Merge pull request #3531 from jet47:cuda-core-refactoring

pull/3551/head
Vadim Pisarevsky 10 years ago
commit 0ff67253f7
  1. 2
      modules/core/include/opencv2/core/base.hpp
  2. 48
      modules/core/include/opencv2/core/cuda.hpp
  3. 67
      modules/core/include/opencv2/core/cuda.inl.hpp
  4. 16
      modules/core/include/opencv2/core/mat.hpp
  5. 30
      modules/core/include/opencv2/core/mat.inl.hpp
  6. 41
      modules/core/perf/cuda/perf_gpumat.cpp
  7. 20
      modules/core/src/cuda_gpu_mat.cpp
  8. 124
      modules/core/src/cuda_host_mem.cpp
  9. 94
      modules/core/src/matrix.cpp
  10. 12
      modules/core/src/opengl.cpp
  11. 83
      modules/core/test/cuda/test_buffer_pool.cpp
  12. 35
      modules/core/test/cuda/test_gpumat.cpp
  13. 6
      modules/core/test/cuda/test_opengl.cpp
  14. 40
      modules/core/test/cuda/test_stream.cpp
  15. 10
      modules/core/test/test_main.cpp
  16. 114
      modules/cuda/perf/perf_buffer_pool.cpp
  17. 2
      modules/cudaarithm/src/cuda/lut.cu
  18. 4
      modules/cudaimgproc/src/histogram.cpp
  19. 10
      modules/cudaoptflow/src/farneback.cpp
  20. 30
      modules/cudev/include/opencv2/cudev/ptr2d/detail/gpumat.hpp
  21. 14
      modules/cudev/include/opencv2/cudev/ptr2d/gpumat.hpp
  22. 2
      modules/highgui/src/window.cpp
  23. 2
      modules/superres/src/btv_l1_cuda.cpp
  24. 4
      modules/superres/src/frame_source.cpp
  25. 10
      modules/superres/src/input_array_utility.cpp
  26. 2
      modules/superres/src/optical_flow.cpp
  27. 2
      modules/ts/include/opencv2/ts.hpp
  28. 49
      modules/ts/include/opencv2/ts/cuda_test.hpp
  29. 29
      modules/ts/src/cuda_test.cpp
  30. 8
      samples/gpu/stereo_multi.cpp

@ -705,7 +705,7 @@ namespace ogl
namespace cuda
{
class CV_EXPORTS GpuMat;
class CV_EXPORTS CudaMem;
class CV_EXPORTS HostMem;
class CV_EXPORTS Stream;
class CV_EXPORTS Event;
}

@ -67,7 +67,9 @@ namespace cv { namespace cuda {
//! @addtogroup cudacore_struct
//! @{
//////////////////////////////// GpuMat ///////////////////////////////
//===================================================================================
// GpuMat
//===================================================================================
/** @brief Base storage class for GPU memory with reference counting.
@ -325,13 +327,13 @@ The function does not reallocate memory if the matrix has proper attributes alre
*/
CV_EXPORTS void ensureSizeIsEnough(int rows, int cols, int type, OutputArray arr);
CV_EXPORTS GpuMat allocMatFromBuf(int rows, int cols, int type, GpuMat& mat);
//! BufferPool management (must be called before Stream creation)
CV_EXPORTS void setBufferPoolUsage(bool on);
CV_EXPORTS void setBufferPoolConfig(int deviceId, size_t stackSize, int stackCount);
//////////////////////////////// CudaMem ////////////////////////////////
//===================================================================================
// HostMem
//===================================================================================
/** @brief Class with reference counting wrapping special memory type allocation functions from CUDA.
@ -348,43 +350,45 @@ Its interface is also Mat-like but with additional memory type parameters.
@note Allocation size of such memory types is usually limited. For more details, see *CUDA 2.2
Pinned Memory APIs* document or *CUDA C Programming Guide*.
*/
class CV_EXPORTS CudaMem
class CV_EXPORTS HostMem
{
public:
enum AllocType { PAGE_LOCKED = 1, SHARED = 2, WRITE_COMBINED = 4 };
explicit CudaMem(AllocType alloc_type = PAGE_LOCKED);
static MatAllocator* getAllocator(AllocType alloc_type = PAGE_LOCKED);
explicit HostMem(AllocType alloc_type = PAGE_LOCKED);
CudaMem(const CudaMem& m);
HostMem(const HostMem& m);
CudaMem(int rows, int cols, int type, AllocType alloc_type = PAGE_LOCKED);
CudaMem(Size size, int type, AllocType alloc_type = PAGE_LOCKED);
HostMem(int rows, int cols, int type, AllocType alloc_type = PAGE_LOCKED);
HostMem(Size size, int type, AllocType alloc_type = PAGE_LOCKED);
//! creates from host memory with coping data
explicit CudaMem(InputArray arr, AllocType alloc_type = PAGE_LOCKED);
explicit HostMem(InputArray arr, AllocType alloc_type = PAGE_LOCKED);
~CudaMem();
~HostMem();
CudaMem& operator =(const CudaMem& m);
HostMem& operator =(const HostMem& m);
//! swaps with other smart pointer
void swap(CudaMem& b);
void swap(HostMem& b);
//! returns deep copy of the matrix, i.e. the data is copied
CudaMem clone() const;
HostMem clone() const;
//! allocates new matrix data unless the matrix already has specified size and type.
void create(int rows, int cols, int type);
void create(Size size, int type);
//! creates alternative CudaMem header for the same data, with different
//! creates alternative HostMem header for the same data, with different
//! number of channels and/or different number of rows
CudaMem reshape(int cn, int rows = 0) const;
HostMem reshape(int cn, int rows = 0) const;
//! decrements reference counter and released memory if needed.
void release();
//! returns matrix header with disabled reference counting for CudaMem data.
//! returns matrix header with disabled reference counting for HostMem data.
Mat createMatHeader() const;
/** @brief Maps CPU memory to GPU address space and creates the cuda::GpuMat header without reference counting
@ -433,7 +437,9 @@ CV_EXPORTS void registerPageLocked(Mat& m);
*/
CV_EXPORTS void unregisterPageLocked(Mat& m);
///////////////////////////////// Stream //////////////////////////////////
//===================================================================================
// Stream
//===================================================================================
/** @brief This class encapsulates a queue of asynchronous calls.
@ -528,7 +534,9 @@ private:
//! @} cudacore_struct
//////////////////////////////// Initialization & Info ////////////////////////
//===================================================================================
// Initialization & Info
//===================================================================================
//! @addtogroup cudacore_init
//! @{
@ -570,7 +578,9 @@ enum FeatureSet
FEATURE_SET_COMPUTE_20 = 20,
FEATURE_SET_COMPUTE_21 = 21,
FEATURE_SET_COMPUTE_30 = 30,
FEATURE_SET_COMPUTE_32 = 32,
FEATURE_SET_COMPUTE_35 = 35,
FEATURE_SET_COMPUTE_50 = 50,
GLOBAL_ATOMICS = FEATURE_SET_COMPUTE_11,
SHARED_ATOMICS = FEATURE_SET_COMPUTE_12,

@ -50,7 +50,9 @@
namespace cv { namespace cuda {
//////////////////////////////// GpuMat ///////////////////////////////
//===================================================================================
// GpuMat
//===================================================================================
inline
GpuMat::GpuMat(Allocator* allocator_)
@ -145,6 +147,7 @@ void GpuMat::swap(GpuMat& b)
std::swap(datastart, b.datastart);
std::swap(dataend, b.dataend);
std::swap(refcount, b.refcount);
std::swap(allocator, b.allocator);
}
inline
@ -374,16 +377,18 @@ void swap(GpuMat& a, GpuMat& b)
a.swap(b);
}
//////////////////////////////// CudaMem ////////////////////////////////
//===================================================================================
// HostMem
//===================================================================================
inline
CudaMem::CudaMem(AllocType alloc_type_)
HostMem::HostMem(AllocType alloc_type_)
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_)
{
}
inline
CudaMem::CudaMem(const CudaMem& m)
HostMem::HostMem(const HostMem& m)
: flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend), alloc_type(m.alloc_type)
{
if( refcount )
@ -391,7 +396,7 @@ CudaMem::CudaMem(const CudaMem& m)
}
inline
CudaMem::CudaMem(int rows_, int cols_, int type_, AllocType alloc_type_)
HostMem::HostMem(int rows_, int cols_, int type_, AllocType alloc_type_)
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_)
{
if (rows_ > 0 && cols_ > 0)
@ -399,7 +404,7 @@ CudaMem::CudaMem(int rows_, int cols_, int type_, AllocType alloc_type_)
}
inline
CudaMem::CudaMem(Size size_, int type_, AllocType alloc_type_)
HostMem::HostMem(Size size_, int type_, AllocType alloc_type_)
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_)
{
if (size_.height > 0 && size_.width > 0)
@ -407,24 +412,24 @@ CudaMem::CudaMem(Size size_, int type_, AllocType alloc_type_)
}
inline
CudaMem::CudaMem(InputArray arr, AllocType alloc_type_)
HostMem::HostMem(InputArray arr, AllocType alloc_type_)
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_)
{
arr.getMat().copyTo(*this);
}
inline
CudaMem::~CudaMem()
HostMem::~HostMem()
{
release();
}
inline
CudaMem& CudaMem::operator =(const CudaMem& m)
HostMem& HostMem::operator =(const HostMem& m)
{
if (this != &m)
{
CudaMem temp(m);
HostMem temp(m);
swap(temp);
}
@ -432,7 +437,7 @@ CudaMem& CudaMem::operator =(const CudaMem& m)
}
inline
void CudaMem::swap(CudaMem& b)
void HostMem::swap(HostMem& b)
{
std::swap(flags, b.flags);
std::swap(rows, b.rows);
@ -446,86 +451,88 @@ void CudaMem::swap(CudaMem& b)
}
inline
CudaMem CudaMem::clone() const
HostMem HostMem::clone() const
{
CudaMem m(size(), type(), alloc_type);
HostMem m(size(), type(), alloc_type);
createMatHeader().copyTo(m);
return m;
}
inline
void CudaMem::create(Size size_, int type_)
void HostMem::create(Size size_, int type_)
{
create(size_.height, size_.width, type_);
}
inline
Mat CudaMem::createMatHeader() const
Mat HostMem::createMatHeader() const
{
return Mat(size(), type(), data, step);
}
inline
bool CudaMem::isContinuous() const
bool HostMem::isContinuous() const
{
return (flags & Mat::CONTINUOUS_FLAG) != 0;
}
inline
size_t CudaMem::elemSize() const
size_t HostMem::elemSize() const
{
return CV_ELEM_SIZE(flags);
}
inline
size_t CudaMem::elemSize1() const
size_t HostMem::elemSize1() const
{
return CV_ELEM_SIZE1(flags);
}
inline
int CudaMem::type() const
int HostMem::type() const
{
return CV_MAT_TYPE(flags);
}
inline
int CudaMem::depth() const
int HostMem::depth() const
{
return CV_MAT_DEPTH(flags);
}
inline
int CudaMem::channels() const
int HostMem::channels() const
{
return CV_MAT_CN(flags);
}
inline
size_t CudaMem::step1() const
size_t HostMem::step1() const
{
return step / elemSize1();
}
inline
Size CudaMem::size() const
Size HostMem::size() const
{
return Size(cols, rows);
}
inline
bool CudaMem::empty() const
bool HostMem::empty() const
{
return data == 0;
}
static inline
void swap(CudaMem& a, CudaMem& b)
void swap(HostMem& a, HostMem& b)
{
a.swap(b);
}
//////////////////////////////// Stream ///////////////////////////////
//===================================================================================
// Stream
//===================================================================================
inline
Stream::Stream(const Ptr<Impl>& impl)
@ -533,7 +540,9 @@ Stream::Stream(const Ptr<Impl>& impl)
{
}
//////////////////////////////// Initialization & Info ////////////////////////
//===================================================================================
// Initialization & Info
//===================================================================================
inline
bool TargetArchs::has(int major, int minor)
@ -592,7 +601,9 @@ bool DeviceInfo::supports(FeatureSet feature_set) const
}} // namespace cv { namespace cuda {
//////////////////////////////// Mat ////////////////////////////////
//===================================================================================
// Mat
//===================================================================================
namespace cv {

@ -160,8 +160,8 @@ public:
STD_VECTOR_MAT = 5 << KIND_SHIFT,
EXPR = 6 << KIND_SHIFT,
OPENGL_BUFFER = 7 << KIND_SHIFT,
CUDA_MEM = 8 << KIND_SHIFT,
GPU_MAT = 9 << KIND_SHIFT,
CUDA_HOST_MEM = 8 << KIND_SHIFT,
CUDA_GPU_MAT = 9 << KIND_SHIFT,
UMAT =10 << KIND_SHIFT,
STD_VECTOR_UMAT =11 << KIND_SHIFT
};
@ -180,7 +180,7 @@ public:
_InputArray(const double& val);
_InputArray(const cuda::GpuMat& d_mat);
_InputArray(const ogl::Buffer& buf);
_InputArray(const cuda::CudaMem& cuda_mem);
_InputArray(const cuda::HostMem& cuda_mem);
template<typename _Tp> _InputArray(const cudev::GpuMat_<_Tp>& m);
_InputArray(const UMat& um);
_InputArray(const std::vector<UMat>& umv);
@ -277,7 +277,7 @@ public:
_OutputArray(std::vector<Mat>& vec);
_OutputArray(cuda::GpuMat& d_mat);
_OutputArray(ogl::Buffer& buf);
_OutputArray(cuda::CudaMem& cuda_mem);
_OutputArray(cuda::HostMem& cuda_mem);
template<typename _Tp> _OutputArray(cudev::GpuMat_<_Tp>& m);
template<typename _Tp> _OutputArray(std::vector<_Tp>& vec);
template<typename _Tp> _OutputArray(std::vector<std::vector<_Tp> >& vec);
@ -292,7 +292,7 @@ public:
_OutputArray(const std::vector<Mat>& vec);
_OutputArray(const cuda::GpuMat& d_mat);
_OutputArray(const ogl::Buffer& buf);
_OutputArray(const cuda::CudaMem& cuda_mem);
_OutputArray(const cuda::HostMem& cuda_mem);
template<typename _Tp> _OutputArray(const cudev::GpuMat_<_Tp>& m);
template<typename _Tp> _OutputArray(const std::vector<_Tp>& vec);
template<typename _Tp> _OutputArray(const std::vector<std::vector<_Tp> >& vec);
@ -310,7 +310,7 @@ public:
virtual UMat& getUMatRef(int i=-1) const;
virtual cuda::GpuMat& getGpuMatRef() const;
virtual ogl::Buffer& getOGlBufferRef() const;
virtual cuda::CudaMem& getCudaMemRef() const;
virtual cuda::HostMem& getHostMemRef() const;
virtual void create(Size sz, int type, int i=-1, bool allowTransposed=false, int fixedDepthMask=0) const;
virtual void create(int rows, int cols, int type, int i=-1, bool allowTransposed=false, int fixedDepthMask=0) const;
virtual void create(int dims, const int* size, int type, int i=-1, bool allowTransposed=false, int fixedDepthMask=0) const;
@ -333,7 +333,7 @@ public:
_InputOutputArray(std::vector<Mat>& vec);
_InputOutputArray(cuda::GpuMat& d_mat);
_InputOutputArray(ogl::Buffer& buf);
_InputOutputArray(cuda::CudaMem& cuda_mem);
_InputOutputArray(cuda::HostMem& cuda_mem);
template<typename _Tp> _InputOutputArray(cudev::GpuMat_<_Tp>& m);
template<typename _Tp> _InputOutputArray(std::vector<_Tp>& vec);
template<typename _Tp> _InputOutputArray(std::vector<std::vector<_Tp> >& vec);
@ -348,7 +348,7 @@ public:
_InputOutputArray(const std::vector<Mat>& vec);
_InputOutputArray(const cuda::GpuMat& d_mat);
_InputOutputArray(const ogl::Buffer& buf);
_InputOutputArray(const cuda::CudaMem& cuda_mem);
_InputOutputArray(const cuda::HostMem& cuda_mem);
template<typename _Tp> _InputOutputArray(const cudev::GpuMat_<_Tp>& m);
template<typename _Tp> _InputOutputArray(const std::vector<_Tp>& vec);
template<typename _Tp> _InputOutputArray(const std::vector<std::vector<_Tp> >& vec);

@ -100,13 +100,13 @@ inline _InputArray::_InputArray(const MatExpr& expr)
{ init(FIXED_TYPE + FIXED_SIZE + EXPR + ACCESS_READ, &expr); }
inline _InputArray::_InputArray(const cuda::GpuMat& d_mat)
{ init(GPU_MAT + ACCESS_READ, &d_mat); }
{ init(CUDA_GPU_MAT + ACCESS_READ, &d_mat); }
inline _InputArray::_InputArray(const ogl::Buffer& buf)
{ init(OPENGL_BUFFER + ACCESS_READ, &buf); }
inline _InputArray::_InputArray(const cuda::CudaMem& cuda_mem)
{ init(CUDA_MEM + ACCESS_READ, &cuda_mem); }
inline _InputArray::_InputArray(const cuda::HostMem& cuda_mem)
{ init(CUDA_HOST_MEM + ACCESS_READ, &cuda_mem); }
inline _InputArray::~_InputArray() {}
@ -174,13 +174,13 @@ _OutputArray::_OutputArray(const _Tp* vec, int n)
{ init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_WRITE, vec, Size(n, 1)); }
inline _OutputArray::_OutputArray(cuda::GpuMat& d_mat)
{ init(GPU_MAT + ACCESS_WRITE, &d_mat); }
{ init(CUDA_GPU_MAT + ACCESS_WRITE, &d_mat); }
inline _OutputArray::_OutputArray(ogl::Buffer& buf)
{ init(OPENGL_BUFFER + ACCESS_WRITE, &buf); }
inline _OutputArray::_OutputArray(cuda::CudaMem& cuda_mem)
{ init(CUDA_MEM + ACCESS_WRITE, &cuda_mem); }
inline _OutputArray::_OutputArray(cuda::HostMem& cuda_mem)
{ init(CUDA_HOST_MEM + ACCESS_WRITE, &cuda_mem); }
inline _OutputArray::_OutputArray(const Mat& m)
{ init(FIXED_TYPE + FIXED_SIZE + MAT + ACCESS_WRITE, &m); }
@ -195,13 +195,13 @@ inline _OutputArray::_OutputArray(const std::vector<UMat>& vec)
{ init(FIXED_SIZE + STD_VECTOR_UMAT + ACCESS_WRITE, &vec); }
inline _OutputArray::_OutputArray(const cuda::GpuMat& d_mat)
{ init(FIXED_TYPE + FIXED_SIZE + GPU_MAT + ACCESS_WRITE, &d_mat); }
{ init(FIXED_TYPE + FIXED_SIZE + CUDA_GPU_MAT + ACCESS_WRITE, &d_mat); }
inline _OutputArray::_OutputArray(const ogl::Buffer& buf)
{ init(FIXED_TYPE + FIXED_SIZE + OPENGL_BUFFER + ACCESS_WRITE, &buf); }
inline _OutputArray::_OutputArray(const cuda::CudaMem& cuda_mem)
{ init(FIXED_TYPE + FIXED_SIZE + CUDA_MEM + ACCESS_WRITE, &cuda_mem); }
inline _OutputArray::_OutputArray(const cuda::HostMem& cuda_mem)
{ init(FIXED_TYPE + FIXED_SIZE + CUDA_HOST_MEM + ACCESS_WRITE, &cuda_mem); }
///////////////////////////////////////////////////////////////////////////////////////////
@ -261,13 +261,13 @@ _InputOutputArray::_InputOutputArray(const _Tp* vec, int n)
{ init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_RW, vec, Size(n, 1)); }
inline _InputOutputArray::_InputOutputArray(cuda::GpuMat& d_mat)
{ init(GPU_MAT + ACCESS_RW, &d_mat); }
{ init(CUDA_GPU_MAT + ACCESS_RW, &d_mat); }
inline _InputOutputArray::_InputOutputArray(ogl::Buffer& buf)
{ init(OPENGL_BUFFER + ACCESS_RW, &buf); }
inline _InputOutputArray::_InputOutputArray(cuda::CudaMem& cuda_mem)
{ init(CUDA_MEM + ACCESS_RW, &cuda_mem); }
inline _InputOutputArray::_InputOutputArray(cuda::HostMem& cuda_mem)
{ init(CUDA_HOST_MEM + ACCESS_RW, &cuda_mem); }
inline _InputOutputArray::_InputOutputArray(const Mat& m)
{ init(FIXED_TYPE + FIXED_SIZE + MAT + ACCESS_RW, &m); }
@ -282,13 +282,13 @@ inline _InputOutputArray::_InputOutputArray(const std::vector<UMat>& vec)
{ init(FIXED_SIZE + STD_VECTOR_UMAT + ACCESS_RW, &vec); }
inline _InputOutputArray::_InputOutputArray(const cuda::GpuMat& d_mat)
{ init(FIXED_TYPE + FIXED_SIZE + GPU_MAT + ACCESS_RW, &d_mat); }
{ init(FIXED_TYPE + FIXED_SIZE + CUDA_GPU_MAT + ACCESS_RW, &d_mat); }
inline _InputOutputArray::_InputOutputArray(const ogl::Buffer& buf)
{ init(FIXED_TYPE + FIXED_SIZE + OPENGL_BUFFER + ACCESS_RW, &buf); }
inline _InputOutputArray::_InputOutputArray(const cuda::CudaMem& cuda_mem)
{ init(FIXED_TYPE + FIXED_SIZE + CUDA_MEM + ACCESS_RW, &cuda_mem); }
inline _InputOutputArray::_InputOutputArray(const cuda::HostMem& cuda_mem)
{ init(FIXED_TYPE + FIXED_SIZE + CUDA_HOST_MEM + ACCESS_RW, &cuda_mem); }
//////////////////////////////////////////// Mat //////////////////////////////////////////

@ -40,7 +40,12 @@
//
//M*/
#include "perf_precomp.hpp"
#include "../perf_precomp.hpp"
#ifdef HAVE_CUDA
#include "opencv2/core/cuda.hpp"
#include "opencv2/ts/cuda_perf.hpp"
using namespace std;
using namespace testing;
@ -49,7 +54,7 @@ using namespace perf;
//////////////////////////////////////////////////////////////////////
// SetTo
PERF_TEST_P(Sz_Depth_Cn, MatOp_SetTo,
PERF_TEST_P(Sz_Depth_Cn, CUDA_GpuMat_SetTo,
Combine(CUDA_TYPICAL_MAT_SIZES,
Values(CV_8U, CV_16U, CV_32F, CV_64F),
CUDA_CHANNELS_1_3_4))
@ -67,23 +72,21 @@ PERF_TEST_P(Sz_Depth_Cn, MatOp_SetTo,
cv::cuda::GpuMat dst(size, type);
TEST_CYCLE() dst.setTo(val);
CUDA_SANITY_CHECK(dst);
}
else
{
cv::Mat dst(size, type);
TEST_CYCLE() dst.setTo(val);
CPU_SANITY_CHECK(dst);
}
SANITY_CHECK_NOTHING();
}
//////////////////////////////////////////////////////////////////////
// SetToMasked
PERF_TEST_P(Sz_Depth_Cn, MatOp_SetToMasked,
PERF_TEST_P(Sz_Depth_Cn, CUDA_GpuMat_SetToMasked,
Combine(CUDA_TYPICAL_MAT_SIZES,
Values(CV_8U, CV_16U, CV_32F, CV_64F),
CUDA_CHANNELS_1_3_4))
@ -106,23 +109,21 @@ PERF_TEST_P(Sz_Depth_Cn, MatOp_SetToMasked,
const cv::cuda::GpuMat d_mask(mask);
TEST_CYCLE() dst.setTo(val, d_mask);
CUDA_SANITY_CHECK(dst, 1e-10);
}
else
{
cv::Mat dst = src;
TEST_CYCLE() dst.setTo(val, mask);
CPU_SANITY_CHECK(dst);
}
SANITY_CHECK_NOTHING();
}
//////////////////////////////////////////////////////////////////////
// CopyToMasked
PERF_TEST_P(Sz_Depth_Cn, MatOp_CopyToMasked,
PERF_TEST_P(Sz_Depth_Cn, CUDA_GpuMat_CopyToMasked,
Combine(CUDA_TYPICAL_MAT_SIZES,
Values(CV_8U, CV_16U, CV_32F, CV_64F),
CUDA_CHANNELS_1_3_4))
@ -144,17 +145,15 @@ PERF_TEST_P(Sz_Depth_Cn, MatOp_CopyToMasked,
cv::cuda::GpuMat dst(d_src.size(), d_src.type(), cv::Scalar::all(0));
TEST_CYCLE() d_src.copyTo(dst, d_mask);
CUDA_SANITY_CHECK(dst, 1e-10);
}
else
{
cv::Mat dst(src.size(), src.type(), cv::Scalar::all(0));
TEST_CYCLE() src.copyTo(dst, mask);
CPU_SANITY_CHECK(dst);
}
SANITY_CHECK_NOTHING();
}
//////////////////////////////////////////////////////////////////////
@ -162,7 +161,7 @@ PERF_TEST_P(Sz_Depth_Cn, MatOp_CopyToMasked,
DEF_PARAM_TEST(Sz_2Depth, cv::Size, MatDepth, MatDepth);
PERF_TEST_P(Sz_2Depth, MatOp_ConvertTo,
PERF_TEST_P(Sz_2Depth, CUDA_GpuMat_ConvertTo,
Combine(CUDA_TYPICAL_MAT_SIZES,
Values(CV_8U, CV_16U, CV_32F, CV_64F),
Values(CV_8U, CV_16U, CV_32F, CV_64F)))
@ -183,15 +182,15 @@ PERF_TEST_P(Sz_2Depth, MatOp_ConvertTo,
cv::cuda::GpuMat dst;
TEST_CYCLE() d_src.convertTo(dst, depth2, a, b);
CUDA_SANITY_CHECK(dst, 1e-10);
}
else
{
cv::Mat dst;
TEST_CYCLE() src.convertTo(dst, depth2, a, b);
CPU_SANITY_CHECK(dst);
}
SANITY_CHECK_NOTHING();
}
#endif

@ -275,12 +275,12 @@ void cv::cuda::createContinuous(int rows, int cols, int type, OutputArray arr)
::createContinuousImpl(rows, cols, type, arr.getMatRef());
break;
case _InputArray::GPU_MAT:
case _InputArray::CUDA_GPU_MAT:
::createContinuousImpl(rows, cols, type, arr.getGpuMatRef());
break;
case _InputArray::CUDA_MEM:
::createContinuousImpl(rows, cols, type, arr.getCudaMemRef());
case _InputArray::CUDA_HOST_MEM:
::createContinuousImpl(rows, cols, type, arr.getHostMemRef());
break;
default:
@ -329,12 +329,12 @@ void cv::cuda::ensureSizeIsEnough(int rows, int cols, int type, OutputArray arr)
::ensureSizeIsEnoughImpl(rows, cols, type, arr.getMatRef());
break;
case _InputArray::GPU_MAT:
case _InputArray::CUDA_GPU_MAT:
::ensureSizeIsEnoughImpl(rows, cols, type, arr.getGpuMatRef());
break;
case _InputArray::CUDA_MEM:
::ensureSizeIsEnoughImpl(rows, cols, type, arr.getCudaMemRef());
case _InputArray::CUDA_HOST_MEM:
::ensureSizeIsEnoughImpl(rows, cols, type, arr.getHostMemRef());
break;
default:
@ -342,14 +342,6 @@ void cv::cuda::ensureSizeIsEnough(int rows, int cols, int type, OutputArray arr)
}
}
GpuMat cv::cuda::allocMatFromBuf(int rows, int cols, int type, GpuMat& mat)
{
if (!mat.empty() && mat.type() == type && mat.rows >= rows && mat.cols >= cols)
return mat(Rect(0, 0, cols, rows));
return mat = GpuMat(rows, cols, type);
}
#ifndef HAVE_CUDA
GpuMat::Allocator* cv::cuda::GpuMat::defaultAllocator()

@ -42,10 +42,124 @@
//M*/
#include "precomp.hpp"
#include <map>
using namespace cv;
using namespace cv::cuda;
#ifdef HAVE_CUDA
namespace {
class HostMemAllocator : public MatAllocator
{
public:
explicit HostMemAllocator(unsigned int flags) : flags_(flags)
{
}
UMatData* allocate(int dims, const int* sizes, int type,
void* data0, size_t* step,
int /*flags*/, UMatUsageFlags /*usageFlags*/) const
{
size_t total = CV_ELEM_SIZE(type);
for (int i = dims-1; i >= 0; i--)
{
if (step)
{
if (data0 && step[i] != CV_AUTOSTEP)
{
CV_Assert(total <= step[i]);
total = step[i];
}
else
{
step[i] = total;
}
}
total *= sizes[i];
}
UMatData* u = new UMatData(this);
u->size = total;
if (data0)
{
u->data = u->origdata = static_cast<uchar*>(data0);
u->flags |= UMatData::USER_ALLOCATED;
}
else
{
void* ptr = 0;
cudaSafeCall( cudaHostAlloc(&ptr, total, flags_) );
u->data = u->origdata = static_cast<uchar*>(ptr);
}
return u;
}
bool allocate(UMatData* u, int /*accessFlags*/, UMatUsageFlags /*usageFlags*/) const
{
return (u != NULL);
}
void deallocate(UMatData* u) const
{
CV_Assert(u->urefcount >= 0);
CV_Assert(u->refcount >= 0);
if (u && u->refcount == 0)
{
if ( !(u->flags & UMatData::USER_ALLOCATED) )
{
cudaFreeHost(u->origdata);
u->origdata = 0;
}
delete u;
}
}
private:
unsigned int flags_;
};
} // namespace
#endif
MatAllocator* cv::cuda::HostMem::getAllocator(AllocType alloc_type)
{
#ifndef HAVE_CUDA
(void) alloc_type;
throw_no_cuda();
return NULL;
#else
static std::map<unsigned int, Ptr<MatAllocator> > allocators;
unsigned int flag = cudaHostAllocDefault;
switch (alloc_type)
{
case PAGE_LOCKED: flag = cudaHostAllocDefault; break;
case SHARED: flag = cudaHostAllocMapped; break;
case WRITE_COMBINED: flag = cudaHostAllocWriteCombined; break;
default: CV_Error(cv::Error::StsBadFlag, "Invalid alloc type");
}
Ptr<MatAllocator>& a = allocators[flag];
if (a.empty())
{
a = makePtr<HostMemAllocator>(flag);
}
return a.get();
#endif
}
#ifdef HAVE_CUDA
namespace
{
@ -59,7 +173,7 @@ namespace
}
#endif
void cv::cuda::CudaMem::create(int rows_, int cols_, int type_)
void cv::cuda::HostMem::create(int rows_, int cols_, int type_)
{
#ifndef HAVE_CUDA
(void) rows_;
@ -123,9 +237,9 @@ void cv::cuda::CudaMem::create(int rows_, int cols_, int type_)
#endif
}
CudaMem cv::cuda::CudaMem::reshape(int new_cn, int new_rows) const
HostMem cv::cuda::HostMem::reshape(int new_cn, int new_rows) const
{
CudaMem hdr = *this;
HostMem hdr = *this;
int cn = channels();
if (new_cn == 0)
@ -166,7 +280,7 @@ CudaMem cv::cuda::CudaMem::reshape(int new_cn, int new_rows) const
return hdr;
}
void cv::cuda::CudaMem::release()
void cv::cuda::HostMem::release()
{
#ifdef HAVE_CUDA
if (refcount && CV_XADD(refcount, -1) == 1)
@ -181,7 +295,7 @@ void cv::cuda::CudaMem::release()
#endif
}
GpuMat cv::cuda::CudaMem::createGpuMatHeader() const
GpuMat cv::cuda::HostMem::createGpuMatHeader() const
{
#ifndef HAVE_CUDA
throw_no_cuda();

@ -1187,18 +1187,18 @@ Mat _InputArray::getMat(int i) const
return Mat();
}
if( k == GPU_MAT )
if( k == CUDA_GPU_MAT )
{
CV_Assert( i < 0 );
CV_Error(cv::Error::StsNotImplemented, "You should explicitly call download method for cuda::GpuMat object");
return Mat();
}
if( k == CUDA_MEM )
if( k == CUDA_HOST_MEM )
{
CV_Assert( i < 0 );
const cuda::CudaMem* cuda_mem = (const cuda::CudaMem*)obj;
const cuda::HostMem* cuda_mem = (const cuda::HostMem*)obj;
return cuda_mem->createMatHeader();
}
@ -1391,15 +1391,15 @@ cuda::GpuMat _InputArray::getGpuMat() const
{
int k = kind();
if (k == GPU_MAT)
if (k == CUDA_GPU_MAT)
{
const cuda::GpuMat* d_mat = (const cuda::GpuMat*)obj;
return *d_mat;
}
if (k == CUDA_MEM)
if (k == CUDA_HOST_MEM)
{
const cuda::CudaMem* cuda_mem = (const cuda::CudaMem*)obj;
const cuda::HostMem* cuda_mem = (const cuda::HostMem*)obj;
return cuda_mem->createGpuMatHeader();
}
@ -1412,7 +1412,7 @@ cuda::GpuMat _InputArray::getGpuMat() const
if (k == NONE)
return cuda::GpuMat();
CV_Error(cv::Error::StsNotImplemented, "getGpuMat is available only for cuda::GpuMat and cuda::CudaMem");
CV_Error(cv::Error::StsNotImplemented, "getGpuMat is available only for cuda::GpuMat and cuda::HostMem");
return cuda::GpuMat();
}
@ -1520,20 +1520,22 @@ Size _InputArray::size(int i) const
return buf->size();
}
if( k == GPU_MAT )
if( k == CUDA_GPU_MAT )
{
CV_Assert( i < 0 );
const cuda::GpuMat* d_mat = (const cuda::GpuMat*)obj;
return d_mat->size();
}
CV_Assert( k == CUDA_MEM );
//if( k == CUDA_MEM )
if( k == CUDA_HOST_MEM )
{
CV_Assert( i < 0 );
const cuda::CudaMem* cuda_mem = (const cuda::CudaMem*)obj;
const cuda::HostMem* cuda_mem = (const cuda::HostMem*)obj;
return cuda_mem->size();
}
CV_Error(Error::StsNotImplemented, "Unknown/unsupported array type");
return Size();
}
int _InputArray::sizend(int* arrsz, int i) const
@ -1700,18 +1702,20 @@ int _InputArray::dims(int i) const
return 2;
}
if( k == GPU_MAT )
if( k == CUDA_GPU_MAT )
{
CV_Assert( i < 0 );
return 2;
}
CV_Assert( k == CUDA_MEM );
//if( k == CUDA_MEM )
if( k == CUDA_HOST_MEM )
{
CV_Assert( i < 0 );
return 2;
}
CV_Error(Error::StsNotImplemented, "Unknown/unsupported array type");
return 0;
}
size_t _InputArray::total(int i) const
@ -1799,12 +1803,14 @@ int _InputArray::type(int i) const
if( k == OPENGL_BUFFER )
return ((const ogl::Buffer*)obj)->type();
if( k == GPU_MAT )
if( k == CUDA_GPU_MAT )
return ((const cuda::GpuMat*)obj)->type();
CV_Assert( k == CUDA_MEM );
//if( k == CUDA_MEM )
return ((const cuda::CudaMem*)obj)->type();
if( k == CUDA_HOST_MEM )
return ((const cuda::HostMem*)obj)->type();
CV_Error(Error::StsNotImplemented, "Unknown/unsupported array type");
return 0;
}
int _InputArray::depth(int i) const
@ -1863,12 +1869,14 @@ bool _InputArray::empty() const
if( k == OPENGL_BUFFER )
return ((const ogl::Buffer*)obj)->empty();
if( k == GPU_MAT )
if( k == CUDA_GPU_MAT )
return ((const cuda::GpuMat*)obj)->empty();
CV_Assert( k == CUDA_MEM );
//if( k == CUDA_MEM )
return ((const cuda::CudaMem*)obj)->empty();
if( k == CUDA_HOST_MEM )
return ((const cuda::HostMem*)obj)->empty();
CV_Error(Error::StsNotImplemented, "Unknown/unsupported array type");
return true;
}
bool _InputArray::isContinuous(int i) const
@ -1970,7 +1978,7 @@ size_t _InputArray::offset(int i) const
return vv[i].offset;
}
if( k == GPU_MAT )
if( k == CUDA_GPU_MAT )
{
CV_Assert( i < 0 );
const cuda::GpuMat * const m = ((const cuda::GpuMat*)obj);
@ -2016,7 +2024,7 @@ size_t _InputArray::step(int i) const
return vv[i].step;
}
if( k == GPU_MAT )
if( k == CUDA_GPU_MAT )
{
CV_Assert( i < 0 );
return ((const cuda::GpuMat*)obj)->step;
@ -2095,7 +2103,7 @@ void _OutputArray::create(Size _sz, int mtype, int i, bool allowTransposed, int
((UMat*)obj)->create(_sz, mtype);
return;
}
if( k == GPU_MAT && i < 0 && !allowTransposed && fixedDepthMask == 0 )
if( k == CUDA_GPU_MAT && i < 0 && !allowTransposed && fixedDepthMask == 0 )
{
CV_Assert(!fixedSize() || ((cuda::GpuMat*)obj)->size() == _sz);
CV_Assert(!fixedType() || ((cuda::GpuMat*)obj)->type() == mtype);
@ -2109,11 +2117,11 @@ void _OutputArray::create(Size _sz, int mtype, int i, bool allowTransposed, int
((ogl::Buffer*)obj)->create(_sz, mtype);
return;
}
if( k == CUDA_MEM && i < 0 && !allowTransposed && fixedDepthMask == 0 )
if( k == CUDA_HOST_MEM && i < 0 && !allowTransposed && fixedDepthMask == 0 )
{
CV_Assert(!fixedSize() || ((cuda::CudaMem*)obj)->size() == _sz);
CV_Assert(!fixedType() || ((cuda::CudaMem*)obj)->type() == mtype);
((cuda::CudaMem*)obj)->create(_sz, mtype);
CV_Assert(!fixedSize() || ((cuda::HostMem*)obj)->size() == _sz);
CV_Assert(!fixedType() || ((cuda::HostMem*)obj)->type() == mtype);
((cuda::HostMem*)obj)->create(_sz, mtype);
return;
}
int sizes[] = {_sz.height, _sz.width};
@ -2137,7 +2145,7 @@ void _OutputArray::create(int _rows, int _cols, int mtype, int i, bool allowTran
((UMat*)obj)->create(_rows, _cols, mtype);
return;
}
if( k == GPU_MAT && i < 0 && !allowTransposed && fixedDepthMask == 0 )
if( k == CUDA_GPU_MAT && i < 0 && !allowTransposed && fixedDepthMask == 0 )
{
CV_Assert(!fixedSize() || ((cuda::GpuMat*)obj)->size() == Size(_cols, _rows));
CV_Assert(!fixedType() || ((cuda::GpuMat*)obj)->type() == mtype);
@ -2151,11 +2159,11 @@ void _OutputArray::create(int _rows, int _cols, int mtype, int i, bool allowTran
((ogl::Buffer*)obj)->create(_rows, _cols, mtype);
return;
}
if( k == CUDA_MEM && i < 0 && !allowTransposed && fixedDepthMask == 0 )
if( k == CUDA_HOST_MEM && i < 0 && !allowTransposed && fixedDepthMask == 0 )
{
CV_Assert(!fixedSize() || ((cuda::CudaMem*)obj)->size() == Size(_cols, _rows));
CV_Assert(!fixedType() || ((cuda::CudaMem*)obj)->type() == mtype);
((cuda::CudaMem*)obj)->create(_rows, _cols, mtype);
CV_Assert(!fixedSize() || ((cuda::HostMem*)obj)->size() == Size(_cols, _rows));
CV_Assert(!fixedType() || ((cuda::HostMem*)obj)->type() == mtype);
((cuda::HostMem*)obj)->create(_rows, _cols, mtype);
return;
}
int sizes[] = {_rows, _cols};
@ -2479,15 +2487,15 @@ void _OutputArray::release() const
return;
}
if( k == GPU_MAT )
if( k == CUDA_GPU_MAT )
{
((cuda::GpuMat*)obj)->release();
return;
}
if( k == CUDA_MEM )
if( k == CUDA_HOST_MEM )
{
((cuda::CudaMem*)obj)->release();
((cuda::HostMem*)obj)->release();
return;
}
@ -2583,7 +2591,7 @@ UMat& _OutputArray::getUMatRef(int i) const
cuda::GpuMat& _OutputArray::getGpuMatRef() const
{
int k = kind();
CV_Assert( k == GPU_MAT );
CV_Assert( k == CUDA_GPU_MAT );
return *(cuda::GpuMat*)obj;
}
@ -2594,11 +2602,11 @@ ogl::Buffer& _OutputArray::getOGlBufferRef() const
return *(ogl::Buffer*)obj;
}
cuda::CudaMem& _OutputArray::getCudaMemRef() const
cuda::HostMem& _OutputArray::getHostMemRef() const
{
int k = kind();
CV_Assert( k == CUDA_MEM );
return *(cuda::CudaMem*)obj;
CV_Assert( k == CUDA_HOST_MEM );
return *(cuda::HostMem*)obj;
}
void _OutputArray::setTo(const _InputArray& arr, const _InputArray & mask) const
@ -2614,10 +2622,10 @@ void _OutputArray::setTo(const _InputArray& arr, const _InputArray & mask) const
}
else if( k == UMAT )
((UMat*)obj)->setTo(arr, mask);
else if( k == GPU_MAT )
else if( k == CUDA_GPU_MAT )
{
Mat value = arr.getMat();
CV_Assert( checkScalar(value, type(), arr.kind(), _InputArray::GPU_MAT) );
CV_Assert( checkScalar(value, type(), arr.kind(), _InputArray::CUDA_GPU_MAT) );
((cuda::GpuMat*)obj)->setTo(Scalar(Vec<double, 4>(value.ptr<double>())), mask);
}
else

@ -509,7 +509,7 @@ cv::ogl::Buffer::Buffer(InputArray arr, Target target, bool autoRelease) : rows_
switch (kind)
{
case _InputArray::OPENGL_BUFFER:
case _InputArray::GPU_MAT:
case _InputArray::CUDA_GPU_MAT:
copyFrom(arr, target, autoRelease);
break;
@ -594,7 +594,7 @@ void cv::ogl::Buffer::copyFrom(InputArray arr, Target target, bool autoRelease)
break;
}
case _InputArray::GPU_MAT:
case _InputArray::CUDA_GPU_MAT:
{
#ifndef HAVE_CUDA
throw_no_cuda();
@ -657,7 +657,7 @@ void cv::ogl::Buffer::copyTo(OutputArray arr) const
break;
}
case _InputArray::GPU_MAT:
case _InputArray::CUDA_GPU_MAT:
{
#ifndef HAVE_CUDA
throw_no_cuda();
@ -1018,7 +1018,7 @@ cv::ogl::Texture2D::Texture2D(InputArray arr, bool autoRelease) : rows_(0), cols
break;
}
case _InputArray::GPU_MAT:
case _InputArray::CUDA_GPU_MAT:
{
#ifndef HAVE_CUDA
throw_no_cuda();
@ -1132,7 +1132,7 @@ void cv::ogl::Texture2D::copyFrom(InputArray arr, bool autoRelease)
break;
}
case _InputArray::GPU_MAT:
case _InputArray::CUDA_GPU_MAT:
{
#ifndef HAVE_CUDA
throw_no_cuda();
@ -1184,7 +1184,7 @@ void cv::ogl::Texture2D::copyTo(OutputArray arr, int ddepth, bool autoRelease) c
break;
}
case _InputArray::GPU_MAT:
case _InputArray::CUDA_GPU_MAT:
{
#ifndef HAVE_CUDA
throw_no_cuda();

@ -40,13 +40,13 @@
//
//M*/
#include "test_precomp.hpp"
#include "../test_precomp.hpp"
#ifdef HAVE_CUDA
#include "opencv2/cudaarithm.hpp"
#include "opencv2/cudawarping.hpp"
#include "opencv2/core/cuda.hpp"
#include "opencv2/core/private.cuda.hpp"
#include "opencv2/ts/cuda_test.hpp"
using namespace testing;
using namespace cv;
@ -54,65 +54,64 @@ using namespace cv::cuda;
struct BufferPoolTest : TestWithParam<DeviceInfo>
{
};
namespace
{
void func1(const GpuMat& src, GpuMat& dst, Stream& stream)
void RunSimpleTest(Stream& stream, HostMem& dst_1, HostMem& dst_2)
{
BufferPool pool(stream);
GpuMat buf = pool.getBuffer(src.size(), CV_32FC(src.channels()));
src.convertTo(buf, CV_32F, 1.0 / 255.0, stream);
{
GpuMat buf0 = pool.getBuffer(Size(640, 480), CV_8UC1);
EXPECT_FALSE( buf0.empty() );
cuda::exp(buf, dst, stream);
}
void func2(const GpuMat& src, GpuMat& dst, Stream& stream)
{
BufferPool pool(stream);
buf0.setTo(Scalar::all(0), stream);
GpuMat buf1 = pool.getBuffer(saturate_cast<int>(src.rows * 0.5), saturate_cast<int>(src.cols * 0.5), src.type());
GpuMat buf1 = pool.getBuffer(Size(640, 480), CV_8UC1);
EXPECT_FALSE( buf1.empty() );
cuda::resize(src, buf1, Size(), 0.5, 0.5, cv::INTER_NEAREST, stream);
buf0.convertTo(buf1, buf1.type(), 1.0, 1.0, stream);
GpuMat buf2 = pool.getBuffer(buf1.size(), CV_32FC(buf1.channels()));
buf1.download(dst_1, stream);
}
func1(buf1, buf2, stream);
{
GpuMat buf2 = pool.getBuffer(Size(1280, 1024), CV_32SC1);
EXPECT_FALSE( buf2.empty() );
GpuMat buf3 = pool.getBuffer(src.size(), buf2.type());
buf2.setTo(Scalar::all(2), stream);
cuda::resize(buf2, buf3, src.size(), 0, 0, cv::INTER_NEAREST, stream);
buf2.download(dst_2, stream);
}
}
buf3.convertTo(dst, CV_8U, stream);
void CheckSimpleTest(HostMem& dst_1, HostMem& dst_2)
{
EXPECT_MAT_NEAR(Mat(Size(640, 480), CV_8UC1, Scalar::all(1)), dst_1, 0.0);
EXPECT_MAT_NEAR(Mat(Size(1280, 1024), CV_32SC1, Scalar::all(2)), dst_2, 0.0);
}
}
};
CUDA_TEST_P(BufferPoolTest, SimpleUsage)
CUDA_TEST_P(BufferPoolTest, FromNullStream)
{
DeviceInfo devInfo = GetParam();
setDevice(devInfo.deviceID());
HostMem dst_1, dst_2;
GpuMat src(200, 200, CV_8UC1);
GpuMat dst;
RunSimpleTest(Stream::Null(), dst_1, dst_2);
Stream stream;
func2(src, dst, stream);
CheckSimpleTest(dst_1, dst_2);
}
stream.waitForCompletion();
CUDA_TEST_P(BufferPoolTest, From2Streams)
{
HostMem dst1_1, dst1_2;
HostMem dst2_1, dst2_2;
GpuMat buf, buf1, buf2, buf3;
GpuMat dst_gold;
Stream stream1, stream2;
RunSimpleTest(stream1, dst1_1, dst1_2);
RunSimpleTest(stream2, dst2_1, dst2_2);
cuda::resize(src, buf1, Size(), 0.5, 0.5, cv::INTER_NEAREST);
buf1.convertTo(buf, CV_32F, 1.0 / 255.0);
cuda::exp(buf, buf2);
cuda::resize(buf2, buf3, src.size(), 0, 0, cv::INTER_NEAREST);
buf3.convertTo(dst_gold, CV_8U);
stream1.waitForCompletion();
stream2.waitForCompletion();
ASSERT_MAT_NEAR(dst_gold, dst, 0);
CheckSimpleTest(dst1_1, dst1_2);
CheckSimpleTest(dst2_1, dst2_2);
}
INSTANTIATE_TEST_CASE_P(CUDA_Stream, BufferPoolTest, ALL_DEVICES);

@ -40,16 +40,19 @@
//
//M*/
#include "test_precomp.hpp"
#include "../test_precomp.hpp"
#ifdef HAVE_CUDA
#include "opencv2/core/cuda.hpp"
#include "opencv2/ts/cuda_test.hpp"
using namespace cvtest;
////////////////////////////////////////////////////////////////////////////////
// SetTo
PARAM_TEST_CASE(SetTo, cv::cuda::DeviceInfo, cv::Size, MatType, UseRoi)
PARAM_TEST_CASE(GpuMat_SetTo, cv::cuda::DeviceInfo, cv::Size, MatType, UseRoi)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
@ -67,7 +70,7 @@ PARAM_TEST_CASE(SetTo, cv::cuda::DeviceInfo, cv::Size, MatType, UseRoi)
}
};
CUDA_TEST_P(SetTo, Zero)
CUDA_TEST_P(GpuMat_SetTo, Zero)
{
cv::Scalar zero = cv::Scalar::all(0);
@ -77,7 +80,7 @@ CUDA_TEST_P(SetTo, Zero)
EXPECT_MAT_NEAR(cv::Mat::zeros(size, type), mat, 0.0);
}
CUDA_TEST_P(SetTo, SameVal)
CUDA_TEST_P(GpuMat_SetTo, SameVal)
{
cv::Scalar val = cv::Scalar::all(randomDouble(0.0, 255.0));
@ -102,7 +105,7 @@ CUDA_TEST_P(SetTo, SameVal)
}
}
CUDA_TEST_P(SetTo, DifferentVal)
CUDA_TEST_P(GpuMat_SetTo, DifferentVal)
{
cv::Scalar val = randomScalar(0.0, 255.0);
@ -127,7 +130,7 @@ CUDA_TEST_P(SetTo, DifferentVal)
}
}
CUDA_TEST_P(SetTo, Masked)
CUDA_TEST_P(GpuMat_SetTo, Masked)
{
cv::Scalar val = randomScalar(0.0, 255.0);
cv::Mat mat_gold = randomMat(size, type);
@ -156,7 +159,7 @@ CUDA_TEST_P(SetTo, Masked)
}
}
INSTANTIATE_TEST_CASE_P(CUDA_GpuMat, SetTo, testing::Combine(
INSTANTIATE_TEST_CASE_P(CUDA, GpuMat_SetTo, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
ALL_TYPES,
@ -165,7 +168,7 @@ INSTANTIATE_TEST_CASE_P(CUDA_GpuMat, SetTo, testing::Combine(
////////////////////////////////////////////////////////////////////////////////
// CopyTo
PARAM_TEST_CASE(CopyTo, cv::cuda::DeviceInfo, cv::Size, MatType, UseRoi)
PARAM_TEST_CASE(GpuMat_CopyTo, cv::cuda::DeviceInfo, cv::Size, MatType, UseRoi)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
@ -184,7 +187,7 @@ PARAM_TEST_CASE(CopyTo, cv::cuda::DeviceInfo, cv::Size, MatType, UseRoi)
}
};
CUDA_TEST_P(CopyTo, WithOutMask)
CUDA_TEST_P(GpuMat_CopyTo, WithOutMask)
{
cv::Mat src = randomMat(size, type);
@ -195,7 +198,7 @@ CUDA_TEST_P(CopyTo, WithOutMask)
EXPECT_MAT_NEAR(src, dst, 0.0);
}
CUDA_TEST_P(CopyTo, Masked)
CUDA_TEST_P(GpuMat_CopyTo, Masked)
{
cv::Mat src = randomMat(size, type);
cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0);
@ -226,7 +229,7 @@ CUDA_TEST_P(CopyTo, Masked)
}
}
INSTANTIATE_TEST_CASE_P(CUDA_GpuMat, CopyTo, testing::Combine(
INSTANTIATE_TEST_CASE_P(CUDA, GpuMat_CopyTo, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
ALL_TYPES,
@ -235,7 +238,7 @@ INSTANTIATE_TEST_CASE_P(CUDA_GpuMat, CopyTo, testing::Combine(
////////////////////////////////////////////////////////////////////////////////
// ConvertTo
PARAM_TEST_CASE(ConvertTo, cv::cuda::DeviceInfo, cv::Size, MatDepth, MatDepth, UseRoi)
PARAM_TEST_CASE(GpuMat_ConvertTo, cv::cuda::DeviceInfo, cv::Size, MatDepth, MatDepth, UseRoi)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
@ -255,7 +258,7 @@ PARAM_TEST_CASE(ConvertTo, cv::cuda::DeviceInfo, cv::Size, MatDepth, MatDepth, U
}
};
CUDA_TEST_P(ConvertTo, WithOutScaling)
CUDA_TEST_P(GpuMat_ConvertTo, WithOutScaling)
{
cv::Mat src = randomMat(size, depth1);
@ -285,7 +288,7 @@ CUDA_TEST_P(ConvertTo, WithOutScaling)
}
}
CUDA_TEST_P(ConvertTo, WithScaling)
CUDA_TEST_P(GpuMat_ConvertTo, WithScaling)
{
cv::Mat src = randomMat(size, depth1);
double a = randomDouble(0.0, 1.0);
@ -317,7 +320,7 @@ CUDA_TEST_P(ConvertTo, WithScaling)
}
}
INSTANTIATE_TEST_CASE_P(CUDA_GpuMat, ConvertTo, testing::Combine(
INSTANTIATE_TEST_CASE_P(CUDA, GpuMat_ConvertTo, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
ALL_DEPTH,
@ -356,6 +359,6 @@ CUDA_TEST_P(EnsureSizeIsEnough, BufferReuse)
EXPECT_EQ(reinterpret_cast<intptr_t>(old.data), reinterpret_cast<intptr_t>(buffer.data));
}
INSTANTIATE_TEST_CASE_P(CUDA_GpuMat, EnsureSizeIsEnough, ALL_DEVICES);
INSTANTIATE_TEST_CASE_P(CUDA, EnsureSizeIsEnough, ALL_DEVICES);
#endif // HAVE_CUDA

@ -40,10 +40,14 @@
//
//M*/
#include "test_precomp.hpp"
#include "../test_precomp.hpp"
#if defined(HAVE_CUDA) && defined(HAVE_OPENGL)
#include "opencv2/core/cuda.hpp"
#include "opencv2/core/opengl.hpp"
#include "opencv2/ts/cuda_test.hpp"
using namespace cvtest;
/////////////////////////////////////////////

@ -40,22 +40,23 @@
//
//M*/
#include "test_precomp.hpp"
#include "../test_precomp.hpp"
#ifdef HAVE_CUDA
#include <cuda_runtime.h>
#if CUDART_VERSION >= 5000
#include "opencv2/core/cuda.hpp"
#include "opencv2/ts/cuda_test.hpp"
using namespace cvtest;
struct Async : testing::TestWithParam<cv::cuda::DeviceInfo>
{
cv::cuda::CudaMem src;
cv::cuda::HostMem src;
cv::cuda::GpuMat d_src;
cv::cuda::CudaMem dst;
cv::cuda::HostMem dst;
cv::cuda::GpuMat d_dst;
virtual void SetUp()
@ -63,7 +64,7 @@ struct Async : testing::TestWithParam<cv::cuda::DeviceInfo>
cv::cuda::DeviceInfo devInfo = GetParam();
cv::cuda::setDevice(devInfo.deviceID());
src = cv::cuda::CudaMem(cv::cuda::CudaMem::PAGE_LOCKED);
src = cv::cuda::HostMem(cv::cuda::HostMem::PAGE_LOCKED);
cv::Mat m = randomMat(cv::Size(128, 128), CV_8UC1);
m.copyTo(src);
@ -76,8 +77,8 @@ void checkMemSet(int status, void* userData)
Async* test = reinterpret_cast<Async*>(userData);
cv::cuda::CudaMem src = test->src;
cv::cuda::CudaMem dst = test->dst;
cv::cuda::HostMem src = test->src;
cv::cuda::HostMem dst = test->dst;
cv::Mat dst_gold = cv::Mat::zeros(src.size(), src.type());
@ -105,8 +106,8 @@ void checkConvert(int status, void* userData)
Async* test = reinterpret_cast<Async*>(userData);
cv::cuda::CudaMem src = test->src;
cv::cuda::CudaMem dst = test->dst;
cv::cuda::HostMem src = test->src;
cv::cuda::HostMem dst = test->dst;
cv::Mat dst_gold;
src.createMatHeader().convertTo(dst_gold, CV_32S);
@ -128,8 +129,25 @@ CUDA_TEST_P(Async, Convert)
stream.waitForCompletion();
}
INSTANTIATE_TEST_CASE_P(CUDA_Stream, Async, ALL_DEVICES);
CUDA_TEST_P(Async, HostMemAllocator)
{
cv::cuda::Stream stream;
cv::Mat h_dst;
h_dst.allocator = cv::cuda::HostMem::getAllocator();
#endif // CUDART_VERSION >= 5000
d_src.upload(src, stream);
d_src.convertTo(d_dst, CV_32S, stream);
d_dst.download(h_dst, stream);
stream.waitForCompletion();
cv::Mat dst_gold;
src.createMatHeader().convertTo(dst_gold, CV_32S);
ASSERT_MAT_NEAR(dst_gold, h_dst, 0);
}
INSTANTIATE_TEST_CASE_P(CUDA_Stream, Async, ALL_DEVICES);
#endif // HAVE_CUDA

@ -7,4 +7,14 @@
#include "test_precomp.hpp"
#ifndef HAVE_CUDA
CV_TEST_MAIN("cv")
#else
#include "opencv2/ts/cuda_test.hpp"
CV_CUDA_TEST_MAIN("cv")
#endif

@ -1,114 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
#ifdef HAVE_CUDA
#include "opencv2/cudaarithm.hpp"
#include "opencv2/core/private.cuda.hpp"
using namespace testing;
using namespace perf;
using namespace cv;
using namespace cv::cuda;
namespace
{
void func1(const GpuMat& src, GpuMat& dst, Stream& stream)
{
BufferPool pool(stream);
GpuMat buf = pool.getBuffer(src.size(), CV_32FC(src.channels()));
src.convertTo(buf, CV_32F, 1.0 / 255.0, stream);
cuda::exp(buf, dst, stream);
}
void func2(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream)
{
BufferPool pool(stream);
GpuMat buf1 = pool.getBuffer(src1.size(), CV_32FC(src1.channels()));
func1(src1, buf1, stream);
GpuMat buf2 = pool.getBuffer(src2.size(), CV_32FC(src2.channels()));
func1(src2, buf2, stream);
cuda::add(buf1, buf2, dst, noArray(), -1, stream);
}
}
PERF_TEST_P(Sz, BufferPool, CUDA_TYPICAL_MAT_SIZES)
{
static bool first = true;
const Size size = GetParam();
const bool useBufferPool = PERF_RUN_CUDA();
Mat host_src(size, CV_8UC1);
declare.in(host_src, WARMUP_RNG);
GpuMat src1(host_src), src2(host_src);
GpuMat dst;
setBufferPoolUsage(useBufferPool);
if (useBufferPool && first)
{
setBufferPoolConfig(-1, 25 * 1024 * 1024, 2);
first = false;
}
TEST_CYCLE()
{
func2(src1, src2, dst, Stream::Null());
}
Mat h_dst(dst);
SANITY_CHECK(h_dst);
}
#endif

@ -74,7 +74,7 @@ namespace
LookUpTableImpl::LookUpTableImpl(InputArray _lut)
{
if (_lut.kind() == _InputArray::GPU_MAT)
if (_lut.kind() == _InputArray::CUDA_GPU_MAT)
{
d_lut = _lut.getGpuMat();
}

@ -467,14 +467,14 @@ void cv::cuda::evenLevels(OutputArray _levels, int nLevels, int lowerLevel, int
_levels.create(1, nLevels, CV_32SC1);
Mat host_levels;
if (kind == _InputArray::GPU_MAT)
if (kind == _InputArray::CUDA_GPU_MAT)
host_levels.create(1, nLevels, CV_32SC1);
else
host_levels = _levels.getMat();
nppSafeCall( nppiEvenLevelsHost_32s(host_levels.ptr<Npp32s>(), nLevels, lowerLevel, upperLevel) );
if (kind == _InputArray::GPU_MAT)
if (kind == _InputArray::CUDA_GPU_MAT)
_levels.getGpuMatRef().upload(host_levels);
}

@ -95,6 +95,16 @@ namespace cv { namespace cuda { namespace device { namespace optflow_farneback
}}}} // namespace cv { namespace cuda { namespace cudev { namespace optflow_farneback
namespace
{
GpuMat allocMatFromBuf(int rows, int cols, int type, GpuMat& mat)
{
if (!mat.empty() && mat.type() == type && mat.rows >= rows && mat.cols >= cols)
return mat(Rect(0, 0, cols, rows));
return mat = GpuMat(rows, cols, type);
}
}
void cv::cuda::FarnebackOpticalFlow::prepareGaussian(
int n, double sigma, float *g, float *xg, float *xxg,

@ -51,33 +51,33 @@
namespace cv { namespace cudev {
template <typename T>
__host__ GpuMat_<T>::GpuMat_()
: GpuMat()
__host__ GpuMat_<T>::GpuMat_(Allocator* allocator)
: GpuMat(allocator)
{
flags = (flags & ~CV_MAT_TYPE_MASK) | DataType<T>::type;
}
template <typename T>
__host__ GpuMat_<T>::GpuMat_(int arows, int acols)
: GpuMat(arows, acols, DataType<T>::type)
__host__ GpuMat_<T>::GpuMat_(int arows, int acols, Allocator* allocator)
: GpuMat(arows, acols, DataType<T>::type, allocator)
{
}
template <typename T>
__host__ GpuMat_<T>::GpuMat_(Size asize)
: GpuMat(asize.height, asize.width, DataType<T>::type)
__host__ GpuMat_<T>::GpuMat_(Size asize, Allocator* allocator)
: GpuMat(asize.height, asize.width, DataType<T>::type, allocator)
{
}
template <typename T>
__host__ GpuMat_<T>::GpuMat_(int arows, int acols, Scalar val)
: GpuMat(arows, acols, DataType<T>::type, val)
__host__ GpuMat_<T>::GpuMat_(int arows, int acols, Scalar val, Allocator* allocator)
: GpuMat(arows, acols, DataType<T>::type, val, allocator)
{
}
template <typename T>
__host__ GpuMat_<T>::GpuMat_(Size asize, Scalar val)
: GpuMat(asize.height, asize.width, DataType<T>::type, val)
__host__ GpuMat_<T>::GpuMat_(Size asize, Scalar val, Allocator* allocator)
: GpuMat(asize.height, asize.width, DataType<T>::type, val, allocator)
{
}
@ -88,8 +88,8 @@ __host__ GpuMat_<T>::GpuMat_(const GpuMat_& m)
}
template <typename T>
__host__ GpuMat_<T>::GpuMat_(const GpuMat& m)
: GpuMat()
__host__ GpuMat_<T>::GpuMat_(const GpuMat& m, Allocator* allocator)
: GpuMat(allocator)
{
flags = (flags & ~CV_MAT_TYPE_MASK) | DataType<T>::type;
@ -134,8 +134,8 @@ __host__ GpuMat_<T>::GpuMat_(const GpuMat_& m, Rect roi)
}
template <typename T>
__host__ GpuMat_<T>::GpuMat_(InputArray arr)
: GpuMat()
__host__ GpuMat_<T>::GpuMat_(InputArray arr, Allocator* allocator)
: GpuMat(allocator)
{
flags = (flags & ~CV_MAT_TYPE_MASK) | DataType<T>::type;
upload(arr);
@ -341,7 +341,7 @@ namespace cv {
template<typename _Tp>
__host__ _InputArray::_InputArray(const cudev::GpuMat_<_Tp>& m)
: flags(FIXED_TYPE + GPU_MAT + DataType<_Tp>::type), obj((void*)&m)
: flags(FIXED_TYPE + CUDA_GPU_MAT + DataType<_Tp>::type), obj((void*)&m)
{}
template<typename _Tp>

@ -63,21 +63,21 @@ public:
typedef T value_type;
//! default constructor
__host__ GpuMat_();
__host__ GpuMat_(Allocator* allocator = defaultAllocator());
//! constructs GpuMat of the specified size
__host__ GpuMat_(int arows, int acols);
__host__ explicit GpuMat_(Size asize);
__host__ GpuMat_(int arows, int acols, Allocator* allocator = defaultAllocator());
__host__ explicit GpuMat_(Size asize, Allocator* allocator = defaultAllocator());
//! constucts GpuMat and fills it with the specified value
__host__ GpuMat_(int arows, int acols, Scalar val);
__host__ GpuMat_(Size asize, Scalar val);
__host__ GpuMat_(int arows, int acols, Scalar val, Allocator* allocator = defaultAllocator());
__host__ GpuMat_(Size asize, Scalar val, Allocator* allocator = defaultAllocator());
//! copy constructor
__host__ GpuMat_(const GpuMat_& m);
//! copy/conversion contructor. If m is of different type, it's converted
__host__ explicit GpuMat_(const GpuMat& m);
__host__ explicit GpuMat_(const GpuMat& m, Allocator* allocator = defaultAllocator());
//! constructs a matrix on top of user-allocated data. step is in bytes(!!!), regardless of the type
__host__ GpuMat_(int arows, int acols, T* adata, size_t astep = Mat::AUTO_STEP);
@ -88,7 +88,7 @@ public:
__host__ GpuMat_(const GpuMat_& m, Rect roi);
//! builds GpuMat from host memory (Blocking call)
__host__ explicit GpuMat_(InputArray arr);
__host__ explicit GpuMat_(InputArray arr, Allocator* allocator = defaultAllocator());
//! assignment operators
__host__ GpuMat_& operator =(const GpuMat_& m);

@ -297,7 +297,7 @@ void cv::imshow( const String& winname, InputArray _img )
cv::ogl::Texture2D& tex = ownWndTexs[winname];
if (_img.kind() == _InputArray::GPU_MAT)
if (_img.kind() == _InputArray::CUDA_GPU_MAT)
{
cv::ogl::Buffer& buf = ownWndBufs[winname];
buf.copyFrom(_img);

@ -514,7 +514,7 @@ namespace
++outPos_;
const GpuMat& curOutput = at(outPos_, outputs_);
if (_output.kind() == _InputArray::GPU_MAT)
if (_output.kind() == _InputArray::CUDA_GPU_MAT)
curOutput.convertTo(_output.getGpuMatRef(), CV_8U);
else
{

@ -116,7 +116,7 @@ namespace
{
if (_frame.kind() == _InputArray::MAT)
vc_ >> _frame.getMatRef();
else if(_frame.kind() == _InputArray::GPU_MAT)
else if(_frame.kind() == _InputArray::CUDA_GPU_MAT)
{
vc_ >> frame_;
arrCopy(frame_, _frame);
@ -226,7 +226,7 @@ namespace
void VideoFrameSource_CUDA::nextFrame(OutputArray _frame)
{
if (_frame.kind() == _InputArray::GPU_MAT)
if (_frame.kind() == _InputArray::CUDA_GPU_MAT)
{
bool res = reader_->nextFrame(_frame.getGpuMatRef());
if (!res)

@ -49,7 +49,7 @@ Mat cv::superres::arrGetMat(InputArray arr, Mat& buf)
{
switch (arr.kind())
{
case _InputArray::GPU_MAT:
case _InputArray::CUDA_GPU_MAT:
arr.getGpuMat().download(buf);
return buf;
@ -66,7 +66,7 @@ UMat cv::superres::arrGetUMat(InputArray arr, UMat& buf)
{
switch (arr.kind())
{
case _InputArray::GPU_MAT:
case _InputArray::CUDA_GPU_MAT:
arr.getGpuMat().download(buf);
return buf;
@ -83,7 +83,7 @@ GpuMat cv::superres::arrGetGpuMat(InputArray arr, GpuMat& buf)
{
switch (arr.kind())
{
case _InputArray::GPU_MAT:
case _InputArray::CUDA_GPU_MAT:
return arr.getGpuMat();
case _InputArray::OPENGL_BUFFER:
@ -184,7 +184,7 @@ namespace
switch (src.kind())
{
case _InputArray::GPU_MAT:
case _InputArray::CUDA_GPU_MAT:
#ifdef HAVE_OPENCV_CUDAIMGPROC
cuda::cvtColor(src.getGpuMat(), dst.getGpuMatRef(), code, cn);
#else
@ -218,7 +218,7 @@ namespace
switch (src.kind())
{
case _InputArray::GPU_MAT:
case _InputArray::CUDA_GPU_MAT:
src.getGpuMat().convertTo(dst.getGpuMatRef(), depth, scale);
break;

@ -458,7 +458,7 @@ namespace
GpuMat input0 = convertToType(frame0, work_type_, buf_[2], buf_[3]);
GpuMat input1 = convertToType(frame1, work_type_, buf_[4], buf_[5]);
if (_flow2.needed() && _flow1.kind() == _InputArray::GPU_MAT && _flow2.kind() == _InputArray::GPU_MAT)
if (_flow2.needed() && _flow1.kind() == _InputArray::CUDA_GPU_MAT && _flow2.kind() == _InputArray::CUDA_GPU_MAT)
{
impl(input0, input1, _flow1.getGpuMatRef(), _flow2.getGpuMatRef());
return;

@ -569,10 +569,10 @@ void parseCustomOptions(int argc, char **argv);
#define CV_TEST_MAIN(resourcesubdir, ...) \
int main(int argc, char **argv) \
{ \
__CV_TEST_EXEC_ARGS(__VA_ARGS__) \
cvtest::TS::ptr()->init(resourcesubdir); \
::testing::InitGoogleTest(&argc, argv); \
cvtest::printVersionInfo(); \
__CV_TEST_EXEC_ARGS(__VA_ARGS__) \
TEST_DUMP_OCL_INFO \
parseCustomOptions(argc, argv); \
return RUN_ALL_TESTS(); \

@ -340,6 +340,7 @@ namespace cvtest
CV_EXPORTS void dumpImage(const std::string& fileName, const cv::Mat& image);
CV_EXPORTS void showDiff(cv::InputArray gold, cv::InputArray actual, double eps);
CV_EXPORTS void parseCudaDeviceOptions(int argc, char **argv);
CV_EXPORTS void printCudaInfo();
}
@ -351,53 +352,7 @@ namespace cv { namespace cuda
#ifdef HAVE_CUDA
#define CV_CUDA_TEST_MAIN(resourcesubdir) \
int main(int argc, char* argv[]) \
{ \
try \
{ \
cv::CommandLineParser cmd(argc, argv, \
"{ h help ? | | Print help}" \
"{ i info | | Print information about system and exit }" \
"{ device | -1 | Device on which tests will be executed (-1 means all devices) }" \
); \
if (cmd.has("help")) \
{ \
cmd.printMessage(); \
return 0; \
} \
cvtest::printCudaInfo(); \
if (cmd.has("info")) \
{ \
return 0; \
} \
int device = cmd.get<int>("device"); \
if (device < 0) \
{ \
cvtest::DeviceManager::instance().loadAll(); \
std::cout << "Run tests on all supported devices \n" << std::endl; \
} \
else \
{ \
cvtest::DeviceManager::instance().load(device); \
cv::cuda::DeviceInfo info(device); \
std::cout << "Run tests on device " << device << " [" << info.name() << "] \n" << std::endl; \
} \
cvtest::TS::ptr()->init( resourcesubdir ); \
testing::InitGoogleTest(&argc, argv); \
return RUN_ALL_TESTS(); \
} \
catch (const std::exception& e) \
{ \
std::cerr << e.what() << std::endl; \
return -1; \
} \
catch (...) \
{ \
std::cerr << "Unknown error" << std::endl; \
return -1; \
} \
return 0; \
}
CV_TEST_MAIN(resourcesubdir, cvtest::parseCudaDeviceOptions(argc, argv), cvtest::printCudaInfo())
#else // HAVE_CUDA

@ -190,6 +190,33 @@ namespace cvtest
}
}
void parseCudaDeviceOptions(int argc, char **argv)
{
cv::CommandLineParser cmd(argc, argv,
"{ cuda_device | -1 | CUDA device on which tests will be executed (-1 means all devices) }"
"{ h help | false | Print help info }"
);
if (cmd.has("help"))
{
std::cout << "\nAvailable options besides google test option: \n";
cmd.printMessage();
}
int device = cmd.get<int>("cuda_device");
if (device < 0)
{
cvtest::DeviceManager::instance().loadAll();
std::cout << "Run tests on all supported CUDA devices \n" << std::endl;
}
else
{
cvtest::DeviceManager::instance().load(device);
cv::cuda::DeviceInfo info(device);
std::cout << "Run tests on CUDA device " << device << " [" << info.name() << "] \n" << std::endl;
}
}
//////////////////////////////////////////////////////////////////////
// Additional assertion
@ -278,7 +305,7 @@ namespace cvtest
Mat getMat(InputArray arr)
{
if (arr.kind() == _InputArray::GPU_MAT)
if (arr.kind() == _InputArray::CUDA_GPU_MAT)
{
Mat m;
arr.getGpuMat().download(m);

@ -278,7 +278,7 @@ public:
StereoMultiGpuStream();
~StereoMultiGpuStream();
void compute(const CudaMem& leftFrame, const CudaMem& rightFrame, CudaMem& disparity);
void compute(const HostMem& leftFrame, const HostMem& rightFrame, HostMem& disparity);
private:
GpuMat d_leftFrames[2];
@ -316,7 +316,7 @@ StereoMultiGpuStream::~StereoMultiGpuStream()
streams[1].release();
}
void StereoMultiGpuStream::compute(const CudaMem& leftFrame, const CudaMem& rightFrame, CudaMem& disparity)
void StereoMultiGpuStream::compute(const HostMem& leftFrame, const HostMem& rightFrame, HostMem& disparity)
{
disparity.create(leftFrame.size(), CV_8UC1);
@ -403,7 +403,7 @@ int main(int argc, char** argv)
cout << endl;
Mat leftFrame, rightFrame;
CudaMem leftGrayFrame, rightGrayFrame;
HostMem leftGrayFrame, rightGrayFrame;
StereoSingleGpu gpu0Alg(0);
StereoSingleGpu gpu1Alg(1);
@ -413,7 +413,7 @@ int main(int argc, char** argv)
Mat disparityGpu0;
Mat disparityGpu1;
Mat disparityMultiThread;
CudaMem disparityMultiStream;
HostMem disparityMultiStream;
Mat disparityGpu0Show;
Mat disparityGpu1Show;

Loading…
Cancel
Save