@ -25,37 +25,37 @@ The sample has been rejected if it fall rejection threshold. So stageless cascad
.. [BMTG12] Rodrigo Benenson, Markus Mathias, Radu Timofte and Luc Van Gool. Pedestrian detection at 100 frames per second. IEEE CVPR, 2012.
.. [BMTG12] Rodrigo Benenson, Markus Mathias, Radu Timofte and Luc Van Gool. Pedestrian detection at 100 frames per second. IEEE CVPR, 2012.
Detector
softcascade:: Detector
-------------------
---------------------
.. ocv:class :: Detector
.. ocv:class :: softcascade:: Detector : public Algorithm
Implementation of soft (stageless) cascaded detector. ::
Implementation of soft (stageless) cascaded detector. ::
class CV_EXPORTS_W Detector : public Algorithm
class Detector : public Algorithm
{
{
public:
public:
enum { NO_REJECT = 1, DOLLAR = 2, /*PASCAL = 4,* / DEFAULT = NO_REJECT};
enum { NO_REJECT = 1, DOLLAR = 2, /*PASCAL = 4,* / DEFAULT = NO_REJECT};
CV_WRAP Detector(double minScale = 0.4, double maxScale = 5., int scales = 55, int rejCriteria = 1);
Detector(double minScale = 0.4, double maxScale = 5., int scales = 55, int rejCriteria = 1);
CV_WRAP virtual ~Detector();
virtual ~Detector();
cv::AlgorithmInfo* info() const;
cv::AlgorithmInfo* info() const;
CV_WRAP virtual bool load(const FileNode& fileNode);
virtual bool load(const FileNode& fileNode);
CV_WRAP virtual void read(const FileNode& fileNode);
virtual void read(const FileNode& fileNode);
virtual void detect(InputArray image, InputArray rois, std::vector<Detection>& objects) const;
virtual void detect(InputArray image, InputArray rois, std::vector<Detection>& objects) const;
CV_WRAP virtual void detect(InputArray image, InputArray rois, CV_OUT OutputArray rects, CV_OUT OutputArray confs) const;
virtual void detect(InputArray image, InputArray rois, CV_OUT OutputArray rects, CV_OUT OutputArray confs) const;
}
}
Detector::Detector
softcascade:: Detector::Detector
----------------------------------------
----------------------------------------
An empty cascade will be created.
An empty cascade will be created.
.. ocv:function :: Detector::Detector(float minScale = 0.4f, float maxScale = 5.f, int scales = 55, int rejCriteria = 1 )
.. ocv:function :: softcascade::Detector::Detector( double minScale=0.4, double maxScale=5., int scales=55, int rejCriteria=1 )
.. ocv:pyfunction :: cv2.Detector.Detector(minScale[, maxScale[, scales[, rejCriteria]]]) -> cascade
.. ocv:pyfunction :: cv2.softcascade_Detector([minScale[, maxScale[, scales[, rejCriteria]]]]) -> <softcascade_Detector object>
:param minScale: a minimum scale relative to the original size of the image on which cascade will be applied.
:param minScale: a minimum scale relative to the original size of the image on which cascade will be applied.
@ -67,35 +67,35 @@ An empty cascade will be created.
Detector::~Detector
softcascade:: Detector::~Detector
-----------------------------------------
-----------------------------------------
Destructor for Detector.
Destructor for Detector.
.. ocv:function :: Detector::~Detector()
.. ocv:function :: softcascade:: Detector::~Detector()
Detector::load
softcascade:: Detector::load
--------------------------
---------------------------
Load cascade from FileNode.
Load cascade from FileNode.
.. ocv:function :: bool Detector::load(const FileNode& fileNode)
.. ocv:function :: bool softcascade:: Detector::load(const FileNode& fileNode)
.. ocv:pyfunction :: cv2.Detector.load(fileNode)
.. ocv:pyfunction :: cv2.softcascade_ Detector.load(fileNode) -> retval
:param fileNode: File node from which the soft cascade are read.
:param fileNode: File node from which the soft cascade are read.
Detector::detect
softcascade:: Detector::detect
---------------------------
-----------------------------
Apply cascade to an input frame and return the vector of Detection objects.
Apply cascade to an input frame and return the vector of Detection objects.
.. ocv:function :: void Detector::detect(InputArray image, InputArray rois, std::vector<Detection>& objects) const
.. ocv:function :: void softcascade:: Detector::detect(InputArray image, InputArray rois, std::vector<Detection>& objects) const
.. ocv:function :: void Detector::detect(InputArray image, InputArray rois, OutputArray rects, OutputArray confs) const
.. ocv:function :: void softcascade:: Detector::detect(InputArray image, InputArray rois, OutputArray rects, OutputArray confs) const
.. ocv:pyfunction :: cv2.Detector.detect(image, rois) -> ( rects, confs)
.. ocv:pyfunction :: cv2.softcascade_ Detector.detect(image, rois[, rects[, confs]] ) -> rects, confs
:param image: a frame on which detector will be applied.
:param image: a frame on which detector will be applied.
@ -108,37 +108,39 @@ Apply cascade to an input frame and return the vector of Detection objects.
:param confs: an output array of confidence for detected objects. i-th bounding rectangle corresponds i-th confidence.
:param confs: an output array of confidence for detected objects. i-th bounding rectangle corresponds i-th confidence.
ChannelFeatureBuilder
softcascade:: ChannelFeatureBuilder
---------------------
----------------------------------
.. ocv:class :: ChannelFeatureBuilder
.. ocv:class :: softcascade:: ChannelFeatureBuilder : public Algorithm
Public interface for of soft (stageless) cascaded detector. ::
Public interface for of soft (stageless) cascaded detector. ::
class CV_EXPORTS_W C hannelFeatureBuilder : public Algorithm
class ChannelFeatureBuilder : public Algorithm
{
{
public:
public:
virtual ~ChannelFeatureBuilder();
virtual ~ChannelFeatureBuilder();
CV_WRAP_AS(compute) virtual void operator()(InputArray src, CV_OUT OutputArray channels) const = 0;
virtual void operator()(InputArray src, CV_OUT OutputArray channels) const = 0;
CV_WRAP static cv::Ptr<ChannelFeatureBuilder> create();
static cv::Ptr<ChannelFeatureBuilder> create();
};
};
ChannelFeatureBuilder:~ChannelFeatureBuilder
softcascade:: ChannelFeatureBuilder:~ChannelFeatureBuilder
--------------------------------------------
---------------------------------------------------------
Destructor for ChannelFeatureBuilder.
Destructor for ChannelFeatureBuilder.
.. ocv:function :: ChannelFeatureBuilder::~ChannelFeatureBuilder()
.. ocv:function :: softcascade::ChannelFeatureBuilder::~ChannelFeatureBuilder()
.. ocv:pyfunction :: cv2.softcascade_ChannelFeatureBuilder_create() -> retval
ChannelFeatureBuilder::operator()
softcascade:: ChannelFeatureBuilder::operator()
---------------------------------
----------------------------------------------
Create channel feature integrals for input image.
Create channel feature integrals for input image.
.. ocv:function :: void ChannelFeatureBuilder::operator()(InputArray src, OutputArray channels) const
.. ocv:function :: void softcascade:: ChannelFeatureBuilder::operator()(InputArray src, OutputArray channels) const
.. ocv:pyfunction :: cv2.ChannelFeatureBuilder.compute(src, channels) -> None
.. ocv:pyfunction :: cv2.softcascade_ ChannelFeatureBuilder.compute(src, channels) -> None
:param src source frame
:param src source frame