Merge pull request #18640 from alalek:core_cleanup_inline_code

pull/18662/head^2
Alexander Alekhin 4 years ago
commit 0ec94630d4
  1. 562
      modules/core/include/opencv2/core/mat.inl.hpp
  2. 280
      modules/core/src/matrix.cpp
  3. 88
      modules/core/src/matrix_sparse.cpp
  4. 146
      modules/core/src/umatrix.cpp

@ -489,158 +489,6 @@ CV__DEBUG_NS_END
//////////////////////////////////////////// Mat ////////////////////////////////////////// //////////////////////////////////////////// Mat //////////////////////////////////////////
inline
Mat::Mat()
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{}
inline
Mat::Mat(int _rows, int _cols, int _type)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{
create(_rows, _cols, _type);
}
inline
Mat::Mat(int _rows, int _cols, int _type, const Scalar& _s)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{
create(_rows, _cols, _type);
*this = _s;
}
inline
Mat::Mat(Size _sz, int _type)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{
create( _sz.height, _sz.width, _type );
}
inline
Mat::Mat(Size _sz, int _type, const Scalar& _s)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{
create(_sz.height, _sz.width, _type);
*this = _s;
}
inline
Mat::Mat(int _dims, const int* _sz, int _type)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{
create(_dims, _sz, _type);
}
inline
Mat::Mat(int _dims, const int* _sz, int _type, const Scalar& _s)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{
create(_dims, _sz, _type);
*this = _s;
}
inline
Mat::Mat(const std::vector<int>& _sz, int _type)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{
create(_sz, _type);
}
inline
Mat::Mat(const std::vector<int>& _sz, int _type, const Scalar& _s)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{
create(_sz, _type);
*this = _s;
}
inline
Mat::Mat(const Mat& m)
: flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), data(m.data),
datastart(m.datastart), dataend(m.dataend), datalimit(m.datalimit), allocator(m.allocator),
u(m.u), size(&rows), step(0)
{
if( u )
CV_XADD(&u->refcount, 1);
if( m.dims <= 2 )
{
step[0] = m.step[0]; step[1] = m.step[1];
}
else
{
dims = 0;
copySize(m);
}
}
inline
Mat::Mat(int _rows, int _cols, int _type, void* _data, size_t _step)
: flags(MAGIC_VAL + (_type & TYPE_MASK)), dims(2), rows(_rows), cols(_cols),
data((uchar*)_data), datastart((uchar*)_data), dataend(0), datalimit(0),
allocator(0), u(0), size(&rows)
{
CV_Assert(total() == 0 || data != NULL);
size_t esz = CV_ELEM_SIZE(_type), esz1 = CV_ELEM_SIZE1(_type);
size_t minstep = cols * esz;
if( _step == AUTO_STEP )
{
_step = minstep;
}
else
{
CV_DbgAssert( _step >= minstep );
if (_step % esz1 != 0)
{
CV_Error(Error::BadStep, "Step must be a multiple of esz1");
}
}
step[0] = _step;
step[1] = esz;
datalimit = datastart + _step * rows;
dataend = datalimit - _step + minstep;
updateContinuityFlag();
}
inline
Mat::Mat(Size _sz, int _type, void* _data, size_t _step)
: flags(MAGIC_VAL + (_type & TYPE_MASK)), dims(2), rows(_sz.height), cols(_sz.width),
data((uchar*)_data), datastart((uchar*)_data), dataend(0), datalimit(0),
allocator(0), u(0), size(&rows)
{
CV_Assert(total() == 0 || data != NULL);
size_t esz = CV_ELEM_SIZE(_type), esz1 = CV_ELEM_SIZE1(_type);
size_t minstep = cols*esz;
if( _step == AUTO_STEP )
{
_step = minstep;
}
else
{
CV_DbgAssert( _step >= minstep );
if (_step % esz1 != 0)
{
CV_Error(Error::BadStep, "Step must be a multiple of esz1");
}
}
step[0] = _step;
step[1] = esz;
datalimit = datastart + _step*rows;
dataend = datalimit - _step + minstep;
updateContinuityFlag();
}
template<typename _Tp> inline template<typename _Tp> inline
Mat::Mat(const std::vector<_Tp>& vec, bool copyData) Mat::Mat(const std::vector<_Tp>& vec, bool copyData)
: flags(MAGIC_VAL | traits::Type<_Tp>::value | CV_MAT_CONT_FLAG), dims(2), rows((int)vec.size()), : flags(MAGIC_VAL | traits::Type<_Tp>::value | CV_MAT_CONT_FLAG), dims(2), rows((int)vec.size()),
@ -778,43 +626,6 @@ Mat::Mat(const MatCommaInitializer_<_Tp>& commaInitializer)
*this = commaInitializer.operator Mat_<_Tp>(); *this = commaInitializer.operator Mat_<_Tp>();
} }
inline
Mat::~Mat()
{
release();
if( step.p != step.buf )
fastFree(step.p);
}
inline
Mat& Mat::operator = (const Mat& m)
{
if( this != &m )
{
if( m.u )
CV_XADD(&m.u->refcount, 1);
release();
flags = m.flags;
if( dims <= 2 && m.dims <= 2 )
{
dims = m.dims;
rows = m.rows;
cols = m.cols;
step[0] = m.step[0];
step[1] = m.step[1];
}
else
copySize(m);
data = m.data;
datastart = m.datastart;
dataend = m.dataend;
datalimit = m.datalimit;
allocator = m.allocator;
u = m.u;
}
return *this;
}
inline inline
Mat Mat::row(int y) const Mat Mat::row(int y) const
{ {
@ -851,67 +662,6 @@ Mat Mat::colRange(const Range& r) const
return Mat(*this, Range::all(), r); return Mat(*this, Range::all(), r);
} }
inline
Mat Mat::clone() const
{
Mat m;
copyTo(m);
return m;
}
inline
void Mat::assignTo( Mat& m, int _type ) const
{
if( _type < 0 )
m = *this;
else
convertTo(m, _type);
}
inline
void Mat::create(int _rows, int _cols, int _type)
{
_type &= TYPE_MASK;
if( dims <= 2 && rows == _rows && cols == _cols && type() == _type && data )
return;
int sz[] = {_rows, _cols};
create(2, sz, _type);
}
inline
void Mat::create(Size _sz, int _type)
{
create(_sz.height, _sz.width, _type);
}
inline
void Mat::addref()
{
if( u )
CV_XADD(&u->refcount, 1);
}
inline
void Mat::release()
{
if( u && CV_XADD(&u->refcount, -1) == 1 )
deallocate();
u = NULL;
datastart = dataend = datalimit = data = 0;
for(int i = 0; i < dims; i++)
size.p[i] = 0;
#ifdef _DEBUG
flags = MAGIC_VAL;
dims = rows = cols = 0;
if(step.p != step.buf)
{
fastFree(step.p);
step.p = step.buf;
size.p = &rows;
}
#endif
}
inline inline
Mat Mat::operator()( Range _rowRange, Range _colRange ) const Mat Mat::operator()( Range _rowRange, Range _colRange ) const
{ {
@ -980,40 +730,6 @@ int Mat::channels() const
return CV_MAT_CN(flags); return CV_MAT_CN(flags);
} }
inline
size_t Mat::step1(int i) const
{
return step.p[i] / elemSize1();
}
inline
bool Mat::empty() const
{
return data == 0 || total() == 0 || dims == 0;
}
inline
size_t Mat::total() const
{
if( dims <= 2 )
return (size_t)rows * cols;
size_t p = 1;
for( int i = 0; i < dims; i++ )
p *= size[i];
return p;
}
inline
size_t Mat::total(int startDim, int endDim) const
{
CV_Assert( 0 <= startDim && startDim <= endDim);
size_t p = 1;
int endDim_ = endDim <= dims ? endDim : dims;
for( int i = startDim; i < endDim_; i++ )
p *= size[i];
return p;
}
inline inline
uchar* Mat::ptr(int y) uchar* Mat::ptr(int y)
{ {
@ -1544,22 +1260,6 @@ MatSize::operator const int*() const
return p; return p;
} }
inline
bool MatSize::operator == (const MatSize& sz) const
{
int d = dims();
int dsz = sz.dims();
if( d != dsz )
return false;
if( d == 2 )
return p[0] == sz.p[0] && p[1] == sz.p[1];
for( int i = 0; i < d; i++ )
if( p[i] != sz.p[i] )
return false;
return true;
}
inline inline
bool MatSize::operator != (const MatSize& sz) const bool MatSize::operator != (const MatSize& sz) const
{ {
@ -1820,9 +1520,7 @@ template<typename _Tp> inline
void Mat_<_Tp>::release() void Mat_<_Tp>::release()
{ {
Mat::release(); Mat::release();
#ifdef _DEBUG
flags = (flags & ~CV_MAT_TYPE_MASK) | traits::Type<_Tp>::value; flags = (flags & ~CV_MAT_TYPE_MASK) | traits::Type<_Tp>::value;
#endif
} }
template<typename _Tp> inline template<typename _Tp> inline
@ -2182,51 +1880,6 @@ Mat_<_Tp>::Mat_(MatExpr&& e)
///////////////////////////// SparseMat ///////////////////////////// ///////////////////////////// SparseMat /////////////////////////////
inline
SparseMat::SparseMat()
: flags(MAGIC_VAL), hdr(0)
{}
inline
SparseMat::SparseMat(int _dims, const int* _sizes, int _type)
: flags(MAGIC_VAL), hdr(0)
{
create(_dims, _sizes, _type);
}
inline
SparseMat::SparseMat(const SparseMat& m)
: flags(m.flags), hdr(m.hdr)
{
addref();
}
inline
SparseMat::~SparseMat()
{
release();
}
inline
SparseMat& SparseMat::operator = (const SparseMat& m)
{
if( this != &m )
{
if( m.hdr )
CV_XADD(&m.hdr->refcount, 1);
release();
flags = m.flags;
hdr = m.hdr;
}
return *this;
}
inline
SparseMat& SparseMat::operator = (const Mat& m)
{
return (*this = SparseMat(m));
}
inline inline
SparseMat SparseMat::clone() const SparseMat SparseMat::clone() const
{ {
@ -2235,30 +1888,6 @@ SparseMat SparseMat::clone() const
return temp; return temp;
} }
inline
void SparseMat::assignTo( SparseMat& m, int _type ) const
{
if( _type < 0 )
m = *this;
else
convertTo(m, _type);
}
inline
void SparseMat::addref()
{
if( hdr )
CV_XADD(&hdr->refcount, 1);
}
inline
void SparseMat::release()
{
if( hdr && CV_XADD(&hdr->refcount, -1) == 1 )
delete hdr;
hdr = 0;
}
inline inline
size_t SparseMat::elemSize() const size_t SparseMat::elemSize() const
{ {
@ -2318,36 +1947,6 @@ size_t SparseMat::nzcount() const
return hdr ? hdr->nodeCount : 0; return hdr ? hdr->nodeCount : 0;
} }
inline
size_t SparseMat::hash(int i0) const
{
return (size_t)i0;
}
inline
size_t SparseMat::hash(int i0, int i1) const
{
return (size_t)(unsigned)i0 * HASH_SCALE + (unsigned)i1;
}
inline
size_t SparseMat::hash(int i0, int i1, int i2) const
{
return ((size_t)(unsigned)i0 * HASH_SCALE + (unsigned)i1) * HASH_SCALE + (unsigned)i2;
}
inline
size_t SparseMat::hash(const int* idx) const
{
size_t h = (unsigned)idx[0];
if( !hdr )
return 0;
int d = hdr->dims;
for(int i = 1; i < d; i++ )
h = h * HASH_SCALE + (unsigned)idx[i];
return h;
}
template<typename _Tp> inline template<typename _Tp> inline
_Tp& SparseMat::ref(int i0, size_t* hashval) _Tp& SparseMat::ref(int i0, size_t* hashval)
{ {
@ -3667,74 +3266,6 @@ const Mat_<_Tp>& operator /= (const Mat_<_Tp>& a, const MatExpr& b)
//////////////////////////////// UMat //////////////////////////////// //////////////////////////////// UMat ////////////////////////////////
inline
UMat::UMat(UMatUsageFlags _usageFlags)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows)
{}
inline
UMat::UMat(int _rows, int _cols, int _type, UMatUsageFlags _usageFlags)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows)
{
create(_rows, _cols, _type);
}
inline
UMat::UMat(int _rows, int _cols, int _type, const Scalar& _s, UMatUsageFlags _usageFlags)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows)
{
create(_rows, _cols, _type);
*this = _s;
}
inline
UMat::UMat(Size _sz, int _type, UMatUsageFlags _usageFlags)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows)
{
create( _sz.height, _sz.width, _type );
}
inline
UMat::UMat(Size _sz, int _type, const Scalar& _s, UMatUsageFlags _usageFlags)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows)
{
create(_sz.height, _sz.width, _type);
*this = _s;
}
inline
UMat::UMat(int _dims, const int* _sz, int _type, UMatUsageFlags _usageFlags)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows)
{
create(_dims, _sz, _type);
}
inline
UMat::UMat(int _dims, const int* _sz, int _type, const Scalar& _s, UMatUsageFlags _usageFlags)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows)
{
create(_dims, _sz, _type);
*this = _s;
}
inline
UMat::UMat(const UMat& m)
: flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), allocator(m.allocator),
usageFlags(m.usageFlags), u(m.u), offset(m.offset), size(&rows)
{
addref();
if( m.dims <= 2 )
{
step[0] = m.step[0]; step[1] = m.step[1];
}
else
{
dims = 0;
copySize(m);
}
}
template<typename _Tp> inline template<typename _Tp> inline
UMat::UMat(const std::vector<_Tp>& vec, bool copyData) UMat::UMat(const std::vector<_Tp>& vec, bool copyData)
: flags(MAGIC_VAL | traits::Type<_Tp>::value | CV_MAT_CONT_FLAG), dims(2), rows((int)vec.size()), : flags(MAGIC_VAL | traits::Type<_Tp>::value | CV_MAT_CONT_FLAG), dims(2), rows((int)vec.size()),
@ -3751,33 +3282,6 @@ cols(1), allocator(0), usageFlags(USAGE_DEFAULT), u(0), offset(0), size(&rows)
Mat((int)vec.size(), 1, traits::Type<_Tp>::value, (uchar*)&vec[0]).copyTo(*this); Mat((int)vec.size(), 1, traits::Type<_Tp>::value, (uchar*)&vec[0]).copyTo(*this);
} }
inline
UMat& UMat::operator = (const UMat& m)
{
if( this != &m )
{
const_cast<UMat&>(m).addref();
release();
flags = m.flags;
if( dims <= 2 && m.dims <= 2 )
{
dims = m.dims;
rows = m.rows;
cols = m.cols;
step[0] = m.step[0];
step[1] = m.step[1];
}
else
copySize(m);
allocator = m.allocator;
if (usageFlags == USAGE_DEFAULT)
usageFlags = m.usageFlags;
u = m.u;
offset = m.offset;
}
return *this;
}
inline inline
UMat UMat::row(int y) const UMat UMat::row(int y) const
{ {
@ -3814,55 +3318,6 @@ UMat UMat::colRange(const Range& r) const
return UMat(*this, Range::all(), r); return UMat(*this, Range::all(), r);
} }
inline
UMat UMat::clone() const
{
UMat m;
copyTo(m);
return m;
}
inline
void UMat::assignTo( UMat& m, int _type ) const
{
if( _type < 0 )
m = *this;
else
convertTo(m, _type);
}
inline
void UMat::create(int _rows, int _cols, int _type, UMatUsageFlags _usageFlags)
{
_type &= TYPE_MASK;
if( dims <= 2 && rows == _rows && cols == _cols && type() == _type && u )
return;
int sz[] = {_rows, _cols};
create(2, sz, _type, _usageFlags);
}
inline
void UMat::create(Size _sz, int _type, UMatUsageFlags _usageFlags)
{
create(_sz.height, _sz.width, _type, _usageFlags);
}
inline
void UMat::addref()
{
if( u )
CV_XADD(&(u->urefcount), 1);
}
inline void UMat::release()
{
if( u && CV_XADD(&(u->urefcount), -1) == 1 )
deallocate();
for(int i = 0; i < dims; i++)
size.p[i] = 0;
u = 0;
}
inline inline
UMat UMat::operator()( Range _rowRange, Range _colRange ) const UMat UMat::operator()( Range _rowRange, Range _colRange ) const
{ {
@ -3937,23 +3392,6 @@ size_t UMat::step1(int i) const
return step.p[i] / elemSize1(); return step.p[i] / elemSize1();
} }
inline
bool UMat::empty() const
{
return u == 0 || total() == 0 || dims == 0;
}
inline
size_t UMat::total() const
{
if( dims <= 2 )
return (size_t)rows * cols;
size_t p = 1;
for( int i = 0; i < dims; i++ )
p *= size[i];
return p;
}
#ifdef CV_CXX_MOVE_SEMANTICS #ifdef CV_CXX_MOVE_SEMANTICS
inline inline

@ -204,6 +204,21 @@ MatAllocator* Mat::getStdAllocator()
//================================================================================================== //==================================================================================================
bool MatSize::operator==(const MatSize& sz) const
{
int d = dims();
int dsz = sz.dims();
if( d != dsz )
return false;
if( d == 2 )
return p[0] == sz.p[0] && p[1] == sz.p[1];
for( int i = 0; i < d; i++ )
if( p[i] != sz.p[i] )
return false;
return true;
}
void setSize( Mat& m, int _dims, const int* _sz, const size_t* _steps, bool autoSteps) void setSize( Mat& m, int _dims, const int* _sz, const size_t* _steps, bool autoSteps)
{ {
CV_Assert( 0 <= _dims && _dims <= CV_MAX_DIM ); CV_Assert( 0 <= _dims && _dims <= CV_MAX_DIM );
@ -320,7 +335,270 @@ void finalizeHdr(Mat& m)
m.dataend = m.datalimit = 0; m.dataend = m.datalimit = 0;
} }
//================================================================================================== //======================================= Mat ======================================================
Mat::Mat()
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{}
Mat::Mat(int _rows, int _cols, int _type)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{
create(_rows, _cols, _type);
}
Mat::Mat(int _rows, int _cols, int _type, const Scalar& _s)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{
create(_rows, _cols, _type);
*this = _s;
}
Mat::Mat(Size _sz, int _type)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{
create( _sz.height, _sz.width, _type );
}
Mat::Mat(Size _sz, int _type, const Scalar& _s)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{
create(_sz.height, _sz.width, _type);
*this = _s;
}
Mat::Mat(int _dims, const int* _sz, int _type)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{
create(_dims, _sz, _type);
}
Mat::Mat(int _dims, const int* _sz, int _type, const Scalar& _s)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{
create(_dims, _sz, _type);
*this = _s;
}
Mat::Mat(const std::vector<int>& _sz, int _type)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{
create(_sz, _type);
}
Mat::Mat(const std::vector<int>& _sz, int _type, const Scalar& _s)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0),
datalimit(0), allocator(0), u(0), size(&rows), step(0)
{
create(_sz, _type);
*this = _s;
}
Mat::Mat(const Mat& m)
: flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), data(m.data),
datastart(m.datastart), dataend(m.dataend), datalimit(m.datalimit), allocator(m.allocator),
u(m.u), size(&rows), step(0)
{
if( u )
CV_XADD(&u->refcount, 1);
if( m.dims <= 2 )
{
step[0] = m.step[0]; step[1] = m.step[1];
}
else
{
dims = 0;
copySize(m);
}
}
Mat::Mat(int _rows, int _cols, int _type, void* _data, size_t _step)
: flags(MAGIC_VAL + (_type & TYPE_MASK)), dims(2), rows(_rows), cols(_cols),
data((uchar*)_data), datastart((uchar*)_data), dataend(0), datalimit(0),
allocator(0), u(0), size(&rows)
{
CV_Assert(total() == 0 || data != NULL);
size_t esz = CV_ELEM_SIZE(_type), esz1 = CV_ELEM_SIZE1(_type);
size_t minstep = cols * esz;
if( _step == AUTO_STEP )
{
_step = minstep;
}
else
{
CV_Assert( _step >= minstep );
if (_step % esz1 != 0)
{
CV_Error(Error::BadStep, "Step must be a multiple of esz1");
}
}
step[0] = _step;
step[1] = esz;
datalimit = datastart + _step * rows;
dataend = datalimit - _step + minstep;
updateContinuityFlag();
}
Mat::Mat(Size _sz, int _type, void* _data, size_t _step)
: flags(MAGIC_VAL + (_type & TYPE_MASK)), dims(2), rows(_sz.height), cols(_sz.width),
data((uchar*)_data), datastart((uchar*)_data), dataend(0), datalimit(0),
allocator(0), u(0), size(&rows)
{
CV_Assert(total() == 0 || data != NULL);
size_t esz = CV_ELEM_SIZE(_type), esz1 = CV_ELEM_SIZE1(_type);
size_t minstep = cols*esz;
if( _step == AUTO_STEP )
{
_step = minstep;
}
else
{
CV_Assert(_step >= minstep);
if (_step % esz1 != 0)
{
CV_Error(Error::BadStep, "Step must be a multiple of esz1");
}
}
step[0] = _step;
step[1] = esz;
datalimit = datastart + _step*rows;
dataend = datalimit - _step + minstep;
updateContinuityFlag();
}
Mat::~Mat()
{
release();
if( step.p != step.buf )
fastFree(step.p);
}
Mat& Mat::operator=(const Mat& m)
{
if( this != &m )
{
if( m.u )
CV_XADD(&m.u->refcount, 1);
release();
flags = m.flags;
if( dims <= 2 && m.dims <= 2 )
{
dims = m.dims;
rows = m.rows;
cols = m.cols;
step[0] = m.step[0];
step[1] = m.step[1];
}
else
copySize(m);
data = m.data;
datastart = m.datastart;
dataend = m.dataend;
datalimit = m.datalimit;
allocator = m.allocator;
u = m.u;
}
return *this;
}
Mat Mat::clone() const
{
Mat m;
copyTo(m);
return m;
}
void Mat::assignTo( Mat& m, int _type ) const
{
if( _type < 0 )
m = *this;
else
convertTo(m, _type);
}
void Mat::create(int _rows, int _cols, int _type)
{
_type &= TYPE_MASK;
if( dims <= 2 && rows == _rows && cols == _cols && type() == _type && data )
return;
int sz[] = {_rows, _cols};
create(2, sz, _type);
}
void Mat::create(Size _sz, int _type)
{
create(_sz.height, _sz.width, _type);
}
void Mat::addref()
{
if( u )
CV_XADD(&u->refcount, 1);
}
void Mat::release()
{
if( u && CV_XADD(&u->refcount, -1) == 1 )
deallocate();
u = NULL;
datastart = dataend = datalimit = data = 0;
for(int i = 0; i < dims; i++)
size.p[i] = 0;
#ifdef _DEBUG
flags = MAGIC_VAL;
dims = rows = cols = 0;
if(step.p != step.buf)
{
fastFree(step.p);
step.p = step.buf;
size.p = &rows;
}
#endif
}
size_t Mat::step1(int i) const
{
return step.p[i] / elemSize1();
}
bool Mat::empty() const
{
return data == 0 || total() == 0 || dims == 0;
}
size_t Mat::total() const
{
if( dims <= 2 )
return (size_t)rows * cols;
size_t p = 1;
for( int i = 0; i < dims; i++ )
p *= size[i];
return p;
}
size_t Mat::total(int startDim, int endDim) const
{
CV_Assert( 0 <= startDim && startDim <= endDim);
size_t p = 1;
int endDim_ = endDim <= dims ? endDim : dims;
for( int i = startDim; i < endDim_; i++ )
p *= size[i];
return p;
}
void Mat::create(int d, const int* _sizes, int _type) void Mat::create(int d, const int* _sizes, int _type)
{ {

@ -176,6 +176,94 @@ void SparseMat::Hdr::clear()
nodeCount = freeList = 0; nodeCount = freeList = 0;
} }
///////////////////////////// SparseMat /////////////////////////////
SparseMat::SparseMat()
: flags(MAGIC_VAL), hdr(0)
{}
SparseMat::SparseMat(int _dims, const int* _sizes, int _type)
: flags(MAGIC_VAL), hdr(0)
{
create(_dims, _sizes, _type);
}
SparseMat::SparseMat(const SparseMat& m)
: flags(m.flags), hdr(m.hdr)
{
addref();
}
SparseMat::~SparseMat()
{
release();
}
SparseMat& SparseMat::operator = (const SparseMat& m)
{
if( this != &m )
{
if( m.hdr )
CV_XADD(&m.hdr->refcount, 1);
release();
flags = m.flags;
hdr = m.hdr;
}
return *this;
}
SparseMat& SparseMat::operator=(const Mat& m)
{
return (*this = SparseMat(m));
}
void SparseMat::assignTo(SparseMat& m, int _type) const
{
if( _type < 0 )
m = *this;
else
convertTo(m, _type);
}
void SparseMat::addref()
{
if( hdr )
CV_XADD(&hdr->refcount, 1);
}
void SparseMat::release()
{
if( hdr && CV_XADD(&hdr->refcount, -1) == 1 )
delete hdr;
hdr = 0;
}
size_t SparseMat::hash(int i0) const
{
return (size_t)i0;
}
size_t SparseMat::hash(int i0, int i1) const
{
return (size_t)(unsigned)i0 * HASH_SCALE + (unsigned)i1;
}
size_t SparseMat::hash(int i0, int i1, int i2) const
{
return ((size_t)(unsigned)i0 * HASH_SCALE + (unsigned)i1) * HASH_SCALE + (unsigned)i2;
}
size_t SparseMat::hash(const int* idx) const
{
size_t h = (unsigned)idx[0];
if( !hdr )
return 0;
int d = hdr->dims;
for(int i = 1; i < d; i++ )
h = h * HASH_SCALE + (unsigned)idx[i];
return h;
}
SparseMat::SparseMat(const Mat& m) SparseMat::SparseMat(const Mat& m)
: flags(MAGIC_VAL), hdr(0) : flags(MAGIC_VAL), hdr(0)

@ -228,6 +228,152 @@ UMatDataAutoLock::~UMatDataAutoLock()
getUMatDataAutoLocker().release(u1, u2); getUMatDataAutoLocker().release(u1, u2);
} }
//////////////////////////////// UMat ////////////////////////////////
UMat::UMat(UMatUsageFlags _usageFlags)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows)
{}
UMat::UMat(int _rows, int _cols, int _type, UMatUsageFlags _usageFlags)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows)
{
create(_rows, _cols, _type);
}
UMat::UMat(int _rows, int _cols, int _type, const Scalar& _s, UMatUsageFlags _usageFlags)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows)
{
create(_rows, _cols, _type);
*this = _s;
}
UMat::UMat(Size _sz, int _type, UMatUsageFlags _usageFlags)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows)
{
create( _sz.height, _sz.width, _type );
}
UMat::UMat(Size _sz, int _type, const Scalar& _s, UMatUsageFlags _usageFlags)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows)
{
create(_sz.height, _sz.width, _type);
*this = _s;
}
UMat::UMat(int _dims, const int* _sz, int _type, UMatUsageFlags _usageFlags)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows)
{
create(_dims, _sz, _type);
}
UMat::UMat(int _dims, const int* _sz, int _type, const Scalar& _s, UMatUsageFlags _usageFlags)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows)
{
create(_dims, _sz, _type);
*this = _s;
}
UMat::UMat(const UMat& m)
: flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), allocator(m.allocator),
usageFlags(m.usageFlags), u(m.u), offset(m.offset), size(&rows)
{
addref();
if( m.dims <= 2 )
{
step[0] = m.step[0]; step[1] = m.step[1];
}
else
{
dims = 0;
copySize(m);
}
}
UMat& UMat::operator=(const UMat& m)
{
if( this != &m )
{
const_cast<UMat&>(m).addref();
release();
flags = m.flags;
if( dims <= 2 && m.dims <= 2 )
{
dims = m.dims;
rows = m.rows;
cols = m.cols;
step[0] = m.step[0];
step[1] = m.step[1];
}
else
copySize(m);
allocator = m.allocator;
if (usageFlags == USAGE_DEFAULT)
usageFlags = m.usageFlags;
u = m.u;
offset = m.offset;
}
return *this;
}
UMat UMat::clone() const
{
UMat m;
copyTo(m);
return m;
}
void UMat::assignTo(UMat& m, int _type) const
{
if( _type < 0 )
m = *this;
else
convertTo(m, _type);
}
void UMat::create(int _rows, int _cols, int _type, UMatUsageFlags _usageFlags)
{
_type &= TYPE_MASK;
if( dims <= 2 && rows == _rows && cols == _cols && type() == _type && u )
return;
int sz[] = {_rows, _cols};
create(2, sz, _type, _usageFlags);
}
void UMat::create(Size _sz, int _type, UMatUsageFlags _usageFlags)
{
create(_sz.height, _sz.width, _type, _usageFlags);
}
void UMat::addref()
{
if( u )
CV_XADD(&(u->urefcount), 1);
}
void UMat::release()
{
if( u && CV_XADD(&(u->urefcount), -1) == 1 )
deallocate();
for(int i = 0; i < dims; i++)
size.p[i] = 0;
u = 0;
}
bool UMat::empty() const
{
return u == 0 || total() == 0 || dims == 0;
}
size_t UMat::total() const
{
if( dims <= 2 )
return (size_t)rows * cols;
size_t p = 1;
for( int i = 0; i < dims; i++ )
p *= size[i];
return p;
}
MatAllocator* UMat::getStdAllocator() MatAllocator* UMat::getStdAllocator()
{ {

Loading…
Cancel
Save