fix pylint warnings

pylint 1.8.3
pull/15718/head
Alexander Alekhin 5 years ago
parent d154fa4b4c
commit 0e40c8a031
  1. 2
      modules/python/test/test_misc.py
  2. 2
      samples/dnn/fast_neural_style.py
  3. 2
      samples/dnn/mobilenet_ssd_accuracy.py
  4. 2
      samples/dnn/text_detection.py
  5. 2
      samples/dnn/tf_text_graph_common.py
  6. 2
      samples/dnn/tf_text_graph_ssd.py
  7. 2
      samples/python/browse.py
  8. 4
      samples/python/calibrate.py
  9. 2
      samples/python/camera_calibration_show_extrinsics.py
  10. 2
      samples/python/color_histogram.py
  11. 2
      samples/python/edge.py
  12. 2
      samples/python/facedetect.py
  13. 1
      samples/python/fitline.py
  14. 2
      samples/python/houghcircles.py
  15. 4
      samples/python/houghlines.py
  16. 2
      samples/python/kmeans.py
  17. 2
      samples/python/lappyr.py
  18. 4
      samples/python/opt_flow.py
  19. 2
      samples/python/peopledetect.py
  20. 4
      samples/python/stereo_match.py
  21. 2
      samples/python/turing.py
  22. 18
      samples/python/tutorial_code/core/mat_operations/mat_operations.py
  23. 4
      samples/python/tutorial_code/imgProc/changing_contrast_brightness_image/changing_contrast_brightness_image.py
  24. 4
      samples/python/tutorial_code/ml/introduction_to_pca/introduction_to_pca.py
  25. 2
      samples/python/video_threaded.py
  26. 2
      samples/python/video_v4l2.py

@ -96,7 +96,7 @@ class SamplesFindFile(NewOpenCVTests):
def test_MissingFileException(self): def test_MissingFileException(self):
try: try:
res = cv.samples.findFile('non_existed.file', True) _res = cv.samples.findFile('non_existed.file', True)
self.assertEqual("Dead code", 0) self.assertEqual("Dead code", 0)
except cv.error as _e: except cv.error as _e:
pass pass

@ -14,7 +14,7 @@ parser.add_argument('--median_filter', default=0, type=int, help='Kernel size of
args = parser.parse_args() args = parser.parse_args()
net = cv.dnn.readNetFromTorch(cv.samples.findFile(args.model)) net = cv.dnn.readNetFromTorch(cv.samples.findFile(args.model))
net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV); net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
if args.input: if args.input:
cap = cv.VideoCapture(args.input) cap = cv.VideoCapture(args.input)

@ -27,7 +27,7 @@ args = parser.parse_args()
### Get OpenCV predictions ##################################################### ### Get OpenCV predictions #####################################################
net = cv.dnn.readNetFromTensorflow(cv.samples.findFile(args.weights), cv.samples.findFile(args.prototxt)) net = cv.dnn.readNetFromTensorflow(cv.samples.findFile(args.weights), cv.samples.findFile(args.prototxt))
net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV); net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
detections = [] detections = []
for imgName in os.listdir(args.images): for imgName in os.listdir(args.images):

@ -134,7 +134,7 @@ def main():
for j in range(4): for j in range(4):
p1 = (vertices[j][0], vertices[j][1]) p1 = (vertices[j][0], vertices[j][1])
p2 = (vertices[(j + 1) % 4][0], vertices[(j + 1) % 4][1]) p2 = (vertices[(j + 1) % 4][0], vertices[(j + 1) % 4][1])
cv.line(frame, p1, p2, (0, 255, 0), 1); cv.line(frame, p1, p2, (0, 255, 0), 1)
# Put efficiency information # Put efficiency information
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0)) cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))

@ -21,7 +21,7 @@ def tokenize(s):
elif token: elif token:
tokens.append(token) tokens.append(token)
token = "" token = ""
isString = (symbol == '\"' or symbol == '\'') ^ isString; isString = (symbol == '\"' or symbol == '\'') ^ isString
elif symbol == '{' or symbol == '}' or symbol == '[' or symbol == ']': elif symbol == '{' or symbol == '}' or symbol == '[' or symbol == ']':
if token: if token:

@ -122,7 +122,7 @@ def createSSDGraph(modelPath, configPath, outputPath):
print('Input image size: %dx%d' % (image_width, image_height)) print('Input image size: %dx%d' % (image_width, image_height))
# Read the graph. # Read the graph.
inpNames = ['image_tensor'] _inpNames = ['image_tensor']
outNames = ['num_detections', 'detection_scores', 'detection_boxes', 'detection_classes'] outNames = ['num_detections', 'detection_scores', 'detection_boxes', 'detection_classes']
writeTextGraph(modelPath, outputPath, outNames) writeTextGraph(modelPath, outputPath, outNames)

@ -45,7 +45,7 @@ def main():
small = img small = img
for i in xrange(3): for _i in xrange(3):
small = cv.pyrDown(small) small = cv.pyrDown(small)
def onmouse(event, x, y, flags, param): def onmouse(event, x, y, flags, param):

@ -97,7 +97,7 @@ def main():
obj_points.append(pattern_points) obj_points.append(pattern_points)
# calculate camera distortion # calculate camera distortion
rms, camera_matrix, dist_coefs, rvecs, tvecs = cv.calibrateCamera(obj_points, img_points, (w, h), None, None) rms, camera_matrix, dist_coefs, _rvecs, _tvecs = cv.calibrateCamera(obj_points, img_points, (w, h), None, None)
print("\nRMS:", rms) print("\nRMS:", rms)
print("camera matrix:\n", camera_matrix) print("camera matrix:\n", camera_matrix)
@ -106,7 +106,7 @@ def main():
# undistort the image with the calibration # undistort the image with the calibration
print('') print('')
for fn in img_names if debug_dir else []: for fn in img_names if debug_dir else []:
path, name, ext = splitfn(fn) _path, name, _ext = splitfn(fn)
img_found = os.path.join(debug_dir, name + '_chess.png') img_found = os.path.join(debug_dir, name + '_chess.png')
outfile = os.path.join(debug_dir, name + '_undistorted.png') outfile = os.path.join(debug_dir, name + '_undistorted.png')

@ -184,7 +184,7 @@ def main():
extrinsics = fs.getNode('extrinsic_parameters').mat() extrinsics = fs.getNode('extrinsic_parameters').mat()
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d import Axes3D # pylint: disable=unused-variable
fig = plt.figure() fig = plt.figure()
ax = fig.gca(projection='3d') ax = fig.gca(projection='3d')

@ -46,7 +46,7 @@ class App():
cam = video.create_capture(fn, fallback='synth:bg=baboon.jpg:class=chess:noise=0.05') cam = video.create_capture(fn, fallback='synth:bg=baboon.jpg:class=chess:noise=0.05')
while True: while True:
flag, frame = cam.read() _flag, frame = cam.read()
cv.imshow('camera', frame) cv.imshow('camera', frame)
small = cv.pyrDown(frame) small = cv.pyrDown(frame)

@ -38,7 +38,7 @@ def main():
cap = video.create_capture(fn) cap = video.create_capture(fn)
while True: while True:
flag, img = cap.read() _flag, img = cap.read()
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
thrs1 = cv.getTrackbarPos('thrs1', 'edge') thrs1 = cv.getTrackbarPos('thrs1', 'edge')
thrs2 = cv.getTrackbarPos('thrs2', 'edge') thrs2 = cv.getTrackbarPos('thrs2', 'edge')

@ -48,7 +48,7 @@ def main():
cam = create_capture(video_src, fallback='synth:bg={}:noise=0.05'.format(cv.samples.findFile('samples/data/lena.jpg'))) cam = create_capture(video_src, fallback='synth:bg={}:noise=0.05'.format(cv.samples.findFile('samples/data/lena.jpg')))
while True: while True:
ret, img = cam.read() _ret, img = cam.read()
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
gray = cv.equalizeHist(gray) gray = cv.equalizeHist(gray)

@ -88,6 +88,7 @@ def main():
update() update()
ch = cv.waitKey(0) ch = cv.waitKey(0)
if ch == ord('f'): if ch == ord('f'):
global cur_func_name
if PY3: if PY3:
cur_func_name = next(dist_func_names) cur_func_name = next(dist_func_names)
else: else:

@ -30,7 +30,7 @@ def main():
circles = cv.HoughCircles(img, cv.HOUGH_GRADIENT, 1, 10, np.array([]), 100, 30, 1, 30) circles = cv.HoughCircles(img, cv.HOUGH_GRADIENT, 1, 10, np.array([]), 100, 30, 1, 30)
if circles is not None: # Check if circles have been found and only then iterate over these and add them to the image if circles is not None: # Check if circles have been found and only then iterate over these and add them to the image
a, b, c = circles.shape _a, b, _c = circles.shape
for i in range(b): for i in range(b):
cv.circle(cimg, (circles[0][i][0], circles[0][i][1]), circles[0][i][2], (0, 0, 255), 3, cv.LINE_AA) cv.circle(cimg, (circles[0][i][0], circles[0][i][1]), circles[0][i][2], (0, 0, 255), 3, cv.LINE_AA)
cv.circle(cimg, (circles[0][i][0], circles[0][i][1]), 2, (0, 255, 0), 3, cv.LINE_AA) # draw center of circle cv.circle(cimg, (circles[0][i][0], circles[0][i][1]), 2, (0, 255, 0), 3, cv.LINE_AA) # draw center of circle

@ -29,14 +29,14 @@ def main():
if True: # HoughLinesP if True: # HoughLinesP
lines = cv.HoughLinesP(dst, 1, math.pi/180.0, 40, np.array([]), 50, 10) lines = cv.HoughLinesP(dst, 1, math.pi/180.0, 40, np.array([]), 50, 10)
a,b,c = lines.shape a, b, _c = lines.shape
for i in range(a): for i in range(a):
cv.line(cdst, (lines[i][0][0], lines[i][0][1]), (lines[i][0][2], lines[i][0][3]), (0, 0, 255), 3, cv.LINE_AA) cv.line(cdst, (lines[i][0][0], lines[i][0][1]), (lines[i][0][2], lines[i][0][3]), (0, 0, 255), 3, cv.LINE_AA)
else: # HoughLines else: # HoughLines
lines = cv.HoughLines(dst, 1, math.pi/180.0, 50, np.array([]), 0, 0) lines = cv.HoughLines(dst, 1, math.pi/180.0, 50, np.array([]), 0, 0)
if lines is not None: if lines is not None:
a,b,c = lines.shape a, b, _c = lines.shape
for i in range(a): for i in range(a):
rho = lines[i][0][0] rho = lines[i][0][0]
theta = lines[i][0][1] theta = lines[i][0][1]

@ -33,7 +33,7 @@ def main():
points, _ = make_gaussians(cluster_n, img_size) points, _ = make_gaussians(cluster_n, img_size)
term_crit = (cv.TERM_CRITERIA_EPS, 30, 0.1) term_crit = (cv.TERM_CRITERIA_EPS, 30, 0.1)
ret, labels, centers = cv.kmeans(points, cluster_n, None, term_crit, 10, 0) _ret, labels, _centers = cv.kmeans(points, cluster_n, None, term_crit, 10, 0)
img = np.zeros((img_size, img_size, 3), np.uint8) img = np.zeros((img_size, img_size, 3), np.uint8)
for (x, y), label in zip(np.int32(points), labels.ravel()): for (x, y), label in zip(np.int32(points), labels.ravel()):

@ -60,7 +60,7 @@ def main():
cv.createTrackbar('%d'%i, 'level control', 5, 50, nothing) cv.createTrackbar('%d'%i, 'level control', 5, 50, nothing)
while True: while True:
ret, frame = cap.read() _ret, frame = cap.read()
pyr = build_lappyr(frame, leveln) pyr = build_lappyr(frame, leveln)
for i in xrange(leveln): for i in xrange(leveln):

@ -64,14 +64,14 @@ def main():
fn = 0 fn = 0
cam = video.create_capture(fn) cam = video.create_capture(fn)
ret, prev = cam.read() _ret, prev = cam.read()
prevgray = cv.cvtColor(prev, cv.COLOR_BGR2GRAY) prevgray = cv.cvtColor(prev, cv.COLOR_BGR2GRAY)
show_hsv = False show_hsv = False
show_glitch = False show_glitch = False
cur_glitch = prev.copy() cur_glitch = prev.copy()
while True: while True:
ret, img = cam.read() _ret, img = cam.read()
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
flow = cv.calcOpticalFlowFarneback(prevgray, gray, None, 0.5, 3, 15, 3, 5, 1.2, 0) flow = cv.calcOpticalFlowFarneback(prevgray, gray, None, 0.5, 3, 15, 3, 5, 1.2, 0)
prevgray = gray prevgray = gray

@ -51,7 +51,7 @@ def main():
print('loading error') print('loading error')
continue continue
found, w = hog.detectMultiScale(img, winStride=(8,8), padding=(32,32), scale=1.05) found, _w = hog.detectMultiScale(img, winStride=(8,8), padding=(32,32), scale=1.05)
found_filtered = [] found_filtered = []
for ri, r in enumerate(found): for ri, r in enumerate(found):
for qi, q in enumerate(found): for qi, q in enumerate(found):

@ -69,8 +69,8 @@ def main():
out_points = points[mask] out_points = points[mask]
out_colors = colors[mask] out_colors = colors[mask]
out_fn = 'out.ply' out_fn = 'out.ply'
write_ply('out.ply', out_points, out_colors) write_ply(out_fn, out_points, out_colors)
print('%s saved' % 'out.ply') print('%s saved' % out_fn)
cv.imshow('left', imgL) cv.imshow('left', imgL)
cv.imshow('disparity', (disp-min_disp)/num_disp) cv.imshow('disparity', (disp-min_disp)/num_disp)

@ -32,7 +32,7 @@ def main():
w, h = 512, 512 w, h = 512, 512
args, args_list = getopt.getopt(sys.argv[1:], 'o:', []) args, _args_list = getopt.getopt(sys.argv[1:], 'o:', [])
args = dict(args) args = dict(args)
out = None out = None
if '-o' in args: if '-o' in args:

@ -25,13 +25,13 @@ def access_pixel():
y = 0 y = 0
x = 0 x = 0
## [Pixel access 1] ## [Pixel access 1]
intensity = img[y,x] _intensity = img[y,x]
## [Pixel access 1] ## [Pixel access 1]
## [Pixel access 3] ## [Pixel access 3]
blue = img[y,x,0] _blue = img[y,x,0]
green = img[y,x,1] _green = img[y,x,1]
red = img[y,x,2] _red = img[y,x,2]
## [Pixel access 3] ## [Pixel access 3]
## [Pixel access 5] ## [Pixel access 5]
@ -42,12 +42,12 @@ def reference_counting():
# Memory management and reference counting # Memory management and reference counting
## [Reference counting 2] ## [Reference counting 2]
img = cv.imread('image.jpg') img = cv.imread('image.jpg')
img1 = np.copy(img) _img1 = np.copy(img)
## [Reference counting 2] ## [Reference counting 2]
## [Reference counting 3] ## [Reference counting 3]
img = cv.imread('image.jpg') img = cv.imread('image.jpg')
sobelx = cv.Sobel(img, cv.CV_32F, 1, 0); _sobelx = cv.Sobel(img, cv.CV_32F, 1, 0)
## [Reference counting 3] ## [Reference counting 3]
def primitive_operations(): def primitive_operations():
@ -57,17 +57,17 @@ def primitive_operations():
## [Set image to black] ## [Set image to black]
## [Select ROI] ## [Select ROI]
smallImg = img[10:110,10:110] _smallImg = img[10:110,10:110]
## [Select ROI] ## [Select ROI]
## [BGR to Gray] ## [BGR to Gray]
img = cv.imread('image.jpg') img = cv.imread('image.jpg')
grey = cv.cvtColor(img, cv.COLOR_BGR2GRAY) _grey = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
## [BGR to Gray] ## [BGR to Gray]
src = np.ones((4,4), np.uint8) src = np.ones((4,4), np.uint8)
## [Convert to CV_32F] ## [Convert to CV_32F]
dst = src.astype(np.float32) _dst = src.astype(np.float32)
## [Convert to CV_32F] ## [Convert to CV_32F]
def visualize_images(): def visualize_images():

@ -25,8 +25,8 @@ def gammaCorrection():
res = cv.LUT(img_original, lookUpTable) res = cv.LUT(img_original, lookUpTable)
## [changing-contrast-brightness-gamma-correction] ## [changing-contrast-brightness-gamma-correction]
img_gamma_corrected = cv.hconcat([img_original, res]); img_gamma_corrected = cv.hconcat([img_original, res])
cv.imshow("Gamma correction", img_gamma_corrected); cv.imshow("Gamma correction", img_gamma_corrected)
def on_linear_transform_alpha_trackbar(val): def on_linear_transform_alpha_trackbar(val):
global alpha global alpha

@ -85,13 +85,13 @@ _, contours, _ = cv.findContours(bw, cv.RETR_LIST, cv.CHAIN_APPROX_NONE)
for i, c in enumerate(contours): for i, c in enumerate(contours):
# Calculate the area of each contour # Calculate the area of each contour
area = cv.contourArea(c); area = cv.contourArea(c)
# Ignore contours that are too small or too large # Ignore contours that are too small or too large
if area < 1e2 or 1e5 < area: if area < 1e2 or 1e5 < area:
continue continue
# Draw each contour only for visualisation purposes # Draw each contour only for visualisation purposes
cv.drawContours(src, contours, i, (0, 0, 255), 2); cv.drawContours(src, contours, i, (0, 0, 255), 2)
# Find the orientation of each shape # Find the orientation of each shape
getOrientation(c, src) getOrientation(c, src)
## [contours] ## [contours]

@ -70,7 +70,7 @@ def main():
draw_str(res, (20, 60), "frame interval : %.1f ms" % (frame_interval.value*1000)) draw_str(res, (20, 60), "frame interval : %.1f ms" % (frame_interval.value*1000))
cv.imshow('threaded video', res) cv.imshow('threaded video', res)
if len(pending) < threadn: if len(pending) < threadn:
ret, frame = cap.read() _ret, frame = cap.read()
t = clock() t = clock()
frame_interval.update(t - last_frame_time) frame_interval.update(t - last_frame_time)
last_frame_time = t last_frame_time = t

@ -42,7 +42,7 @@ def main():
cv.createTrackbar("Focus", "Video", focus, 100, lambda v: cap.set(cv.CAP_PROP_FOCUS, v / 100)) cv.createTrackbar("Focus", "Video", focus, 100, lambda v: cap.set(cv.CAP_PROP_FOCUS, v / 100))
while True: while True:
status, img = cap.read() _status, img = cap.read()
fourcc = decode_fourcc(cap.get(cv.CAP_PROP_FOURCC)) fourcc = decode_fourcc(cap.get(cv.CAP_PROP_FOURCC))

Loading…
Cancel
Save