mirror of https://github.com/opencv/opencv.git
Merge pull request #26079 from Abdurrahheem:ash/hardmax-support
Add Support for Hardmax Layer #26079 This PR add support for `Hardmax` layer, which as previously listed in conformance deny list. ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMakepull/26100/head
parent
8def9f75c8
commit
0f8bbf4677
5 changed files with 155 additions and 7 deletions
@ -0,0 +1,140 @@ |
||||
#include <inttypes.h> |
||||
#include <opencv2/dnn/shape_utils.hpp> |
||||
#include "../precomp.hpp" |
||||
#include "layers_common.hpp" |
||||
#include "../ie_ngraph.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
namespace dnn |
||||
{ |
||||
|
||||
class LayerHardmaxImpl CV_FINAL : public HardmaxLayer |
||||
{ |
||||
public: |
||||
int axis; |
||||
LayerHardmaxImpl(const LayerParams& params) |
||||
{ |
||||
axis = params.get<int>("axis", -1); |
||||
} |
||||
|
||||
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE |
||||
{ |
||||
return backendId == DNN_BACKEND_OPENCV; |
||||
} |
||||
|
||||
void getTypes(const std::vector<MatType>& inputs, |
||||
const int requiredOutputs, |
||||
const int requiredInternals, |
||||
std::vector<MatType>& outputs, |
||||
std::vector<MatType>& internals) const CV_OVERRIDE |
||||
{ |
||||
CV_Assert(inputs.size()); |
||||
for (auto input : inputs) |
||||
{ |
||||
CV_CheckType(input, input == CV_32F || input == CV_8S || input == CV_8U || input == CV_32S || input == CV_64S || input == CV_Bool, ""); |
||||
} |
||||
|
||||
outputs.assign(requiredOutputs, inputs[0]); |
||||
} |
||||
|
||||
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
||||
const int requiredOutputs, |
||||
std::vector<MatShape> &outputs, |
||||
std::vector<MatShape> &internals) const CV_OVERRIDE |
||||
{ |
||||
CV_CheckEQ(inputs.size(), 1ull, "Hardmax: one input is expected"); |
||||
outputs.resize(1); |
||||
outputs[0] = inputs[0]; |
||||
return false; |
||||
} |
||||
|
||||
void forward(InputArrayOfArrays inputs_arr, |
||||
OutputArrayOfArrays outputs_arr, |
||||
OutputArrayOfArrays internals_arr) CV_OVERRIDE |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
||||
|
||||
if (inputs_arr.depth() == CV_16F) |
||||
{ |
||||
forward_fallback(inputs_arr, outputs_arr, internals_arr); |
||||
return; |
||||
} |
||||
|
||||
std::vector<Mat> inputs, outputs; |
||||
inputs_arr.getMatVector(inputs); |
||||
outputs_arr.getMatVector(outputs); |
||||
|
||||
Mat src = inputs[0]; |
||||
Mat dst = outputs[0]; |
||||
|
||||
axis = normalize_axis(axis, src.dims); |
||||
MatShape shape(src.size.p, src.size.p + src.dims); |
||||
|
||||
// Prepare output
|
||||
memset(dst.ptr(), 0, dst.total() * dst.elemSize()); |
||||
|
||||
switch (src.depth()) |
||||
{ |
||||
case CV_8U: hardmaxApply<uchar>(src, dst, axis); break; |
||||
case CV_8S: hardmaxApply<schar>(src, dst, axis); break; |
||||
case CV_16U: hardmaxApply<ushort>(src, dst, axis); break; |
||||
case CV_16S: hardmaxApply<short>(src, dst, axis); break; |
||||
case CV_32S: hardmaxApply<int>(src, dst, axis); break; |
||||
case CV_32F: hardmaxApply<float>(src, dst, axis); break; |
||||
case CV_64F: hardmaxApply<double>(src, dst, axis); break; |
||||
default: |
||||
CV_Error(Error::StsUnsupportedFormat, "Unsupported input data type"); |
||||
} |
||||
} |
||||
|
||||
template <typename T> |
||||
void hardmaxApply(const cv::Mat& src, cv::Mat& dst, const int axis) |
||||
{ |
||||
const auto *src_ptr = src.ptr<const T>(); |
||||
auto *dst_ptr = dst.ptr<T>(); |
||||
|
||||
const size_t outer_size = src.total(0, axis); |
||||
const auto mid_size = static_cast<size_t>(src.size[axis]); |
||||
const size_t inner_size = src.total(axis + 1); |
||||
const size_t outer_step = src.total(axis); |
||||
double nstripes = (double) outer_size * inner_size / 1024.0; |
||||
|
||||
parallel_for_(Range(0, outer_size), [&](const Range& range) { |
||||
for (size_t outer = range.start; outer < range.end; ++outer) |
||||
{ |
||||
const size_t outer_offset = outer * outer_step; |
||||
|
||||
for (size_t inner = 0; inner < inner_size; ++inner) |
||||
{ |
||||
T max_val = std::numeric_limits<T>::lowest(); |
||||
size_t max_idx = 0; |
||||
|
||||
// Find max along the reduction axis
|
||||
for (size_t mid = 0; mid < mid_size; ++mid) |
||||
{ |
||||
const size_t src_idx = outer_offset + mid * inner_size + inner; |
||||
if (src_ptr[src_idx] > max_val) |
||||
{ |
||||
max_val = src_ptr[src_idx]; |
||||
max_idx = src_idx; |
||||
} |
||||
} |
||||
|
||||
// Set 1 for max, 0 for others
|
||||
dst_ptr[max_idx] = 1; |
||||
} |
||||
} |
||||
}, nstripes); |
||||
} |
||||
|
||||
}; |
||||
|
||||
Ptr<HardmaxLayer> HardmaxLayer::create(const LayerParams& params) |
||||
{ |
||||
return Ptr<HardmaxLayer>(new LayerHardmaxImpl(params)); |
||||
} |
||||
|
||||
}} |
Loading…
Reference in new issue