|
|
|
@ -622,7 +622,7 @@ void RNG::fill( InputOutputArray _mat, int disttype, |
|
|
|
|
int ptype = depth == CV_64F ? CV_64F : CV_32F; |
|
|
|
|
int esz = (int)CV_ELEM_SIZE(ptype); |
|
|
|
|
|
|
|
|
|
if( _param1.isContinuous() && _param1.type() == ptype ) |
|
|
|
|
if( _param1.isContinuous() && _param1.type() == ptype && n1 >= cn) |
|
|
|
|
mean = _param1.data; |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
@ -635,18 +635,18 @@ void RNG::fill( InputOutputArray _mat, int disttype, |
|
|
|
|
for( j = n1*esz; j < cn*esz; j++ ) |
|
|
|
|
mean[j] = mean[j - n1*esz]; |
|
|
|
|
|
|
|
|
|
if( _param2.isContinuous() && _param2.type() == ptype ) |
|
|
|
|
if( _param2.isContinuous() && _param2.type() == ptype && n2 >= cn) |
|
|
|
|
stddev = _param2.data; |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
Mat tmp(_param2.size(), ptype, parambuf + cn); |
|
|
|
|
Mat tmp(_param2.size(), ptype, parambuf + MAX(n1, cn)); |
|
|
|
|
_param2.convertTo(tmp, ptype); |
|
|
|
|
stddev = (uchar*)(parambuf + cn); |
|
|
|
|
stddev = (uchar*)(parambuf + MAX(n1, cn)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( n1 < cn ) |
|
|
|
|
for( j = n1*esz; j < cn*esz; j++ ) |
|
|
|
|
stddev[j] = stddev[j - n1*esz]; |
|
|
|
|
if( n2 < cn ) |
|
|
|
|
for( j = n2*esz; j < cn*esz; j++ ) |
|
|
|
|
stddev[j] = stddev[j - n2*esz]; |
|
|
|
|
|
|
|
|
|
stdmtx = _param2.rows == cn && _param2.cols == cn; |
|
|
|
|
scaleFunc = randnScaleTab[depth]; |
|
|
|
|