mirror of https://github.com/opencv/opencv.git
Merge pull request #2217 from ilya-lavrenov:tapi_superres
commit
0fef7f8b96
18 changed files with 861 additions and 1474 deletions
@ -1,143 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp" |
||||
|
||||
#ifdef HAVE_OPENCV_OCL |
||||
|
||||
#include "opencv2/ocl.hpp" |
||||
using namespace std; |
||||
using namespace testing; |
||||
using namespace perf; |
||||
using namespace cv; |
||||
using namespace cv::superres; |
||||
|
||||
namespace |
||||
{ |
||||
class OneFrameSource_OCL : public FrameSource |
||||
{ |
||||
public: |
||||
explicit OneFrameSource_OCL(const ocl::oclMat& frame) : frame_(frame) {} |
||||
|
||||
void nextFrame(OutputArray frame) |
||||
{ |
||||
ocl::getOclMatRef(frame) = frame_; |
||||
} |
||||
void reset() |
||||
{ |
||||
} |
||||
|
||||
private: |
||||
ocl::oclMat frame_; |
||||
}; |
||||
|
||||
|
||||
class ZeroOpticalFlowOCL : public DenseOpticalFlowExt |
||||
{ |
||||
public: |
||||
void calc(InputArray frame0, InputArray, OutputArray flow1, OutputArray flow2) |
||||
{ |
||||
ocl::oclMat& frame0_ = ocl::getOclMatRef(frame0); |
||||
ocl::oclMat& flow1_ = ocl::getOclMatRef(flow1); |
||||
ocl::oclMat& flow2_ = ocl::getOclMatRef(flow2); |
||||
|
||||
cv::Size size = frame0_.size(); |
||||
|
||||
if(!flow2.needed()) |
||||
{ |
||||
flow1_.create(size, CV_32FC2); |
||||
flow1_.setTo(Scalar::all(0)); |
||||
} |
||||
else |
||||
{ |
||||
flow1_.create(size, CV_32FC1); |
||||
flow2_.create(size, CV_32FC1); |
||||
|
||||
flow1_.setTo(Scalar::all(0)); |
||||
flow2_.setTo(Scalar::all(0)); |
||||
} |
||||
} |
||||
|
||||
void collectGarbage() |
||||
{ |
||||
} |
||||
}; |
||||
} |
||||
|
||||
PERF_TEST_P(Size_MatType, SuperResolution_BTVL1_OCL, |
||||
Combine(Values(szSmall64, szSmall128), |
||||
Values(MatType(CV_8UC1), MatType(CV_8UC3)))) |
||||
{ |
||||
declare.time(5 * 60); |
||||
|
||||
const Size size = std::tr1::get<0>(GetParam()); |
||||
const int type = std::tr1::get<1>(GetParam()); |
||||
|
||||
Mat frame(size, type); |
||||
declare.in(frame, WARMUP_RNG); |
||||
|
||||
ocl::oclMat frame_ocl; |
||||
frame_ocl.upload(frame); |
||||
|
||||
|
||||
const int scale = 2; |
||||
const int iterations = 50; |
||||
const int temporalAreaRadius = 1; |
||||
Ptr<DenseOpticalFlowExt> opticalFlowOcl(new ZeroOpticalFlowOCL); |
||||
|
||||
Ptr<SuperResolution> superRes_ocl = createSuperResolution_BTVL1_OCL(); |
||||
|
||||
superRes_ocl->set("scale", scale); |
||||
superRes_ocl->set("iterations", iterations); |
||||
superRes_ocl->set("temporalAreaRadius", temporalAreaRadius); |
||||
superRes_ocl->set("opticalFlow", opticalFlowOcl); |
||||
|
||||
superRes_ocl->setInput(makePtr<OneFrameSource_OCL>(frame_ocl)); |
||||
|
||||
ocl::oclMat dst_ocl; |
||||
superRes_ocl->nextFrame(dst_ocl); |
||||
|
||||
TEST_CYCLE_N(10) superRes_ocl->nextFrame(dst_ocl); |
||||
frame_ocl.release(); |
||||
CPU_SANITY_CHECK(dst_ocl); |
||||
} |
||||
#endif |
@ -1,725 +0,0 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
// S. Farsiu , D. Robinson, M. Elad, P. Milanfar. Fast and robust multiframe super resolution.
|
||||
// Dennis Mitzel, Thomas Pock, Thomas Schoenemann, Daniel Cremers. Video Super Resolution using Duality Based TV-L1 Optical Flow.
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
#if !defined(HAVE_OPENCL) || !defined(HAVE_OPENCV_OCL) |
||||
|
||||
cv::Ptr<cv::superres::SuperResolution> cv::superres::createSuperResolution_BTVL1_OCL() |
||||
{ |
||||
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform"); |
||||
return Ptr<SuperResolution>(); |
||||
} |
||||
|
||||
#else |
||||
#include "opencl_kernels.hpp" |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
using namespace cv::ocl; |
||||
using namespace cv::superres; |
||||
using namespace cv::superres::detail; |
||||
|
||||
static ProgramEntry superres_btvl1 = cv::ocl::superres::superres_btvl1; |
||||
|
||||
namespace cv |
||||
{ |
||||
namespace ocl |
||||
{ |
||||
float* btvWeights_ = NULL; |
||||
size_t btvWeights_size = 0; |
||||
oclMat c_btvRegWeights; |
||||
} |
||||
} |
||||
|
||||
namespace btv_l1_device_ocl |
||||
{ |
||||
void buildMotionMaps(const oclMat& forwardMotionX, const oclMat& forwardMotionY, |
||||
const oclMat& backwardMotionX, const oclMat& bacwardMotionY, |
||||
oclMat& forwardMapX, oclMat& forwardMapY, |
||||
oclMat& backwardMapX, oclMat& backwardMapY); |
||||
|
||||
void upscale(const oclMat& src, oclMat& dst, int scale); |
||||
|
||||
void diffSign(const oclMat& src1, const oclMat& src2, oclMat& dst); |
||||
|
||||
void calcBtvRegularization(const oclMat& src, oclMat& dst, int ksize); |
||||
} |
||||
|
||||
void btv_l1_device_ocl::buildMotionMaps(const oclMat& forwardMotionX, const oclMat& forwardMotionY, |
||||
const oclMat& backwardMotionX, const oclMat& backwardMotionY, |
||||
oclMat& forwardMapX, oclMat& forwardMapY, |
||||
oclMat& backwardMapX, oclMat& backwardMapY) |
||||
{ |
||||
Context* clCxt = Context::getContext(); |
||||
|
||||
size_t local_thread[] = {32, 8, 1}; |
||||
size_t global_thread[] = {forwardMapX.cols, forwardMapX.rows, 1}; |
||||
|
||||
int forwardMotionX_step = (int)(forwardMotionX.step/forwardMotionX.elemSize()); |
||||
int forwardMotionY_step = (int)(forwardMotionY.step/forwardMotionY.elemSize()); |
||||
int backwardMotionX_step = (int)(backwardMotionX.step/backwardMotionX.elemSize()); |
||||
int backwardMotionY_step = (int)(backwardMotionY.step/backwardMotionY.elemSize()); |
||||
int forwardMapX_step = (int)(forwardMapX.step/forwardMapX.elemSize()); |
||||
int forwardMapY_step = (int)(forwardMapY.step/forwardMapY.elemSize()); |
||||
int backwardMapX_step = (int)(backwardMapX.step/backwardMapX.elemSize()); |
||||
int backwardMapY_step = (int)(backwardMapY.step/backwardMapY.elemSize()); |
||||
|
||||
String kernel_name = "buildMotionMapsKernel"; |
||||
vector< pair<size_t, const void*> > args; |
||||
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&forwardMotionX.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&forwardMotionY.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&backwardMotionX.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&backwardMotionY.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&forwardMapX.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&forwardMapY.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&backwardMapX.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&backwardMapY.data)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMotionX.rows)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMotionY.cols)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMotionX_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMotionY_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&backwardMotionX_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&backwardMotionY_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMapX_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMapY_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&backwardMapX_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&backwardMapY_step)); |
||||
|
||||
openCLExecuteKernel(clCxt, &superres_btvl1, kernel_name, global_thread, local_thread, args, -1, -1); |
||||
} |
||||
|
||||
void btv_l1_device_ocl::upscale(const oclMat& src, oclMat& dst, int scale) |
||||
{ |
||||
Context* clCxt = Context::getContext(); |
||||
|
||||
size_t local_thread[] = {32, 8, 1}; |
||||
size_t global_thread[] = {src.cols, src.rows, 1}; |
||||
|
||||
int src_step = (int)(src.step/src.elemSize()); |
||||
int dst_step = (int)(dst.step/dst.elemSize()); |
||||
|
||||
String kernel_name = "upscaleKernel"; |
||||
vector< pair<size_t, const void*> > args; |
||||
|
||||
int cn = src.oclchannels(); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&src.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&dst.data)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src.rows)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src.cols)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&scale)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&cn)); |
||||
|
||||
openCLExecuteKernel(clCxt, &superres_btvl1, kernel_name, global_thread, local_thread, args, -1, -1); |
||||
|
||||
} |
||||
|
||||
void btv_l1_device_ocl::diffSign(const oclMat& src1, const oclMat& src2, oclMat& dst) |
||||
{ |
||||
Context* clCxt = Context::getContext(); |
||||
|
||||
oclMat src1_ = src1.reshape(1); |
||||
oclMat src2_ = src2.reshape(1); |
||||
oclMat dst_ = dst.reshape(1); |
||||
|
||||
int src1_step = (int)(src1_.step/src1_.elemSize()); |
||||
int src2_step = (int)(src2_.step/src2_.elemSize()); |
||||
int dst_step = (int)(dst_.step/dst_.elemSize()); |
||||
|
||||
size_t local_thread[] = {32, 8, 1}; |
||||
size_t global_thread[] = {src1_.cols, src1_.rows, 1}; |
||||
|
||||
String kernel_name = "diffSignKernel"; |
||||
vector< pair<size_t, const void*> > args; |
||||
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&src1_.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&src2_.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&dst_.data)); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src1_.rows)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src1_.cols)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src1_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src2_step)); |
||||
|
||||
openCLExecuteKernel(clCxt, &superres_btvl1, kernel_name, global_thread, local_thread, args, -1, -1); |
||||
} |
||||
|
||||
void btv_l1_device_ocl::calcBtvRegularization(const oclMat& src, oclMat& dst, int ksize) |
||||
{ |
||||
Context* clCxt = Context::getContext(); |
||||
|
||||
oclMat src_ = src.reshape(1); |
||||
oclMat dst_ = dst.reshape(1); |
||||
|
||||
size_t local_thread[] = {32, 8, 1}; |
||||
size_t global_thread[] = {src.cols, src.rows, 1}; |
||||
|
||||
int src_step = (int)(src_.step/src_.elemSize()); |
||||
int dst_step = (int)(dst_.step/dst_.elemSize()); |
||||
|
||||
String kernel_name = "calcBtvRegularizationKernel"; |
||||
vector< pair<size_t, const void*> > args; |
||||
|
||||
int cn = src.oclchannels(); |
||||
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&src_.data)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&dst_.data)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_step)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src.rows)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src.cols)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&ksize)); |
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&cn)); |
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&c_btvRegWeights.data)); |
||||
|
||||
openCLExecuteKernel(clCxt, &superres_btvl1, kernel_name, global_thread, local_thread, args, -1, -1); |
||||
} |
||||
|
||||
namespace |
||||
{ |
||||
void calcRelativeMotions(const vector<pair<oclMat, oclMat> >& forwardMotions, const vector<pair<oclMat, oclMat> >& backwardMotions, |
||||
vector<pair<oclMat, oclMat> >& relForwardMotions, vector<pair<oclMat, oclMat> >& relBackwardMotions, |
||||
int baseIdx, Size size) |
||||
{ |
||||
const int count = static_cast<int>(forwardMotions.size()); |
||||
|
||||
relForwardMotions.resize(count); |
||||
relForwardMotions[baseIdx].first.create(size, CV_32FC1); |
||||
relForwardMotions[baseIdx].first.setTo(Scalar::all(0)); |
||||
relForwardMotions[baseIdx].second.create(size, CV_32FC1); |
||||
relForwardMotions[baseIdx].second.setTo(Scalar::all(0)); |
||||
|
||||
relBackwardMotions.resize(count); |
||||
relBackwardMotions[baseIdx].first.create(size, CV_32FC1); |
||||
relBackwardMotions[baseIdx].first.setTo(Scalar::all(0)); |
||||
relBackwardMotions[baseIdx].second.create(size, CV_32FC1); |
||||
relBackwardMotions[baseIdx].second.setTo(Scalar::all(0)); |
||||
|
||||
for (int i = baseIdx - 1; i >= 0; --i) |
||||
{ |
||||
ocl::add(relForwardMotions[i + 1].first, forwardMotions[i].first, relForwardMotions[i].first); |
||||
ocl::add(relForwardMotions[i + 1].second, forwardMotions[i].second, relForwardMotions[i].second); |
||||
|
||||
ocl::add(relBackwardMotions[i + 1].first, backwardMotions[i + 1].first, relBackwardMotions[i].first); |
||||
ocl::add(relBackwardMotions[i + 1].second, backwardMotions[i + 1].second, relBackwardMotions[i].second); |
||||
} |
||||
|
||||
for (int i = baseIdx + 1; i < count; ++i) |
||||
{ |
||||
ocl::add(relForwardMotions[i - 1].first, backwardMotions[i].first, relForwardMotions[i].first); |
||||
ocl::add(relForwardMotions[i - 1].second, backwardMotions[i].second, relForwardMotions[i].second); |
||||
|
||||
ocl::add(relBackwardMotions[i - 1].first, forwardMotions[i - 1].first, relBackwardMotions[i].first); |
||||
ocl::add(relBackwardMotions[i - 1].second, forwardMotions[i - 1].second, relBackwardMotions[i].second); |
||||
} |
||||
} |
||||
|
||||
void upscaleMotions(const vector<pair<oclMat, oclMat> >& lowResMotions, vector<pair<oclMat, oclMat> >& highResMotions, int scale) |
||||
{ |
||||
highResMotions.resize(lowResMotions.size()); |
||||
|
||||
for (size_t i = 0; i < lowResMotions.size(); ++i) |
||||
{ |
||||
ocl::resize(lowResMotions[i].first, highResMotions[i].first, Size(), scale, scale, INTER_LINEAR); |
||||
ocl::resize(lowResMotions[i].second, highResMotions[i].second, Size(), scale, scale, INTER_LINEAR); |
||||
|
||||
ocl::multiply(scale, highResMotions[i].first, highResMotions[i].first); |
||||
ocl::multiply(scale, highResMotions[i].second, highResMotions[i].second); |
||||
} |
||||
} |
||||
|
||||
void buildMotionMaps(const pair<oclMat, oclMat>& forwardMotion, const pair<oclMat, oclMat>& backwardMotion, |
||||
pair<oclMat, oclMat>& forwardMap, pair<oclMat, oclMat>& backwardMap) |
||||
{ |
||||
forwardMap.first.create(forwardMotion.first.size(), CV_32FC1); |
||||
forwardMap.second.create(forwardMotion.first.size(), CV_32FC1); |
||||
|
||||
backwardMap.first.create(forwardMotion.first.size(), CV_32FC1); |
||||
backwardMap.second.create(forwardMotion.first.size(), CV_32FC1); |
||||
|
||||
btv_l1_device_ocl::buildMotionMaps(forwardMotion.first, forwardMotion.second, |
||||
backwardMotion.first, backwardMotion.second, |
||||
forwardMap.first, forwardMap.second, |
||||
backwardMap.first, backwardMap.second); |
||||
} |
||||
|
||||
void upscale(const oclMat& src, oclMat& dst, int scale) |
||||
{ |
||||
CV_Assert( src.channels() == 1 || src.channels() == 3 || src.channels() == 4 ); |
||||
|
||||
btv_l1_device_ocl::upscale(src, dst, scale); |
||||
} |
||||
|
||||
void diffSign(const oclMat& src1, const oclMat& src2, oclMat& dst) |
||||
{ |
||||
dst.create(src1.size(), src1.type()); |
||||
|
||||
btv_l1_device_ocl::diffSign(src1, src2, dst); |
||||
} |
||||
|
||||
void calcBtvWeights(int btvKernelSize, double alpha, vector<float>& btvWeights) |
||||
{ |
||||
const size_t size = btvKernelSize * btvKernelSize; |
||||
|
||||
btvWeights.resize(size); |
||||
|
||||
const int ksize = (btvKernelSize - 1) / 2; |
||||
const float alpha_f = static_cast<float>(alpha); |
||||
|
||||
for (int m = 0, ind = 0; m <= ksize; ++m) |
||||
{ |
||||
for (int l = ksize; l + m >= 0; --l, ++ind) |
||||
btvWeights[ind] = pow(alpha_f, std::abs(m) + std::abs(l)); |
||||
} |
||||
|
||||
btvWeights_ = &btvWeights[0]; |
||||
btvWeights_size = size; |
||||
Mat btvWeights_mheader(1, static_cast<int>(size), CV_32FC1, btvWeights_); |
||||
c_btvRegWeights = btvWeights_mheader; |
||||
} |
||||
|
||||
void calcBtvRegularization(const oclMat& src, oclMat& dst, int btvKernelSize) |
||||
{ |
||||
dst.create(src.size(), src.type()); |
||||
|
||||
const int ksize = (btvKernelSize - 1) / 2; |
||||
|
||||
btv_l1_device_ocl::calcBtvRegularization(src, dst, ksize); |
||||
} |
||||
|
||||
class BTVL1_OCL_Base |
||||
{ |
||||
public: |
||||
BTVL1_OCL_Base(); |
||||
|
||||
void process(const vector<oclMat>& src, oclMat& dst, |
||||
const vector<pair<oclMat, oclMat> >& forwardMotions, const vector<pair<oclMat, oclMat> >& backwardMotions, |
||||
int baseIdx); |
||||
|
||||
void collectGarbage(); |
||||
|
||||
protected: |
||||
int scale_; |
||||
int iterations_; |
||||
double lambda_; |
||||
double tau_; |
||||
double alpha_; |
||||
int btvKernelSize_; |
||||
int blurKernelSize_; |
||||
double blurSigma_; |
||||
Ptr<DenseOpticalFlowExt> opticalFlow_; |
||||
|
||||
private: |
||||
vector<Ptr<cv::ocl::FilterEngine_GPU> > filters_; |
||||
int curBlurKernelSize_; |
||||
double curBlurSigma_; |
||||
int curSrcType_; |
||||
|
||||
vector<float> btvWeights_; |
||||
int curBtvKernelSize_; |
||||
double curAlpha_; |
||||
|
||||
vector<pair<oclMat, oclMat> > lowResForwardMotions_; |
||||
vector<pair<oclMat, oclMat> > lowResBackwardMotions_; |
||||
|
||||
vector<pair<oclMat, oclMat> > highResForwardMotions_; |
||||
vector<pair<oclMat, oclMat> > highResBackwardMotions_; |
||||
|
||||
vector<pair<oclMat, oclMat> > forwardMaps_; |
||||
vector<pair<oclMat, oclMat> > backwardMaps_; |
||||
|
||||
oclMat highRes_; |
||||
|
||||
vector<oclMat> diffTerms_; |
||||
oclMat a_, b_, c_, d_; |
||||
oclMat regTerm_; |
||||
}; |
||||
|
||||
BTVL1_OCL_Base::BTVL1_OCL_Base() |
||||
{ |
||||
scale_ = 4; |
||||
iterations_ = 180; |
||||
lambda_ = 0.03; |
||||
tau_ = 1.3; |
||||
alpha_ = 0.7; |
||||
btvKernelSize_ = 7; |
||||
blurKernelSize_ = 5; |
||||
blurSigma_ = 0.0; |
||||
opticalFlow_ = createOptFlow_Farneback_OCL(); |
||||
|
||||
curBlurKernelSize_ = -1; |
||||
curBlurSigma_ = -1.0; |
||||
curSrcType_ = -1; |
||||
|
||||
curBtvKernelSize_ = -1; |
||||
curAlpha_ = -1.0; |
||||
} |
||||
|
||||
void BTVL1_OCL_Base::process(const vector<oclMat>& src, oclMat& dst, |
||||
const vector<pair<oclMat, oclMat> >& forwardMotions, const vector<pair<oclMat, oclMat> >& backwardMotions, |
||||
int baseIdx) |
||||
{ |
||||
CV_Assert( scale_ > 1 ); |
||||
CV_Assert( iterations_ > 0 ); |
||||
CV_Assert( tau_ > 0.0 ); |
||||
CV_Assert( alpha_ > 0.0 ); |
||||
CV_Assert( btvKernelSize_ > 0 && btvKernelSize_ <= 16 ); |
||||
CV_Assert( blurKernelSize_ > 0 ); |
||||
CV_Assert( blurSigma_ >= 0.0 ); |
||||
|
||||
// update blur filter and btv weights
|
||||
|
||||
if (filters_.size() != src.size() || blurKernelSize_ != curBlurKernelSize_ || blurSigma_ != curBlurSigma_ || src[0].type() != curSrcType_) |
||||
{ |
||||
filters_.resize(src.size()); |
||||
for (size_t i = 0; i < src.size(); ++i) |
||||
filters_[i] = cv::ocl::createGaussianFilter_GPU(src[0].type(), Size(blurKernelSize_, blurKernelSize_), blurSigma_); |
||||
curBlurKernelSize_ = blurKernelSize_; |
||||
curBlurSigma_ = blurSigma_; |
||||
curSrcType_ = src[0].type(); |
||||
} |
||||
|
||||
if (btvWeights_.empty() || btvKernelSize_ != curBtvKernelSize_ || alpha_ != curAlpha_) |
||||
{ |
||||
calcBtvWeights(btvKernelSize_, alpha_, btvWeights_); |
||||
curBtvKernelSize_ = btvKernelSize_; |
||||
curAlpha_ = alpha_; |
||||
} |
||||
|
||||
// calc motions between input frames
|
||||
|
||||
calcRelativeMotions(forwardMotions, backwardMotions, |
||||
lowResForwardMotions_, lowResBackwardMotions_, |
||||
baseIdx, src[0].size()); |
||||
|
||||
upscaleMotions(lowResForwardMotions_, highResForwardMotions_, scale_); |
||||
upscaleMotions(lowResBackwardMotions_, highResBackwardMotions_, scale_); |
||||
|
||||
forwardMaps_.resize(highResForwardMotions_.size()); |
||||
backwardMaps_.resize(highResForwardMotions_.size()); |
||||
for (size_t i = 0; i < highResForwardMotions_.size(); ++i) |
||||
{ |
||||
buildMotionMaps(highResForwardMotions_[i], highResBackwardMotions_[i], forwardMaps_[i], backwardMaps_[i]); |
||||
} |
||||
// initial estimation
|
||||
|
||||
const Size lowResSize = src[0].size(); |
||||
const Size highResSize(lowResSize.width * scale_, lowResSize.height * scale_); |
||||
|
||||
ocl::resize(src[baseIdx], highRes_, highResSize, 0, 0, INTER_LINEAR); |
||||
|
||||
// iterations
|
||||
|
||||
diffTerms_.resize(src.size()); |
||||
bool d_inited = false; |
||||
a_.create(highRes_.size(), highRes_.type()); |
||||
b_.create(highRes_.size(), highRes_.type()); |
||||
c_.create(lowResSize, highRes_.type()); |
||||
d_.create(highRes_.rows, highRes_.cols, highRes_.type()); |
||||
for (int i = 0; i < iterations_; ++i) |
||||
{ |
||||
if(!d_inited) |
||||
{ |
||||
d_.setTo(0); |
||||
d_inited = true; |
||||
} |
||||
for (size_t k = 0; k < src.size(); ++k) |
||||
{ |
||||
diffTerms_[k].create(highRes_.size(), highRes_.type()); |
||||
// a = M * Ih
|
||||
ocl::remap(highRes_, a_, backwardMaps_[k].first, backwardMaps_[k].second, INTER_NEAREST, BORDER_CONSTANT, Scalar()); |
||||
// b = HM * Ih
|
||||
filters_[k]->apply(a_, b_, Rect(0,0,-1,-1)); |
||||
// c = DHF * Ih
|
||||
ocl::resize(b_, c_, lowResSize, 0, 0, INTER_NEAREST); |
||||
|
||||
diffSign(src[k], c_, c_); |
||||
|
||||
// a = Dt * diff
|
||||
upscale(c_, d_, scale_); |
||||
// b = HtDt * diff
|
||||
filters_[k]->apply(d_, b_, Rect(0,0,-1,-1)); |
||||
// diffTerm = MtHtDt * diff
|
||||
ocl::remap(b_, diffTerms_[k], forwardMaps_[k].first, forwardMaps_[k].second, INTER_NEAREST, BORDER_CONSTANT, Scalar()); |
||||
} |
||||
|
||||
if (lambda_ > 0) |
||||
{ |
||||
calcBtvRegularization(highRes_, regTerm_, btvKernelSize_); |
||||
ocl::addWeighted(highRes_, 1.0, regTerm_, -tau_ * lambda_, 0.0, highRes_); |
||||
} |
||||
|
||||
for (size_t k = 0; k < src.size(); ++k) |
||||
{ |
||||
ocl::addWeighted(highRes_, 1.0, diffTerms_[k], tau_, 0.0, highRes_); |
||||
} |
||||
} |
||||
|
||||
Rect inner(btvKernelSize_, btvKernelSize_, highRes_.cols - 2 * btvKernelSize_, highRes_.rows - 2 * btvKernelSize_); |
||||
highRes_(inner).copyTo(dst); |
||||
} |
||||
|
||||
void BTVL1_OCL_Base::collectGarbage() |
||||
{ |
||||
filters_.clear(); |
||||
|
||||
lowResForwardMotions_.clear(); |
||||
lowResBackwardMotions_.clear(); |
||||
|
||||
highResForwardMotions_.clear(); |
||||
highResBackwardMotions_.clear(); |
||||
|
||||
forwardMaps_.clear(); |
||||
backwardMaps_.clear(); |
||||
|
||||
highRes_.release(); |
||||
|
||||
diffTerms_.clear(); |
||||
a_.release(); |
||||
b_.release(); |
||||
c_.release(); |
||||
regTerm_.release(); |
||||
c_btvRegWeights.release(); |
||||
} |
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
|
||||
class BTVL1_OCL : public SuperResolution, private BTVL1_OCL_Base |
||||
{ |
||||
public: |
||||
AlgorithmInfo* info() const; |
||||
|
||||
BTVL1_OCL(); |
||||
|
||||
void collectGarbage(); |
||||
|
||||
protected: |
||||
void initImpl(Ptr<FrameSource>& frameSource); |
||||
void processImpl(Ptr<FrameSource>& frameSource, OutputArray output); |
||||
|
||||
private: |
||||
int temporalAreaRadius_; |
||||
|
||||
void readNextFrame(Ptr<FrameSource>& frameSource); |
||||
void processFrame(int idx); |
||||
|
||||
oclMat curFrame_; |
||||
oclMat prevFrame_; |
||||
|
||||
vector<oclMat> frames_; |
||||
vector<pair<oclMat, oclMat> > forwardMotions_; |
||||
vector<pair<oclMat, oclMat> > backwardMotions_; |
||||
vector<oclMat> outputs_; |
||||
|
||||
int storePos_; |
||||
int procPos_; |
||||
int outPos_; |
||||
|
||||
vector<oclMat> srcFrames_; |
||||
vector<pair<oclMat, oclMat> > srcForwardMotions_; |
||||
vector<pair<oclMat, oclMat> > srcBackwardMotions_; |
||||
oclMat finalOutput_; |
||||
}; |
||||
|
||||
CV_INIT_ALGORITHM(BTVL1_OCL, "SuperResolution.BTVL1_OCL", |
||||
obj.info()->addParam(obj, "scale", obj.scale_, false, 0, 0, "Scale factor."); |
||||
obj.info()->addParam(obj, "iterations", obj.iterations_, false, 0, 0, "Iteration count."); |
||||
obj.info()->addParam(obj, "tau", obj.tau_, false, 0, 0, "Asymptotic value of steepest descent method."); |
||||
obj.info()->addParam(obj, "lambda", obj.lambda_, false, 0, 0, "Weight parameter to balance data term and smoothness term."); |
||||
obj.info()->addParam(obj, "alpha", obj.alpha_, false, 0, 0, "Parameter of spacial distribution in Bilateral-TV."); |
||||
obj.info()->addParam(obj, "btvKernelSize", obj.btvKernelSize_, false, 0, 0, "Kernel size of Bilateral-TV filter."); |
||||
obj.info()->addParam(obj, "blurKernelSize", obj.blurKernelSize_, false, 0, 0, "Gaussian blur kernel size."); |
||||
obj.info()->addParam(obj, "blurSigma", obj.blurSigma_, false, 0, 0, "Gaussian blur sigma."); |
||||
obj.info()->addParam(obj, "temporalAreaRadius", obj.temporalAreaRadius_, false, 0, 0, "Radius of the temporal search area."); |
||||
obj.info()->addParam<DenseOpticalFlowExt>(obj, "opticalFlow", obj.opticalFlow_, false, 0, 0, "Dense optical flow algorithm.")) |
||||
|
||||
BTVL1_OCL::BTVL1_OCL() |
||||
{ |
||||
temporalAreaRadius_ = 4; |
||||
} |
||||
|
||||
void BTVL1_OCL::collectGarbage() |
||||
{ |
||||
curFrame_.release(); |
||||
prevFrame_.release(); |
||||
|
||||
frames_.clear(); |
||||
forwardMotions_.clear(); |
||||
backwardMotions_.clear(); |
||||
outputs_.clear(); |
||||
|
||||
srcFrames_.clear(); |
||||
srcForwardMotions_.clear(); |
||||
srcBackwardMotions_.clear(); |
||||
finalOutput_.release(); |
||||
|
||||
SuperResolution::collectGarbage(); |
||||
BTVL1_OCL_Base::collectGarbage(); |
||||
} |
||||
|
||||
void BTVL1_OCL::initImpl(Ptr<FrameSource>& frameSource) |
||||
{ |
||||
const int cacheSize = 2 * temporalAreaRadius_ + 1; |
||||
|
||||
frames_.resize(cacheSize); |
||||
forwardMotions_.resize(cacheSize); |
||||
backwardMotions_.resize(cacheSize); |
||||
outputs_.resize(cacheSize); |
||||
|
||||
storePos_ = -1; |
||||
|
||||
for (int t = -temporalAreaRadius_; t <= temporalAreaRadius_; ++t) |
||||
readNextFrame(frameSource); |
||||
|
||||
for (int i = 0; i <= temporalAreaRadius_; ++i) |
||||
processFrame(i); |
||||
|
||||
procPos_ = temporalAreaRadius_; |
||||
outPos_ = -1; |
||||
} |
||||
|
||||
void BTVL1_OCL::processImpl(Ptr<FrameSource>& frameSource, OutputArray _output) |
||||
{ |
||||
if (outPos_ >= storePos_) |
||||
{ |
||||
if(_output.kind() == _InputArray::OCL_MAT) |
||||
{ |
||||
getOclMatRef(_output).release(); |
||||
} |
||||
else |
||||
{ |
||||
_output.release(); |
||||
} |
||||
return; |
||||
} |
||||
|
||||
readNextFrame(frameSource); |
||||
|
||||
if (procPos_ < storePos_) |
||||
{ |
||||
++procPos_; |
||||
processFrame(procPos_); |
||||
} |
||||
|
||||
++outPos_; |
||||
const oclMat& curOutput = at(outPos_, outputs_); |
||||
|
||||
if (_output.kind() == _InputArray::OCL_MAT) |
||||
curOutput.convertTo(getOclMatRef(_output), CV_8U); |
||||
else |
||||
{ |
||||
curOutput.convertTo(finalOutput_, CV_8U); |
||||
arrCopy(finalOutput_, _output); |
||||
} |
||||
} |
||||
|
||||
void BTVL1_OCL::readNextFrame(Ptr<FrameSource>& frameSource) |
||||
{ |
||||
curFrame_.release(); |
||||
frameSource->nextFrame(curFrame_); |
||||
|
||||
if (curFrame_.empty()) |
||||
return; |
||||
|
||||
++storePos_; |
||||
curFrame_.convertTo(at(storePos_, frames_), CV_32F); |
||||
|
||||
if (storePos_ > 0) |
||||
{ |
||||
pair<oclMat, oclMat>& forwardMotion = at(storePos_ - 1, forwardMotions_); |
||||
pair<oclMat, oclMat>& backwardMotion = at(storePos_, backwardMotions_); |
||||
|
||||
opticalFlow_->calc(prevFrame_, curFrame_, forwardMotion.first, forwardMotion.second); |
||||
opticalFlow_->calc(curFrame_, prevFrame_, backwardMotion.first, backwardMotion.second); |
||||
} |
||||
|
||||
curFrame_.copyTo(prevFrame_); |
||||
} |
||||
|
||||
void BTVL1_OCL::processFrame(int idx) |
||||
{ |
||||
const int startIdx = max(idx - temporalAreaRadius_, 0); |
||||
const int procIdx = idx; |
||||
const int endIdx = min(startIdx + 2 * temporalAreaRadius_, storePos_); |
||||
|
||||
const int count = endIdx - startIdx + 1; |
||||
|
||||
srcFrames_.resize(count); |
||||
srcForwardMotions_.resize(count); |
||||
srcBackwardMotions_.resize(count); |
||||
|
||||
int baseIdx = -1; |
||||
|
||||
for (int i = startIdx, k = 0; i <= endIdx; ++i, ++k) |
||||
{ |
||||
if (i == procIdx) |
||||
baseIdx = k; |
||||
|
||||
srcFrames_[k] = at(i, frames_); |
||||
|
||||
if (i < endIdx) |
||||
srcForwardMotions_[k] = at(i, forwardMotions_); |
||||
if (i > startIdx) |
||||
srcBackwardMotions_[k] = at(i, backwardMotions_); |
||||
} |
||||
|
||||
process(srcFrames_, at(idx, outputs_), srcForwardMotions_, srcBackwardMotions_, baseIdx); |
||||
} |
||||
} |
||||
|
||||
Ptr<SuperResolution> cv::superres::createSuperResolution_BTVL1_OCL() |
||||
{ |
||||
return makePtr<BTVL1_OCL>(); |
||||
} |
||||
#endif |
Loading…
Reference in new issue