|
|
|
@ -51,9 +51,43 @@ using namespace std; |
|
|
|
|
ts->set_failed_test_info(err); \
|
|
|
|
|
return; } |
|
|
|
|
|
|
|
|
|
struct CV_GpuHogTest : public CvTest
|
|
|
|
|
struct CV_GpuHogDetectionTest: public CvTest
|
|
|
|
|
{ |
|
|
|
|
CV_GpuHogTest() : CvTest( "GPU-HOG", "HOGDescriptor" ) {} |
|
|
|
|
CV_GpuHogDetectionTest(): CvTest( "GPU-HOG-detect", "HOGDescriptorDetection" ) {} |
|
|
|
|
|
|
|
|
|
void run(int)
|
|
|
|
|
{
|
|
|
|
|
try
|
|
|
|
|
{ |
|
|
|
|
cv::Mat img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/road.png"); |
|
|
|
|
CHECK(!img_rgb.empty(), CvTS::FAIL_MISSING_TEST_DATA); |
|
|
|
|
|
|
|
|
|
#ifdef DUMP |
|
|
|
|
f.open((std::string(ts->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary); |
|
|
|
|
CHECK(f.is_open(), CvTS::FAIL_GENERIC);
|
|
|
|
|
#else |
|
|
|
|
f.open((std::string(ts->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary); |
|
|
|
|
CHECK(f.is_open(), CvTS::FAIL_MISSING_TEST_DATA);
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
// Test on color image
|
|
|
|
|
cv::Mat img; |
|
|
|
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA); |
|
|
|
|
test(img); |
|
|
|
|
|
|
|
|
|
// Test on gray image
|
|
|
|
|
cv::cvtColor(img_rgb, img, CV_BGR2GRAY); |
|
|
|
|
test(img); |
|
|
|
|
|
|
|
|
|
f.close(); |
|
|
|
|
} |
|
|
|
|
catch (const cv::Exception& e) |
|
|
|
|
{ |
|
|
|
|
f.close(); |
|
|
|
|
if (!check_and_treat_gpu_exception(e, ts)) throw; |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#ifdef DUMP |
|
|
|
|
void dump(const cv::Mat& block_hists, const std::vector<cv::Point>& locations)
|
|
|
|
@ -168,45 +202,115 @@ struct CV_GpuHogTest : public CvTest |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#ifdef DUMP |
|
|
|
|
std::ofstream f; |
|
|
|
|
#else |
|
|
|
|
std::ifstream f; |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
void run(int)
|
|
|
|
|
{
|
|
|
|
|
} gpu_hog_detection_test; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct CV_GpuHogGetDescriptorsTest: public CvTest
|
|
|
|
|
{ |
|
|
|
|
CV_GpuHogGetDescriptorsTest(): CvTest("GPU-HOG-getDescriptors", "HOGDescriptorGetDescriptors") {} |
|
|
|
|
|
|
|
|
|
void run(int) |
|
|
|
|
{ |
|
|
|
|
try
|
|
|
|
|
{ |
|
|
|
|
cv::Mat img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/road.png"); |
|
|
|
|
// Load image (e.g. train data, composed from windows)
|
|
|
|
|
cv::Mat img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/train_data.png"); |
|
|
|
|
CHECK(!img_rgb.empty(), CvTS::FAIL_MISSING_TEST_DATA); |
|
|
|
|
|
|
|
|
|
#ifdef DUMP |
|
|
|
|
f.open((std::string(ts->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary); |
|
|
|
|
CHECK(f.is_open(), CvTS::FAIL_GENERIC);
|
|
|
|
|
#else |
|
|
|
|
f.open((std::string(ts->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary); |
|
|
|
|
CHECK(f.is_open(), CvTS::FAIL_MISSING_TEST_DATA);
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
// Test on color image
|
|
|
|
|
// Convert to C4
|
|
|
|
|
cv::Mat img; |
|
|
|
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA); |
|
|
|
|
test(img); |
|
|
|
|
cv::gpu::GpuMat d_img(img); |
|
|
|
|
|
|
|
|
|
// Test on gray image
|
|
|
|
|
cv::cvtColor(img_rgb, img, CV_BGR2GRAY); |
|
|
|
|
test(img); |
|
|
|
|
cv::Size win_size(64, 128); |
|
|
|
|
cv::gpu::HOGDescriptor hog(win_size); |
|
|
|
|
|
|
|
|
|
f.close(); |
|
|
|
|
// Convert train images into feature vectors (train table)
|
|
|
|
|
cv::gpu::GpuMat descriptors; |
|
|
|
|
hog.getDescriptors(d_img, win_size, descriptors); |
|
|
|
|
|
|
|
|
|
// Check size of the result train table
|
|
|
|
|
wins_per_img_x = 3; |
|
|
|
|
wins_per_img_y = 2; |
|
|
|
|
blocks_per_win_x = 7; |
|
|
|
|
blocks_per_win_y = 15; |
|
|
|
|
block_hist_size = 36; |
|
|
|
|
cv::Size descr_size_expected = cv::Size(blocks_per_win_x * blocks_per_win_y * block_hist_size,
|
|
|
|
|
wins_per_img_x * wins_per_img_y);
|
|
|
|
|
CHECK(descriptors.size() == descr_size_expected, CvTS::FAIL_INVALID_OUTPUT); |
|
|
|
|
|
|
|
|
|
/* Now we want to extract the same feature vectors, but from single images. NOTE: results will
|
|
|
|
|
be defferent, due to border values interpolation. Using of many small images is slower, however we
|
|
|
|
|
wont't call getDescriptors and will use computeBlockHistograms instead of. computeBlockHistograms
|
|
|
|
|
works good, it can be checked in the gpu_hog sample */ |
|
|
|
|
|
|
|
|
|
img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/positive1.png"); |
|
|
|
|
CHECK(!img_rgb.empty(), CvTS::FAIL_MISSING_TEST_DATA); |
|
|
|
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA); |
|
|
|
|
hog.computeBlockHistograms(cv::gpu::GpuMat(img)); |
|
|
|
|
// Everything is fine with interpolation for left top subimage
|
|
|
|
|
CHECK(cv::norm(hog.block_hists, descriptors.rowRange(0, 1)) == 0.f, CvTS::FAIL_INVALID_OUTPUT); |
|
|
|
|
|
|
|
|
|
img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/positive2.png"); |
|
|
|
|
CHECK(!img_rgb.empty(), CvTS::FAIL_MISSING_TEST_DATA); |
|
|
|
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA); |
|
|
|
|
hog.computeBlockHistograms(cv::gpu::GpuMat(img)); |
|
|
|
|
compare_inner_parts(hog.block_hists, descriptors.rowRange(1, 2)); |
|
|
|
|
|
|
|
|
|
img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/negative1.png"); |
|
|
|
|
CHECK(!img_rgb.empty(), CvTS::FAIL_MISSING_TEST_DATA); |
|
|
|
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA); |
|
|
|
|
hog.computeBlockHistograms(cv::gpu::GpuMat(img)); |
|
|
|
|
compare_inner_parts(hog.block_hists, descriptors.rowRange(2, 3)); |
|
|
|
|
|
|
|
|
|
img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/negative2.png"); |
|
|
|
|
CHECK(!img_rgb.empty(), CvTS::FAIL_MISSING_TEST_DATA); |
|
|
|
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA); |
|
|
|
|
hog.computeBlockHistograms(cv::gpu::GpuMat(img)); |
|
|
|
|
compare_inner_parts(hog.block_hists, descriptors.rowRange(3, 4)); |
|
|
|
|
|
|
|
|
|
img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/positive3.png"); |
|
|
|
|
CHECK(!img_rgb.empty(), CvTS::FAIL_MISSING_TEST_DATA); |
|
|
|
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA); |
|
|
|
|
hog.computeBlockHistograms(cv::gpu::GpuMat(img)); |
|
|
|
|
compare_inner_parts(hog.block_hists, descriptors.rowRange(4, 5)); |
|
|
|
|
|
|
|
|
|
img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/negative3.png"); |
|
|
|
|
CHECK(!img_rgb.empty(), CvTS::FAIL_MISSING_TEST_DATA); |
|
|
|
|
cv::cvtColor(img_rgb, img, CV_BGR2BGRA); |
|
|
|
|
hog.computeBlockHistograms(cv::gpu::GpuMat(img)); |
|
|
|
|
compare_inner_parts(hog.block_hists, descriptors.rowRange(5, 6)); |
|
|
|
|
} |
|
|
|
|
catch (const cv::Exception& e) |
|
|
|
|
{ |
|
|
|
|
f.close(); |
|
|
|
|
if (!check_and_treat_gpu_exception(e, ts)) throw; |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#ifdef DUMP |
|
|
|
|
std::ofstream f; |
|
|
|
|
#else |
|
|
|
|
std::ifstream f; |
|
|
|
|
#endif |
|
|
|
|
// Does not compare border value, as interpolation leads to delta
|
|
|
|
|
void compare_inner_parts(cv::Mat d1, cv::Mat d2) |
|
|
|
|
{ |
|
|
|
|
for (int i = 1; i < blocks_per_win_y - 1; ++i) |
|
|
|
|
for (int j = 1; j < blocks_per_win_x - 1; ++j) |
|
|
|
|
for (int k = 0; k < block_hist_size; ++k) |
|
|
|
|
{ |
|
|
|
|
float a = d1.at<float>(0, (i * blocks_per_win_x + j) * block_hist_size); |
|
|
|
|
float b = d2.at<float>(0, (i * blocks_per_win_x + j) * block_hist_size); |
|
|
|
|
CHECK(a == b, CvTS::FAIL_INVALID_OUTPUT) |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int wins_per_img_x; |
|
|
|
|
int wins_per_img_y; |
|
|
|
|
int blocks_per_win_x; |
|
|
|
|
int blocks_per_win_y; |
|
|
|
|
int block_hist_size; |
|
|
|
|
} gpu_hog_get_descriptors_test; |
|
|
|
|
|
|
|
|
|
} gpu_hog_test; |
|
|
|
|