mirror of https://github.com/opencv/opencv.git
- common operations moved to separate class - debug console messages removed - test results are stored in memory instead of filepull/3651/head
parent
6e565ab4a4
commit
10639c9526
5 changed files with 216 additions and 726 deletions
@ -1,263 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
const int angularBins=12; |
||||
const int radialBins=4; |
||||
const float minRad=0.2f; |
||||
const float maxRad=2; |
||||
const int NSN=5;//10;//20; //number of shapes per class
|
||||
const int NP=100; //number of points sympliying the contour
|
||||
const float CURRENT_MAX_ACCUR=95; //98% and 99% reached in several tests, 95 is fixed as minimum boundary
|
||||
|
||||
class CV_ShapeEMDTest : public cvtest::BaseTest |
||||
{ |
||||
public: |
||||
CV_ShapeEMDTest(); |
||||
~CV_ShapeEMDTest(); |
||||
protected: |
||||
void run(int); |
||||
|
||||
private: |
||||
void mpegTest(); |
||||
void listShapeNames(vector<string> &listHeaders); |
||||
vector<Point2f> convertContourType(const Mat &, int n=0 ); |
||||
float computeShapeDistance(vector <Point2f>& queryNormal, |
||||
vector <Point2f>& queryFlipped1, |
||||
vector <Point2f>& queryFlipped2, |
||||
vector<Point2f>& testq); |
||||
void displayMPEGResults(); |
||||
}; |
||||
|
||||
CV_ShapeEMDTest::CV_ShapeEMDTest() |
||||
{ |
||||
} |
||||
CV_ShapeEMDTest::~CV_ShapeEMDTest() |
||||
{ |
||||
} |
||||
|
||||
vector <Point2f> CV_ShapeEMDTest::convertContourType(const Mat& currentQuery, int n) |
||||
{ |
||||
vector<vector<Point> > _contoursQuery; |
||||
vector <Point2f> contoursQuery; |
||||
findContours(currentQuery, _contoursQuery, RETR_LIST, CHAIN_APPROX_NONE); |
||||
for (size_t border=0; border<_contoursQuery.size(); border++) |
||||
{ |
||||
for (size_t p=0; p<_contoursQuery[border].size(); p++) |
||||
{ |
||||
contoursQuery.push_back(Point2f((float)_contoursQuery[border][p].x, |
||||
(float)_contoursQuery[border][p].y)); |
||||
} |
||||
} |
||||
|
||||
// In case actual number of points is less than n
|
||||
int dum=0; |
||||
for (int add=(int)contoursQuery.size()-1; add<n; add++) |
||||
{ |
||||
contoursQuery.push_back(contoursQuery[dum++]); //adding dummy values
|
||||
} |
||||
|
||||
// Uniformly sampling
|
||||
random_shuffle(contoursQuery.begin(), contoursQuery.end()); |
||||
int nStart=n; |
||||
vector<Point2f> cont; |
||||
for (int i=0; i<nStart; i++) |
||||
{ |
||||
cont.push_back(contoursQuery[i]); |
||||
} |
||||
return cont; |
||||
} |
||||
|
||||
void CV_ShapeEMDTest::listShapeNames( vector<string> &listHeaders) |
||||
{ |
||||
listHeaders.push_back("apple"); //ok
|
||||
listHeaders.push_back("children"); // ok
|
||||
listHeaders.push_back("device7"); // ok
|
||||
listHeaders.push_back("Heart"); // ok
|
||||
listHeaders.push_back("teddy"); // ok
|
||||
} |
||||
float CV_ShapeEMDTest::computeShapeDistance(vector <Point2f>& query1, vector <Point2f>& query2, |
||||
vector <Point2f>& query3, vector <Point2f>& testq) |
||||
{ |
||||
//waitKey(0);
|
||||
Ptr <ShapeContextDistanceExtractor> mysc = createShapeContextDistanceExtractor(angularBins, radialBins, minRad, maxRad); |
||||
//Ptr <HistogramCostExtractor> cost = createNormHistogramCostExtractor(cv::DIST_L1);
|
||||
//Ptr <HistogramCostExtractor> cost = createChiHistogramCostExtractor(30,0.15);
|
||||
//Ptr <HistogramCostExtractor> cost = createEMDHistogramCostExtractor();
|
||||
// Ptr <HistogramCostExtractor> cost = createEMDL1HistogramCostExtractor();
|
||||
mysc->setIterations(1); //(3)
|
||||
mysc->setCostExtractor( createEMDL1HistogramCostExtractor() ); |
||||
//mysc->setTransformAlgorithm(createAffineTransformer(true));
|
||||
mysc->setTransformAlgorithm( createThinPlateSplineShapeTransformer() ); |
||||
//mysc->setImageAppearanceWeight(1.6);
|
||||
//mysc->setImageAppearanceWeight(0.0);
|
||||
//mysc->setImages(im1,imtest);
|
||||
return ( std::min( mysc->computeDistance(query1, testq), |
||||
std::min(mysc->computeDistance(query2, testq), mysc->computeDistance(query3, testq) ))); |
||||
} |
||||
|
||||
void CV_ShapeEMDTest::mpegTest() |
||||
{ |
||||
string baseTestFolder="shape/mpeg_test/"; |
||||
string path = cvtest::TS::ptr()->get_data_path() + baseTestFolder; |
||||
vector<string> namesHeaders; |
||||
listShapeNames(namesHeaders); |
||||
|
||||
// distance matrix //
|
||||
Mat distanceMat=Mat::zeros(NSN*(int)namesHeaders.size(), NSN*(int)namesHeaders.size(), CV_32F); |
||||
|
||||
// query contours (normal v flipped, h flipped) and testing contour //
|
||||
vector<Point2f> contoursQuery1, contoursQuery2, contoursQuery3, contoursTesting; |
||||
|
||||
// reading query and computing its properties //
|
||||
int counter=0; |
||||
const int loops=NSN*(int)namesHeaders.size()*NSN*(int)namesHeaders.size(); |
||||
for (size_t n=0; n<namesHeaders.size(); n++) |
||||
{ |
||||
for (int i=1; i<=NSN; i++) |
||||
{ |
||||
// read current image //
|
||||
stringstream thepathandname; |
||||
thepathandname<<path+namesHeaders[n]<<"-"<<i<<".png"; |
||||
Mat currentQuery, flippedHQuery, flippedVQuery; |
||||
currentQuery=imread(thepathandname.str(), IMREAD_GRAYSCALE); |
||||
flip(currentQuery, flippedHQuery, 0); |
||||
flip(currentQuery, flippedVQuery, 1); |
||||
// compute border of the query and its flipped versions //
|
||||
vector<Point2f> origContour; |
||||
contoursQuery1=convertContourType(currentQuery, NP); |
||||
origContour=contoursQuery1; |
||||
contoursQuery2=convertContourType(flippedHQuery, NP); |
||||
contoursQuery3=convertContourType(flippedVQuery, NP); |
||||
|
||||
// compare with all the rest of the images: testing //
|
||||
for (size_t nt=0; nt<namesHeaders.size(); nt++) |
||||
{ |
||||
for (int it=1; it<=NSN; it++) |
||||
{ |
||||
// skip self-comparisson //
|
||||
counter++; |
||||
if (nt==n && it==i) |
||||
{ |
||||
distanceMat.at<float>(NSN*(int)n+i-1, |
||||
NSN*(int)nt+it-1)=0; |
||||
continue; |
||||
} |
||||
// read testing image //
|
||||
stringstream thetestpathandname; |
||||
thetestpathandname<<path+namesHeaders[nt]<<"-"<<it<<".png"; |
||||
Mat currentTest; |
||||
currentTest=imread(thetestpathandname.str().c_str(), 0); |
||||
// compute border of the testing //
|
||||
contoursTesting=convertContourType(currentTest, NP); |
||||
|
||||
// compute shape distance //
|
||||
std::cout<<std::endl<<"Progress: "<<counter<<"/"<<loops<<": "<<100*double(counter)/loops<<"% *******"<<std::endl; |
||||
std::cout<<"Computing shape distance between "<<namesHeaders[n]<<i<< |
||||
" and "<<namesHeaders[nt]<<it<<": "; |
||||
distanceMat.at<float>(NSN*(int)n+i-1, NSN*(int)nt+it-1)= |
||||
computeShapeDistance(contoursQuery1, contoursQuery2, contoursQuery3, contoursTesting); |
||||
std::cout<<distanceMat.at<float>(NSN*(int)n+i-1, NSN*(int)nt+it-1)<<std::endl; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
// save distance matrix //
|
||||
FileStorage fs(cvtest::TS::ptr()->get_data_path() + baseTestFolder + "distanceMatrixMPEGTest.yml", FileStorage::WRITE); |
||||
fs << "distanceMat" << distanceMat; |
||||
} |
||||
|
||||
const int FIRST_MANY=2*NSN; |
||||
void CV_ShapeEMDTest::displayMPEGResults() |
||||
{ |
||||
string baseTestFolder="shape/mpeg_test/"; |
||||
Mat distanceMat; |
||||
FileStorage fs(cvtest::TS::ptr()->get_data_path() + baseTestFolder + "distanceMatrixMPEGTest.yml", FileStorage::READ); |
||||
vector<string> namesHeaders; |
||||
listShapeNames(namesHeaders); |
||||
|
||||
// Read generated MAT //
|
||||
fs["distanceMat"]>>distanceMat; |
||||
|
||||
int corrects=0; |
||||
int divi=0; |
||||
for (int row=0; row<distanceMat.rows; row++) |
||||
{ |
||||
if (row%NSN==0) //another group
|
||||
{ |
||||
divi+=NSN; |
||||
} |
||||
for (int col=divi-NSN; col<divi; col++) |
||||
{ |
||||
int nsmall=0; |
||||
for (int i=0; i<distanceMat.cols; i++) |
||||
{ |
||||
if (distanceMat.at<float>(row,col)>distanceMat.at<float>(row,i)) |
||||
{ |
||||
nsmall++; |
||||
} |
||||
} |
||||
if (nsmall<=FIRST_MANY) |
||||
{ |
||||
corrects++; |
||||
} |
||||
} |
||||
} |
||||
float porc = 100*float(corrects)/(NSN*distanceMat.rows); |
||||
std::cout<<"%="<<porc<<std::endl; |
||||
if (porc >= CURRENT_MAX_ACCUR) |
||||
ts->set_failed_test_info(cvtest::TS::OK); |
||||
else |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
||||
|
||||
} |
||||
|
||||
void CV_ShapeEMDTest::run( int /*start_from*/ ) |
||||
{ |
||||
mpegTest(); |
||||
displayMPEGResults(); |
||||
} |
||||
|
||||
TEST(ShapeEMD_SCD, regression) { CV_ShapeEMDTest test; test.safe_run(); } |
@ -1,280 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
#include <stdlib.h> |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
const int NSN=5;//10;//20; //number of shapes per class
|
||||
const float CURRENT_MAX_ACCUR=85; //90% and 91% reached in several tests, 85 is fixed as minimum boundary
|
||||
|
||||
class CV_HaussTest : public cvtest::BaseTest |
||||
{ |
||||
public: |
||||
CV_HaussTest(); |
||||
~CV_HaussTest(); |
||||
protected: |
||||
void run(int); |
||||
private: |
||||
float computeShapeDistance(vector<Point> &query1, vector<Point> &query2, |
||||
vector<Point> &query3, vector<Point> &testq); |
||||
vector <Point> convertContourType(const Mat& currentQuery, int n=180); |
||||
vector<Point2f> normalizeContour(const vector <Point>& contour); |
||||
void listShapeNames( vector<string> &listHeaders); |
||||
void mpegTest(); |
||||
void displayMPEGResults(); |
||||
}; |
||||
|
||||
CV_HaussTest::CV_HaussTest() |
||||
{ |
||||
} |
||||
CV_HaussTest::~CV_HaussTest() |
||||
{ |
||||
} |
||||
|
||||
vector<Point2f> CV_HaussTest::normalizeContour(const vector<Point> &contour) |
||||
{ |
||||
vector<Point2f> output(contour.size()); |
||||
Mat disMat((int)contour.size(),(int)contour.size(),CV_32F); |
||||
Point2f meanpt(0,0); |
||||
float meanVal=1; |
||||
|
||||
for (int ii=0, end1 = (int)contour.size(); ii<end1; ii++) |
||||
{ |
||||
for (int jj=0, end2 = (int)contour.size(); end2; jj++) |
||||
{ |
||||
if (ii==jj) disMat.at<float>(ii,jj)=0; |
||||
else |
||||
{ |
||||
disMat.at<float>(ii,jj)= |
||||
float(fabs(double(contour[ii].x*contour[jj].x)))+float(fabs(double(contour[ii].y*contour[jj].y))); |
||||
} |
||||
} |
||||
meanpt.x+=contour[ii].x; |
||||
meanpt.y+=contour[ii].y; |
||||
} |
||||
meanpt.x/=contour.size(); |
||||
meanpt.y/=contour.size(); |
||||
meanVal=float(cv::mean(disMat)[0]); |
||||
for (size_t ii=0; ii<contour.size(); ii++) |
||||
{ |
||||
output[ii].x = (contour[ii].x-meanpt.x)/meanVal; |
||||
output[ii].y = (contour[ii].y-meanpt.y)/meanVal; |
||||
} |
||||
return output; |
||||
} |
||||
|
||||
void CV_HaussTest::listShapeNames( vector<string> &listHeaders) |
||||
{ |
||||
listHeaders.push_back("apple"); //ok
|
||||
listHeaders.push_back("children"); // ok
|
||||
listHeaders.push_back("device7"); // ok
|
||||
listHeaders.push_back("Heart"); // ok
|
||||
listHeaders.push_back("teddy"); // ok
|
||||
} |
||||
|
||||
|
||||
vector <Point> CV_HaussTest::convertContourType(const Mat& currentQuery, int n) |
||||
{ |
||||
vector<vector<Point> > _contoursQuery; |
||||
vector <Point> contoursQuery; |
||||
findContours(currentQuery, _contoursQuery, RETR_LIST, CHAIN_APPROX_NONE); |
||||
for (size_t border=0; border<_contoursQuery.size(); border++) |
||||
{ |
||||
for (size_t p=0; p<_contoursQuery[border].size(); p++) |
||||
{ |
||||
contoursQuery.push_back(_contoursQuery[border][p]); |
||||
} |
||||
} |
||||
|
||||
// In case actual number of points is less than n
|
||||
for (int add=(int)contoursQuery.size()-1; add<n; add++) |
||||
{ |
||||
contoursQuery.push_back(contoursQuery[contoursQuery.size()-add+1]); //adding dummy values
|
||||
} |
||||
|
||||
// Uniformly sampling
|
||||
random_shuffle(contoursQuery.begin(), contoursQuery.end()); |
||||
int nStart=n; |
||||
vector<Point> cont; |
||||
for (int i=0; i<nStart; i++) |
||||
{ |
||||
cont.push_back(contoursQuery[i]); |
||||
} |
||||
return cont; |
||||
} |
||||
|
||||
float CV_HaussTest::computeShapeDistance(vector <Point>& query1, vector <Point>& query2, |
||||
vector <Point>& query3, vector <Point>& testq) |
||||
{ |
||||
Ptr <HausdorffDistanceExtractor> haus = createHausdorffDistanceExtractor(); |
||||
return std::min(haus->computeDistance(query1,testq), std::min(haus->computeDistance(query2,testq), |
||||
haus->computeDistance(query3,testq))); |
||||
} |
||||
|
||||
void CV_HaussTest::mpegTest() |
||||
{ |
||||
string baseTestFolder="shape/mpeg_test/"; |
||||
string path = cvtest::TS::ptr()->get_data_path() + baseTestFolder; |
||||
vector<string> namesHeaders; |
||||
listShapeNames(namesHeaders); |
||||
|
||||
// distance matrix //
|
||||
Mat distanceMat=Mat::zeros(NSN*(int)namesHeaders.size(), NSN*(int)namesHeaders.size(), CV_32F); |
||||
|
||||
// query contours (normal v flipped, h flipped) and testing contour //
|
||||
vector<Point> contoursQuery1, contoursQuery2, contoursQuery3, contoursTesting; |
||||
|
||||
// reading query and computing its properties //
|
||||
int counter=0; |
||||
const int loops=NSN*(int)namesHeaders.size()*NSN*(int)namesHeaders.size(); |
||||
for (size_t n=0; n<namesHeaders.size(); n++) |
||||
{ |
||||
for (int i=1; i<=NSN; i++) |
||||
{ |
||||
// read current image //
|
||||
stringstream thepathandname; |
||||
thepathandname<<path+namesHeaders[n]<<"-"<<i<<".png"; |
||||
Mat currentQuery, flippedHQuery, flippedVQuery; |
||||
currentQuery=imread(thepathandname.str(), IMREAD_GRAYSCALE); |
||||
flip(currentQuery, flippedHQuery, 0); |
||||
flip(currentQuery, flippedVQuery, 1); |
||||
// compute border of the query and its flipped versions //
|
||||
vector<Point> origContour; |
||||
contoursQuery1=convertContourType(currentQuery); |
||||
origContour=contoursQuery1; |
||||
contoursQuery2=convertContourType(flippedHQuery); |
||||
contoursQuery3=convertContourType(flippedVQuery); |
||||
|
||||
// compare with all the rest of the images: testing //
|
||||
for (size_t nt=0; nt<namesHeaders.size(); nt++) |
||||
{ |
||||
for (int it=1; it<=NSN; it++) |
||||
{ |
||||
/* skip self-comparisson */ |
||||
counter++; |
||||
if (nt==n && it==i) |
||||
{ |
||||
distanceMat.at<float>(NSN*(int)n+i-1, |
||||
NSN*(int)nt+it-1)=0; |
||||
continue; |
||||
} |
||||
// read testing image //
|
||||
stringstream thetestpathandname; |
||||
thetestpathandname<<path+namesHeaders[nt]<<"-"<<it<<".png"; |
||||
Mat currentTest; |
||||
currentTest=imread(thetestpathandname.str().c_str(), 0); |
||||
|
||||
// compute border of the testing //
|
||||
contoursTesting=convertContourType(currentTest); |
||||
|
||||
// compute shape distance //
|
||||
std::cout<<std::endl<<"Progress: "<<counter<<"/"<<loops<<": "<<100*double(counter)/loops<<"% *******"<<std::endl; |
||||
std::cout<<"Computing shape distance between "<<namesHeaders[n]<<i<< |
||||
" and "<<namesHeaders[nt]<<it<<": "; |
||||
distanceMat.at<float>(NSN*(int)n+i-1, NSN*(int)nt+it-1)= |
||||
computeShapeDistance(contoursQuery1, contoursQuery2, contoursQuery3, contoursTesting); |
||||
std::cout<<distanceMat.at<float>(NSN*(int)n+i-1, NSN*(int)nt+it-1)<<std::endl; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
// save distance matrix //
|
||||
FileStorage fs(cvtest::TS::ptr()->get_data_path() + baseTestFolder + "distanceMatrixMPEGTest.yml", FileStorage::WRITE); |
||||
fs << "distanceMat" << distanceMat; |
||||
} |
||||
|
||||
const int FIRST_MANY=2*NSN; |
||||
void CV_HaussTest::displayMPEGResults() |
||||
{ |
||||
string baseTestFolder="shape/mpeg_test/"; |
||||
Mat distanceMat; |
||||
FileStorage fs(cvtest::TS::ptr()->get_data_path() + baseTestFolder + "distanceMatrixMPEGTest.yml", FileStorage::READ); |
||||
vector<string> namesHeaders; |
||||
listShapeNames(namesHeaders); |
||||
|
||||
// Read generated MAT //
|
||||
fs["distanceMat"]>>distanceMat; |
||||
|
||||
int corrects=0; |
||||
int divi=0; |
||||
for (int row=0; row<distanceMat.rows; row++) |
||||
{ |
||||
if (row%NSN==0) //another group
|
||||
{ |
||||
divi+=NSN; |
||||
} |
||||
for (int col=divi-NSN; col<divi; col++) |
||||
{ |
||||
int nsmall=0; |
||||
for (int i=0; i<distanceMat.cols; i++) |
||||
{ |
||||
if (distanceMat.at<float>(row,col)>distanceMat.at<float>(row,i)) |
||||
{ |
||||
nsmall++; |
||||
} |
||||
} |
||||
if (nsmall<=FIRST_MANY) |
||||
{ |
||||
corrects++; |
||||
} |
||||
} |
||||
} |
||||
float porc = 100*float(corrects)/(NSN*distanceMat.rows); |
||||
std::cout<<"%="<<porc<<std::endl; |
||||
if (porc >= CURRENT_MAX_ACCUR) |
||||
ts->set_failed_test_info(cvtest::TS::OK); |
||||
else |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
||||
|
||||
} |
||||
|
||||
|
||||
void CV_HaussTest::run(int /* */) |
||||
{ |
||||
mpegTest(); |
||||
displayMPEGResults(); |
||||
ts->set_failed_test_info(cvtest::TS::OK); |
||||
} |
||||
|
||||
TEST(Hauss, regression) { CV_HaussTest test; test.safe_run(); } |
@ -1 +0,0 @@ |
||||
#include "test_precomp.hpp" |
Loading…
Reference in new issue