|
|
|
@ -50,6 +50,11 @@ |
|
|
|
|
#include <cstdio> |
|
|
|
|
#include <stdarg.h> |
|
|
|
|
|
|
|
|
|
// use previous stored integrals for regression testing
|
|
|
|
|
// #define USE_REFERENCE_VALUES
|
|
|
|
|
|
|
|
|
|
#if defined USE_REFERENCE_VALUES |
|
|
|
|
|
|
|
|
|
namespace { |
|
|
|
|
|
|
|
|
|
char *itoa(long i, char* s, int /*dummy_radix*/) |
|
|
|
@ -58,6 +63,8 @@ char *itoa(long i, char* s, int /*dummy_radix*/) |
|
|
|
|
return s; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
// used for noisy printfs
|
|
|
|
|
// #define WITH_DEBUG_OUT
|
|
|
|
|
|
|
|
|
@ -68,6 +75,8 @@ char *itoa(long i, char* s, int /*dummy_radix*/) |
|
|
|
|
# define dprintf(format, ...) |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
namespace { |
|
|
|
|
|
|
|
|
|
struct Octave |
|
|
|
|
{ |
|
|
|
|
int index; |
|
|
|
@ -143,32 +152,6 @@ struct Object |
|
|
|
|
Object(const cv::Rect& r, const float c, Class dt = PEDESTRIAN) : rect(r), confidence(c), detType(dt) {} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
struct Level |
|
|
|
|
{ |
|
|
|
|
const Octave* octave; |
|
|
|
|
|
|
|
|
|
float origScale; |
|
|
|
|
float relScale; |
|
|
|
|
float shrScale; // used for marking detection
|
|
|
|
|
|
|
|
|
|
cv::Size workRect; |
|
|
|
|
cv::Size objSize; |
|
|
|
|
|
|
|
|
|
Level(const Octave& oct, const float scale, const int shrinkage, const int w, const int h) |
|
|
|
|
: octave(&oct), origScale(scale), relScale(scale / oct.scale), shrScale (relScale / (float)shrinkage), |
|
|
|
|
workRect(cv::Size(cvRound(w / (float)shrinkage),cvRound(h / (float)shrinkage))), |
|
|
|
|
objSize(cv::Size(cvRound(oct.size.width * relScale), cvRound(oct.size.height * relScale))) |
|
|
|
|
{} |
|
|
|
|
|
|
|
|
|
void markDetection(const int x, const int y, float confidence, std::vector<Object>& detections) const |
|
|
|
|
{ |
|
|
|
|
int shrinkage = (*octave).shrinkage; |
|
|
|
|
cv::Rect rect(cvRound(x * shrinkage), cvRound(y * shrinkage), objSize.width, objSize.height); |
|
|
|
|
|
|
|
|
|
detections.push_back(Object(rect, confidence)); |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
struct CascadeIntrinsics |
|
|
|
|
{ |
|
|
|
|
static const float lambda = 1.099f, a = 0.89f; |
|
|
|
@ -202,37 +185,36 @@ struct CascadeIntrinsics |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int qangle6(float dfdx, float dfdy) |
|
|
|
|
struct Level |
|
|
|
|
{ |
|
|
|
|
static const float vectors[6][2] = |
|
|
|
|
{ |
|
|
|
|
{std::cos(0), std::sin(0) }, |
|
|
|
|
{std::cos(M_PI / 6.f), std::sin(M_PI / 6.f) }, |
|
|
|
|
{std::cos(M_PI / 3.f), std::sin(M_PI / 3.f) }, |
|
|
|
|
const Octave* octave; |
|
|
|
|
|
|
|
|
|
{std::cos(M_PI / 2.f), std::sin(M_PI / 2.f) }, |
|
|
|
|
{std::cos(2.f * M_PI / 3.f), std::sin(2.f * M_PI / 3.f)}, |
|
|
|
|
{std::cos(5.f * M_PI / 6.f), std::sin(5.f * M_PI / 6.f)} |
|
|
|
|
}; |
|
|
|
|
float origScale; |
|
|
|
|
float relScale; |
|
|
|
|
float shrScale; // used for marking detection
|
|
|
|
|
|
|
|
|
|
int index = 0; |
|
|
|
|
cv::Size workRect; |
|
|
|
|
cv::Size objSize; |
|
|
|
|
|
|
|
|
|
float dot = fabs(dfdx * vectors[0][0] + dfdy * vectors[0][1]); |
|
|
|
|
float scaling[2]; |
|
|
|
|
|
|
|
|
|
for(int i = 1; i < 6; ++i) |
|
|
|
|
Level(const Octave& oct, const float scale, const int shrinkage, const int w, const int h) |
|
|
|
|
: octave(&oct), origScale(scale), relScale(scale / oct.scale), shrScale (relScale / (float)shrinkage), |
|
|
|
|
workRect(cv::Size(cvRound(w / (float)shrinkage),cvRound(h / (float)shrinkage))), |
|
|
|
|
objSize(cv::Size(cvRound(oct.size.width * relScale), cvRound(oct.size.height * relScale))) |
|
|
|
|
{ |
|
|
|
|
const float curr = fabs(dfdx * vectors[i][0] + dfdy * vectors[i][1]); |
|
|
|
|
|
|
|
|
|
if(curr > dot) |
|
|
|
|
{ |
|
|
|
|
dot = curr; |
|
|
|
|
index = i; |
|
|
|
|
} |
|
|
|
|
scaling[0] = CascadeIntrinsics::getFor(0, relScale); |
|
|
|
|
scaling[1] = CascadeIntrinsics::getFor(9, relScale); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return index; |
|
|
|
|
} |
|
|
|
|
void markDetection(const int x, const int y, float confidence, std::vector<Object>& detections) const |
|
|
|
|
{ |
|
|
|
|
int shrinkage = (*octave).shrinkage; |
|
|
|
|
cv::Rect rect(cvRound(x * shrinkage), cvRound(y * shrinkage), objSize.width, objSize.height); |
|
|
|
|
|
|
|
|
|
detections.push_back(Object(rect, confidence)); |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
template< typename T> |
|
|
|
|
struct Decimate { |
|
|
|
@ -271,9 +253,6 @@ struct Decimate { |
|
|
|
|
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
// use previous stored integrals for regression testing
|
|
|
|
|
// #define USE_REFERENCE_VALUES
|
|
|
|
|
|
|
|
|
|
struct ChannelStorage |
|
|
|
|
{ |
|
|
|
|
std::vector<cv::Mat> hog; |
|
|
|
@ -437,9 +416,10 @@ struct cv::SoftCascade::Filds |
|
|
|
|
|
|
|
|
|
typedef std::vector<Octave>::iterator octIt_t; |
|
|
|
|
|
|
|
|
|
float rescale(const Feature& feature, const float relScale, cv::Rect& scaledRect, const float threshold) const |
|
|
|
|
float rescale(const Feature& feature, const float scaling, const float relScale, |
|
|
|
|
cv::Rect& scaledRect, const float threshold) const |
|
|
|
|
{ |
|
|
|
|
float scaling = CascadeIntrinsics::getFor(feature.channel, relScale); |
|
|
|
|
// float scaling = CascadeIntrinsics::getFor(feature.channel, relScale);
|
|
|
|
|
scaledRect = feature.rect; |
|
|
|
|
|
|
|
|
|
dprintf("feature %d box %d %d %d %d\n", feature.channel, scaledRect.x, scaledRect.y, |
|
|
|
@ -460,16 +440,16 @@ struct cv::SoftCascade::Filds |
|
|
|
|
float sarea = (scaledRect.width - scaledRect.x) * (scaledRect.height - scaledRect.y); |
|
|
|
|
|
|
|
|
|
float approx = 1.f; |
|
|
|
|
if (fabs(farea - 0.f) > FLT_EPSILON && fabs(farea - 0.f) > FLT_EPSILON) |
|
|
|
|
// if (fabs(farea - 0.f) > FLT_EPSILON && fabs(farea - 0.f) > FLT_EPSILON)
|
|
|
|
|
{ |
|
|
|
|
const float expected_new_area = farea * relScale * relScale; |
|
|
|
|
approx = expected_new_area / sarea; |
|
|
|
|
approx = sarea / expected_new_area; |
|
|
|
|
|
|
|
|
|
dprintf(" rel areas %f %f\n", expected_new_area, sarea); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// compensation areas rounding
|
|
|
|
|
float rootThreshold = threshold / approx; |
|
|
|
|
float rootThreshold = threshold * approx; |
|
|
|
|
rootThreshold *= scaling; |
|
|
|
|
|
|
|
|
|
dprintf("approximation %f %f -> %f %f\n", approx, threshold, rootThreshold, scaling); |
|
|
|
@ -504,7 +484,8 @@ struct cv::SoftCascade::Filds |
|
|
|
|
const Node& node = nodes[nId]; |
|
|
|
|
const Feature& feature = features[node.feature]; |
|
|
|
|
cv::Rect scaledRect; |
|
|
|
|
float threshold = rescale(feature, level.relScale, scaledRect, node.threshold); |
|
|
|
|
float threshold = rescale(feature, level.scaling[(int)(feature.channel > 6)], |
|
|
|
|
level.relScale, scaledRect, node.threshold); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float sum = storage.get(dx, dy, feature.channel, scaledRect); |
|
|
|
@ -519,7 +500,8 @@ struct cv::SoftCascade::Filds |
|
|
|
|
const Node& leaf = nodes[nId + next]; |
|
|
|
|
const Feature& fLeaf = features[leaf.feature]; |
|
|
|
|
|
|
|
|
|
threshold = rescale(fLeaf, level.relScale, scaledRect, leaf.threshold); |
|
|
|
|
threshold = rescale(fLeaf, level.scaling[(int)(fLeaf.channel > 6)], |
|
|
|
|
level.relScale, scaledRect, leaf.threshold); |
|
|
|
|
sum = storage.get(dx, dy, fLeaf.channel, scaledRect); |
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -546,7 +528,7 @@ struct cv::SoftCascade::Filds |
|
|
|
|
|
|
|
|
|
if (st == stEnd) |
|
|
|
|
{ |
|
|
|
|
std::cout << " got " << st << std::endl; |
|
|
|
|
dprintf(" got %d\n", st); |
|
|
|
|
level.markDetection(dx, dy, detectionScore, detections); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -701,25 +683,6 @@ struct cv::SoftCascade::Filds |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
shrinkage = octaves[0].shrinkage; |
|
|
|
|
|
|
|
|
|
//debug print
|
|
|
|
|
// std::cout << "collected " << stages.size() << " stages" << std::endl;
|
|
|
|
|
// for (int i = 0; i < (int)stages.size(); ++i)
|
|
|
|
|
// {
|
|
|
|
|
// std::cout << "stage " << i << ": " << stages[i].threshold << std::endl;
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
// std::cout << "collected " << nodes.size() << " nodes" << std::endl;
|
|
|
|
|
// for (int i = 0; i < (int)nodes.size(); ++i)
|
|
|
|
|
// {
|
|
|
|
|
// std::cout << "node " << i << ": " << nodes[i].threshold << " " << nodes[i].feature << std::endl;
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
// std::cout << "collected " << leaves.size() << " leaves" << std::endl;
|
|
|
|
|
// for (int i = 0; i < (int)leaves.size(); ++i)
|
|
|
|
|
// {
|
|
|
|
|
// std::cout << "leaf " << i << ": " << leaves[i] << std::endl;
|
|
|
|
|
// }
|
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
@ -752,8 +715,7 @@ bool cv::SoftCascade::load( const string& filename, const float minScale, const |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// #define DEBUG_STORE_IMAGES
|
|
|
|
|
#define DEBUG_SHOW_RESULT |
|
|
|
|
// #define DEBUG_SHOW_RESULT
|
|
|
|
|
|
|
|
|
|
void cv::SoftCascade::detectMultiScale(const Mat& image, const std::vector<cv::Rect>& /*rois*/, |
|
|
|
|
std::vector<cv::Rect>& objects, const int /*rejectfactor*/) |
|
|
|
@ -772,26 +734,6 @@ void cv::SoftCascade::detectMultiScale(const Mat& image, const std::vector<cv::R |
|
|
|
|
cv::Mat image1; |
|
|
|
|
cv::cvtColor(image, image1, CV_BGR2RGB); |
|
|
|
|
|
|
|
|
|
#if defined DEBUG_STORE_IMAGES |
|
|
|
|
cv::FileStorage fs("/home/kellan/opencvInputImage.xml", cv::FileStorage::WRITE); |
|
|
|
|
cv::imwrite("/home/kellan/opencvInputImage.jpg", image1); |
|
|
|
|
fs << "opencvInputImage" << image1; |
|
|
|
|
|
|
|
|
|
cv::Mat doppia; |
|
|
|
|
cv::FileStorage fsr("/home/kellan/befireGause.xml", cv::FileStorage::READ); |
|
|
|
|
fsr["input_gpu_mat"] >> doppia; |
|
|
|
|
|
|
|
|
|
cv::Mat diff; |
|
|
|
|
cv::absdiff(image1, doppia, diff); |
|
|
|
|
|
|
|
|
|
fs << "absdiff" << diff; |
|
|
|
|
fs.release(); |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
cv::imshow("!!", image1); |
|
|
|
|
cv::waitKey(0); |
|
|
|
|
|
|
|
|
|
// create integrals
|
|
|
|
|
ChannelStorage storage(image, fld.shrinkage); |
|
|
|
|
|
|
|
|
@ -831,9 +773,9 @@ void cv::SoftCascade::detectMultiScale(const Mat& image, const std::vector<cv::R |
|
|
|
|
|
|
|
|
|
cv::imshow("out", out); |
|
|
|
|
cv::waitKey(0); |
|
|
|
|
std::cout << "work rect: " << level.workRect.width << " " << level.workRect.height << std::endl; |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
std::cout << "work rect: " << level.workRect.width << " " << level.workRect.height << std::endl; |
|
|
|
|
detections.clear(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|