{ |
||||
return 2 * std::acos(w); |
||||
} |
||||
if (norm() < CV_QUAT_EPS) |
||||
{ |
||||
CV_Error(Error::StsBadArg, "This quaternion does not represent a rotation"); |
||||
} |
||||
return 2 * std::acos(w / norm()); |
||||
} |
||||
|
||||
template <typename T> |
||||
inline Vec<T, 3> Quat<T>::getAxis(QuatAssumeType assumeUnit) const |
||||
{ |
||||
T angle = getAngle(assumeUnit); |
||||
const T sin_v = std::sin(angle * 0.5); |
||||
if (assumeUnit) |
||||
{ |
||||
return Vec<T, 3>{x, y, z} / sin_v; |
||||
} |
||||
return Vec<T, 3> {x, y, z} / (norm() * sin_v); |
||||
} |
||||
|
||||
template <typename T> |
||||
Matx<T, 4, 4> Quat<T>::toRotMat4x4(QuatAssumeType assumeUnit) const |
||||
{ |
||||
T a = w, b = x, c = y, d = z; |
||||
if (!assumeUnit) |
||||
{ |
||||
Quat<T> qTemp = normalize(); |
||||
a = qTemp.w; |
||||
b = qTemp.x; |
||||
c = qTemp.y; |
||||
d = qTemp.z; |
||||
} |
||||
Matx<T, 4, 4> R{ |
||||
1 - 2 * (c * c + d * d), 2 * (b * c - a * d) , 2 * (b * d + a * c) , 0, |
||||
2 * (b * c + a * d) , 1 - 2 * (b * b + d * d), 2 * (c * d - a * b) , 0, |
||||
2 * (b * d - a * c) , 2 * (c * d + a * b) , 1 - 2 * (b * b + c * c), 0, |
||||
0 , 0 , 0 , 1, |
||||
}; |
||||
return R; |
||||
} |
||||
|
||||
template <typename T> |
||||
Matx<T, 3, 3> Quat<T>::toRotMat3x3(QuatAssumeType assumeUnit) const |
||||
{ |
||||
T a = w, b = x, c = y, d = z; |
||||
if (!assumeUnit) |
||||
{ |
||||
Quat<T> qTemp = normalize(); |
||||
a = qTemp.w; |
||||
b = qTemp.x; |
||||
c = qTemp.y; |
||||
d = qTemp.z; |
||||
} |
||||
Matx<T, 3, 3> R{ |
||||
1 - 2 * (c * c + d * d), 2 * (b * c - a * d) , 2 * (b * d + a * c), |
||||
2 * (b * c + a * d) , 1 - 2 * (b * b + d * d), 2 * (c * d - a * b), |
||||
2 * (b * d - a * c) , 2 * (c * d + a * b) , 1 - 2 * (b * b + c * c) |
||||
}; |
||||
return R; |
||||
} |
||||
|
||||
template <typename T> |
||||
Vec<T, 3> Quat<T>::toRotVec(QuatAssumeType assumeUnit) const |
||||
{ |
||||
T angle = getAngle(assumeUnit); |
||||
Vec<T, 3> axis = getAxis(assumeUnit); |
||||
return angle * axis; |
||||
} |
||||
|
||||
template <typename T> |
||||
Vec<T, 4> Quat<T>::toVec() const |
||||
{ |
||||
return Vec<T, 4>{w, x, y, z}; |
||||
} |
||||
|
||||
template <typename T> |
||||
Quat<T> Quat<T>::lerp(const Quat<T> &q0, const Quat<T> &q1, const T t) |
||||
{ |
||||
return (1 - t) * q0 + t * q1; |
||||
} |
||||
|
||||
template <typename T> |
||||
Quat<T> Quat<T>::slerp(const Quat<T> &q0, const Quat<T> &q1, const T t, QuatAssumeType assumeUnit, bool directChange) |
||||
{ |
||||
Quatd v0(q0); |
||||
Quatd v1(q1); |
||||
if (!assumeUnit) |
||||
{ |
||||
v0 = v0.normalize(); |
||||
v1 = v1.normalize(); |
||||
} |
||||
T cosTheta = v0.dot(v1); |
||||
constexpr T DOT_THRESHOLD = 0.995; |
||||
if (cosTheta > DOT_THRESHOLD) |
||||
{ |
||||
return nlerp(v0, v1, t, QUAT_ASSUME_UNIT); |
||||
} |
||||
|
||||
if (directChange && cosTheta < 0) |
||||
{ |
||||
v0 = -v0; |
||||
cosTheta = -cosTheta; |
||||
} |
||||
T sinTheta = std::sqrt(1 - cosTheta * cosTheta); |
||||
T angle = atan2(sinTheta, cosTheta); |
||||
return (std::sin((1 - t) * angle) / (sinTheta) * v0 + std::sin(t * angle) / (sinTheta) * v1).normalize(); |
||||
} |
||||
|
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::nlerp(const Quat<T> &q0, const Quat<T> &q1, const T t, QuatAssumeType assumeUnit) |
||||
{ |
||||
Quat<T> v0(q0), v1(q1); |
||||
if (v1.dot(v0) < 0) |
||||
{ |
||||
v0 = -v0; |
||||
} |
||||
if (assumeUnit) |
||||
{ |
||||
return ((1 - t) * v0 + t * v1).normalize(); |
||||
} |
||||
v0 = v0.normalize(); |
||||
v1 = v1.normalize(); |
||||
return ((1 - t) * v0 + t * v1).normalize(); |
||||
} |
||||
|
||||
|
||||
template <typename T> |
||||
inline bool Quat<T>::isNormal(T eps) const |
||||
{ |
||||
|
||||
double normVar = norm(); |
||||
if ((normVar > 1 - eps) && (normVar < 1 + eps)) |
||||
return true; |
||||
return false; |
||||
} |
||||
|
||||
template <typename T> |
||||
inline void Quat<T>::assertNormal(T eps) const |
||||
{ |
||||
if (!isNormal(eps)) |
||||
CV_Error(Error::StsBadArg, "Quaternion should be normalized"); |
||||
} |
||||
|
||||
|
||||
template <typename T> |
||||
inline Quat<T> Quat<T>::squad(const Quat<T> &q0, const Quat<T> &q1, |
||||
const Quat<T> &q2, const Quat<T> &q3, |
||||
const T t, QuatAssumeType assumeUnit, |
||||
bool directChange) |
||||
{ |
||||
Quat<T> v0(q0), v1(q1), v2(q2), v3(q3); |
||||
if (!assumeUnit) |
||||
{ |
||||
v0 = v0.normalize(); |
||||
v1 = v1.normalize(); |
||||
v2 = v2.normalize(); |
||||
v3 = v3.normalize(); |
||||
} |
||||
|
||||
Quat<T> c0 = slerp(v0, v3, t, assumeUnit, directChange); |
||||
Quat<T> c1 = slerp(v1, v2, t, assumeUnit, directChange); |
||||
return slerp(c0, c1, 2 * t * (1 - t), assumeUnit, directChange); |
||||
} |
||||
|
||||
template <typename T> |
||||
Quat<T> Quat<T>::interPoint(const Quat<T> &q0, const Quat<T> &q1, |
||||
const Quat<T> &q2, QuatAssumeType assumeUnit) |
||||
{ |
||||
Quat<T> v0(q0), v1(q1), v2(q2); |
||||
if (!assumeUnit) |
||||
{ |
||||
v0 = v0.normalize(); |
||||
v1 = v1.normalize(); |
||||
v2 = v2.normalize(); |
||||
} |
||||
return v1 * cv::exp(-(cv::log(v1.conjugate() * v0, assumeUnit) + (cv::log(v1.conjugate() * v2, assumeUnit))) / 4); |
||||
} |
||||
|
||||
template <typename T> |
||||
Quat<T> Quat<T>::spline(const Quat<T> &q0, const Quat<T> &q1, const Quat<T> &q2, const Quat<T> &q3, const T t, QuatAssumeType assumeUnit) |
||||
{ |
||||
Quatd v0(q0), v1(q1), v2(q2), v3(q3); |
||||
if (!assumeUnit) |
||||
{ |
||||
v0 = v0.normalize(); |
||||
v1 = v1.normalize(); |
||||
v2 = v2.normalize(); |
||||
v3 = v3.normalize(); |
||||
} |
||||
T cosTheta; |
||||
std::vector<Quat<T>> vec{v0, v1, v2, v3}; |
||||
for (size_t i = 0; i < 3; ++i) |
||||
{ |
||||
cosTheta = vec[i].dot(vec[i + 1]); |
||||
if (cosTheta < 0) |
||||
{ |
||||
vec[i + 1] = -vec[i + 1]; |
||||
} |
||||
} |
||||
Quat<T> s1 = interPoint(vec[0], vec[1], vec[2], QUAT_ASSUME_UNIT); |
||||
Quat<T> s2 = interPoint(vec[1], vec[2], vec[3], QUAT_ASSUME_UNIT); |
||||
return squad(vec[1], s1, s2, vec[2], t, assumeUnit, QUAT_ASSUME_NOT_UNIT); |
||||
} |
||||
|
||||
} // namepsace
|
||||
//! @endcond
|
||||
|
||||
#endif /*OPENCV_CORE_QUATERNION_INL_HPP*/ |
@ -0,0 +1,255 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "test_precomp.hpp" |
||||
#include <opencv2/core/quaternion.hpp> |
||||
#include <opencv2/ts/cuda_test.hpp> |
||||
using namespace cv; |
||||
namespace opencv_test{ namespace { |
||||
class QuatTest: public ::testing::Test { |
||||
protected: |
||||
void SetUp() override |
||||
{ |
||||
q1 = {1,2,3,4}; |
||||
q2 = {2.5,-2,3.5,4}; |
||||
q1Unit = {1 / sqrt(30), sqrt(2) /sqrt(15), sqrt(3) / sqrt(10), 2 * sqrt(2) / sqrt(15)}; |
||||
q1Inv = {1.0 / 30, -1.0 / 15, -1.0 / 10, -2.0 / 15}; |
||||
} |
||||
double scalar = 2.5; |
||||
double angle = CV_PI; |
||||
int qNorm2 = 2; |
||||
Vec<double, 3> axis{1, 1, 1}; |
||||
Vec<double, 3> unAxis{0, 0, 0}; |
||||
Vec<double, 3> unitAxis{1.0 / sqrt(3), 1.0 / sqrt(3), 1.0 / sqrt(3)}; |
||||
Quatd q3 = Quatd::createFromAngleAxis(angle, axis); |
||||
Quatd q3UnitAxis = Quatd::createFromAngleAxis(angle, unitAxis); |
||||
Quat<double> q3Norm2 = q3 * qNorm2; |
||||
|
||||
Quat<double> q1Inv; |
||||
Quat<double> q1; |
||||
Quat<double> q2; |
||||
Quat<double> q1Unit; |
||||
|
||||
Quatd qNull{0, 0, 0, 0}; |
||||
Quatd qIdentity{1, 0, 0, 0}; |
||||
QuatAssumeType assumeUnit = QUAT_ASSUME_UNIT; |
||||
|
||||
}; |
||||
|
||||
TEST_F(QuatTest, constructor){ |
||||
Vec<double, 4> coeff{1, 2, 3, 4}; |
||||
EXPECT_EQ(Quat<double> (coeff), q1); |
||||
EXPECT_EQ(q3, q3UnitAxis); |
||||
EXPECT_ANY_THROW(Quatd::createFromAngleAxis(angle, unAxis)); |
||||
Matx33d R1{ |
||||
-1.0 / 3, 2.0 / 3 , 2.0 / 3, |
||||
2.0 / 3 , -1.0 / 3, 2.0 / 3, |
||||
2.0 / 3 , 2.0 / 3 , -1.0 / 3 |
||||
}; |
||||
Matx33d R2{ |
||||
-2.0 / 3, -2.0 / 3, -1.0 / 3, |
||||
-2.0 / 3, 1.0 / 3, 2.0 / 3, |
||||
-1.0 / 3, 2.0 / 3, -2.0 / 3 |
||||
}; |
||||
Matx33d R3{ |
||||
0.818181818181, 0.181818181818, 0.54545455454, |
||||
0.545454545545, -0.54545454545, -0.6363636364, |
||||
0.181818181818, 0.818181818182, -0.5454545455 |
||||
}; |
||||
Matx33d R4{ |
||||
0.818181818181, -0.181818181818, 0.54545455454, |
||||
0.545454545545, 0.54545454545, -0.6363636364, |
||||
-0.181818181818, 0.818181818182, 0.5454545455 |
||||
}; |
||||
Quatd qMat = Quatd::createFromRotMat(R1); |
||||
Quatd qMat2 = Quatd::createFromRotMat(R2); |
||||
Quatd qMat3 = Quatd::createFromRotMat(R3); |
||||
Quatd qMat4 = Quatd::createFromRotMat(R4); |
||||
EXPECT_EQ(qMat2, Quatd(0, -0.408248290463, 0.816496580927, 0.408248904638)); |
||||
EXPECT_EQ(qMat3, Quatd(-0.426401432711,-0.852802865422, -0.213200716355, -0.2132007163)); |
||||
EXPECT_EQ(qMat, q3); |
||||
EXPECT_EQ(qMat4, -Quatd(0.852802865422, 0.426401432711221, 0.2132007163556, 0.2132007163)); |
||||
|
||||
Vec3d rot{angle / sqrt(3),angle / sqrt(3), angle / sqrt(3)}; |
||||
Quatd rotQuad{0, 1.0 / sqrt(3), 1. / sqrt(3), 1. / sqrt(3)}; |
||||
Quatd qRot = Quatd::createFromRvec(rot); |
||||
EXPECT_EQ(qRot, rotQuad); |
||||
EXPECT_EQ(Quatd::createFromRvec(Vec3d(0, 0, 0)), qIdentity); |
||||
} |
||||
|
||||
TEST_F(QuatTest, basicfuns){ |
||||
Quat<double> q1Conj{1, -2, -3, -4}; |
||||
EXPECT_EQ(q3Norm2.normalize(), q3); |
||||
EXPECT_EQ(q1.norm(), sqrt(30)); |
||||
EXPECT_EQ(q1.normalize(), q1Unit); |
||||
EXPECT_ANY_THROW(qNull.normalize()); |
||||
EXPECT_EQ(q1.conjugate(), q1Conj); |
||||
EXPECT_EQ(q1.inv(), q1Inv); |
||||
EXPECT_EQ(inv(q1), q1Inv); |
||||
EXPECT_EQ(q3.inv(assumeUnit) * q3, qIdentity); |
||||
EXPECT_EQ(q1.inv() * q1, qIdentity); |
||||
EXPECT_ANY_THROW(inv(qNull)); |
||||
EXPECT_NO_THROW(q1.at(0)); |
||||
EXPECT_ANY_THROW(q1.at(4)); |
||||
|
||||
Matx33d R{ |
||||
-2.0 / 3, 2.0 / 15 , 11.0 / 15, |
||||
2.0 / 3 , -1.0 / 3 , 2.0 / 3 , |
||||
1.0 / 3 , 14.0 / 15, 2.0 / 15 |
||||
}; |
||||
Matx33d q1RotMat = q1.toRotMat3x3(); |
||||
EXPECT_MAT_NEAR(q1RotMat, R, 1e-6); |
||||
Vec3d z_axis{0,0,1}; |
||||
Quatd q_unit1 = Quatd::createFromAngleAxis(angle, z_axis); |
||||
Mat pointsA = (Mat_<double>(2, 3) << 1,0,0,1,0,1); |
||||
pointsA = pointsA.t(); |
||||
Mat new_point = q_unit1.toRotMat3x3() * pointsA; |
||||
Mat afterRo = (Mat_<double>(3, 2) << -1,-1,0,0,0,1); |
||||
EXPECT_MAT_NEAR(afterRo, new_point, 1e-6); |
||||
EXPECT_ANY_THROW(qNull.toRotVec()); |
||||
Vec3d rodVec{CV_PI/sqrt(3), CV_PI/sqrt(3), CV_PI/sqrt(3)}; |
||||
Vec3d q3Rod = q3.toRotVec(); |
||||
EXPECT_NEAR(q3Rod[0], rodVec[0], 1e-6); |
||||
EXPECT_NEAR(q3Rod[1], rodVec[1], 1e-6); |
||||
EXPECT_NEAR(q3Rod[2], rodVec[2], 1e-6); |
||||
|
||||
EXPECT_EQ(log(q1Unit, assumeUnit), log(q1Unit)); |
||||
EXPECT_EQ(log(qIdentity, assumeUnit), qNull); |
||||
EXPECT_EQ(log(q3), Quatd(0, angle * unitAxis[0] / 2, angle * unitAxis[1] / 2, angle * unitAxis[2] / 2)); |
||||
EXPECT_ANY_THROW(log(qNull)); |
||||
EXPECT_EQ(log(Quatd(exp(1), 0, 0, 0)), qIdentity); |
||||
|
||||
EXPECT_EQ(exp(qIdentity), Quatd(exp(1), 0, 0, 0)); |
||||
EXPECT_EQ(exp(qNull), qIdentity); |
||||
EXPECT_EQ(exp(Quatd(0, angle * unitAxis[0] / 2, angle * unitAxis[1] / 2, angle * unitAxis[2] / 2)), q3); |
||||
|
||||
EXPECT_EQ(power(q3, 2), Quatd::createFromAngleAxis(2*angle, axis)); |
||||
EXPECT_EQ(power(Quatd(0.5, 0.5, 0.5, 0.5), 2.0, assumeUnit), Quatd(-0.5,0.5,0.5,0.5)); |
||||
EXPECT_EQ(power(Quatd(0.5, 0.5, 0.5, 0.5), -2.0), Quatd(-0.5,-0.5,-0.5,-0.5)); |
||||
EXPECT_EQ(sqrt(q1), power(q1, 0.5)); |
||||
EXPECT_EQ(exp(q3 * log(q1)), power(q1, q3)); |
||||
EXPECT_EQ(exp(q1 * log(q3)), power(q3, q1, assumeUnit)); |
||||
EXPECT_EQ(crossProduct(q1, q3), (q1 * q3 - q3 * q1) / 2); |
||||
EXPECT_EQ(sinh(qNull), qNull); |
||||
EXPECT_EQ(sinh(q1), (exp(q1) - exp(-q1)) / 2); |
||||
EXPECT_EQ(sinh(qIdentity), Quatd(sinh(1), 0, 0, 0)); |
||||
EXPECT_EQ(sinh(q1), Quatd(0.73233760604, -0.44820744998, -0.67231117497, -0.8964148999610843)); |
||||
EXPECT_EQ(cosh(qNull), qIdentity); |
||||
EXPECT_EQ(cosh(q1), Quatd(0.961585117636, -0.34135217456, -0.51202826184, -0.682704349122)); |
||||
EXPECT_EQ(tanh(q1), sinh(q1) * inv(cosh(q1))); |
||||
EXPECT_EQ(sin(qNull), qNull); |
||||
EXPECT_EQ(sin(q1), Quatd(91.78371578403, 21.88648685303, 32.829730279543, 43.772973706058)); |
||||
EXPECT_EQ(cos(qNull), qIdentity); |
||||
EXPECT_EQ(cos(q1), Quatd(58.9336461679, -34.0861836904, -51.12927553569, -68.17236738093)); |
||||
EXPECT_EQ(tan(q1), sin(q1)/cos(q1)); |
||||
EXPECT_EQ(sinh(asinh(q1)), q1); |
||||
Quatd c1 = asinh(sinh(q1)); |
||||
EXPECT_EQ(sinh(c1), sinh(q1)); |
||||
EXPECT_EQ(cosh(acosh(q1)), q1); |
||||
c1 = acosh(cosh(q1)); |
||||
EXPECT_EQ(cosh(c1), cosh(q1)); |
||||
EXPECT_EQ(tanh(atanh(q1)), q1); |
||||
c1 = atanh(tanh(q1)); |
||||
EXPECT_EQ(tanh(q1), tanh(c1)); |
||||
EXPECT_EQ(asin(sin(q1)), q1); |
||||
EXPECT_EQ(sin(asin(q1)), q1); |
||||
EXPECT_EQ(acos(cos(q1)), q1); |
||||
EXPECT_EQ(cos(acos(q1)), q1); |
||||
EXPECT_EQ(atan(tan(q3)), q3); |
||||
EXPECT_EQ(tan(atan(q1)), q1); |
||||
} |
||||
|
||||
TEST_F(QuatTest, opeartor){ |
||||
Quatd minusQ{-1, -2, -3, -4}; |
||||
Quatd qAdd{3.5, 0, 6.5, 8}; |
||||
Quatd qMinus{-1.5, 4, -0.5, 0}; |
||||
Quatd qMultq{-20, 1, -5, 27}; |
||||
Quatd qMults{2.5, 5.0, 7.5, 10.0}; |
||||
Quatd qDvss{1.0 / 2.5, 2.0 / 2.5, 3.0 / 2.5, 4.0 / 2.5}; |
||||
Quatd qOrigin(q1); |
||||
|
||||
EXPECT_EQ(-q1, minusQ); |
||||
EXPECT_EQ(q1 + q2, qAdd); |
||||
EXPECT_EQ(q1 - q2, qMinus); |
||||
EXPECT_EQ(q1 * q2, qMultq); |
||||
EXPECT_EQ(q1 * scalar, qMults); |
||||
EXPECT_EQ(scalar * q1, qMults); |
||||
EXPECT_EQ(q1 / q1, qIdentity); |
||||
EXPECT_EQ(q1 / scalar, qDvss); |
||||
q1 += q2; |
||||
EXPECT_EQ(q1, qAdd); |
||||
q1 -= q2; |
||||
EXPECT_EQ(q1, qOrigin); |
||||
q1 *= q2; |
||||
EXPECT_EQ(q1, qMultq); |
||||
q1 /= q2; |
||||
EXPECT_EQ(q1, qOrigin); |
||||
q1 *= scalar; |
||||
EXPECT_EQ(q1, qMults); |
||||
q1 /= scalar; |
||||
EXPECT_EQ(q1, qOrigin); |
||||
EXPECT_NO_THROW(q1[0]); |
||||
EXPECT_NO_THROW(q1.at(0)); |
||||
EXPECT_ANY_THROW(q1[4]); |
||||
EXPECT_ANY_THROW(q1.at(4)); |
||||
} |
||||
|
||||
TEST_F(QuatTest, quatAttrs){ |
||||
double angleQ1 = 2 * acos(1.0 / sqrt(30)); |
||||
Vec3d axis1{0.3713906763541037, 0.557086014, 0.742781352}; |
||||
Vec<double, 3> q1axis1 = q1.getAxis(); |
||||
|
||||
EXPECT_EQ(angleQ1, q1.getAngle()); |
||||
EXPECT_EQ(angleQ1, q1Unit.getAngle()); |
||||
EXPECT_EQ(angleQ1, q1Unit.getAngle(assumeUnit)); |
||||
EXPECT_EQ(0, qIdentity.getAngle()); |
||||
EXPECT_ANY_THROW(qNull.getAxis()); |
||||
EXPECT_NEAR(axis1[0], q1axis1[0], 1e-6); |
||||
EXPECT_NEAR(axis1[1], q1axis1[1], 1e-6); |
||||
EXPECT_NEAR(axis1[2], q1axis1[2], 1e-6); |
||||
EXPECT_NEAR(q3Norm2.norm(), qNorm2, 1e-6); |
||||
EXPECT_EQ(q3Norm2.getAngle(), angle); |
||||
EXPECT_NEAR(axis1[0], axis1[0], 1e-6); |
||||
EXPECT_NEAR(axis1[1], axis1[1], 1e-6); |
||||
EXPECT_NEAR(axis1[2], axis1[2], 1e-6); |
||||
} |
||||
|
||||
TEST_F(QuatTest, interpolation){ |
||||
Quatd qNoRot = Quatd::createFromAngleAxis(0, axis); |
||||
Quatd qLerpInter(1.0 / 2, sqrt(3) / 6, sqrt(3) / 6, sqrt(3) / 6); |
||||
EXPECT_EQ(Quatd::lerp(qNoRot, q3, 0), qNoRot); |
||||
EXPECT_EQ(Quatd::lerp(qNoRot, q3, 1), q3); |
||||
EXPECT_EQ(Quatd::lerp(qNoRot, q3, 0.5), qLerpInter); |
||||
Quatd q3NrNn2 = qNoRot * qNorm2; |
||||
EXPECT_EQ(Quatd::nlerp(q3NrNn2, q3Norm2, 0), qNoRot); |
||||
EXPECT_EQ(Quatd::nlerp(q3NrNn2, q3Norm2, 1), q3); |
||||
EXPECT_EQ(Quatd::nlerp(q3NrNn2, q3Norm2, 0.5), qLerpInter.normalize()); |
||||
EXPECT_EQ(Quatd::nlerp(qNoRot, q3, 0, assumeUnit), qNoRot); |
||||
EXPECT_EQ(Quatd::nlerp(qNoRot, q3, 1, assumeUnit), q3); |
||||
EXPECT_EQ(Quatd::nlerp(qNoRot, q3, 0.5, assumeUnit), qLerpInter.normalize()); |
||||
Quatd q3Minus(-q3); |
||||
EXPECT_EQ(Quatd::nlerp(qNoRot, q3, 0.4), -Quatd::nlerp(qNoRot, q3Minus, 0.4)); |
||||
EXPECT_EQ(Quatd::slerp(qNoRot, q3, 0, assumeUnit), qNoRot); |
||||
EXPECT_EQ(Quatd::slerp(qNoRot, q3, 1, assumeUnit), q3); |
||||
EXPECT_EQ(Quatd::slerp(qNoRot, q3, 0.5, assumeUnit), -Quatd::nlerp(qNoRot, -q3, 0.5, assumeUnit)); |
||||
EXPECT_EQ(Quatd::slerp(qNoRot, q1, 0.5), Quatd(0.76895194, 0.2374325, 0.35614876, 0.47486501)); |
||||
EXPECT_EQ(Quatd::slerp(-qNoRot, q1, 0.5), Quatd(0.76895194, 0.2374325, 0.35614876, 0.47486501)); |
||||
EXPECT_EQ(Quatd::slerp(qNoRot, -q1, 0.5), -Quatd::slerp(-qNoRot, q1, 0.5)); |
||||
|
||||
Quat<double> tr1 = Quatd::createFromAngleAxis(0, axis); |
||||
Quat<double> tr2 = Quatd::createFromAngleAxis(angle / 2, axis); |
||||
Quat<double> tr3 = Quatd::createFromAngleAxis(angle, axis); |
||||
Quat<double> tr4 = Quatd::createFromAngleAxis(angle, Vec3d{-1/sqrt(2),0,1/(sqrt(2))}); |
||||
EXPECT_ANY_THROW(Quatd::spline(qNull, tr1, tr2, tr3, 0)); |
||||
EXPECT_EQ(Quatd::spline(tr1, tr2, tr3, tr4, 0), tr2); |
||||
EXPECT_EQ(Quatd::spline(tr1, tr2, tr3, tr4, 1), tr3); |
||||
EXPECT_EQ(Quatd::spline(tr1, tr2, tr3, tr4, 0.6, assumeUnit), Quatd::spline(tr1, tr2, tr3, tr4, 0.6)); |
||||
EXPECT_EQ(Quatd::spline(tr1, tr2, tr3, tr3, 0.5), Quatd::spline(tr1, -tr2, tr3, tr3, 0.5)); |
||||
EXPECT_EQ(Quatd::spline(tr1, tr2, tr3, tr3, 0.5), -Quatd::spline(-tr1, -tr2, -tr3, tr3, 0.5)); |
||||
EXPECT_EQ(Quatd::spline(tr1, tr2, tr3, tr3, 0.5), Quatd(0.336889853392, 0.543600719487, 0.543600719487, 0.543600719487)); |
||||
} |
||||
|
||||
} // namespace
|
||||
|
||||
}// opencv_test
|
Loading…
Reference in new issue