Merge pull request #12071 from l-bat/l-bat:onnx_parser
* Add Squeezenet support in ONNX * Add AlexNet support in ONNX * Add Googlenet support in ONNX * Add CaffeNet and RCNN support in ONNX * Add VGG16 and VGG16 with batch normalization support in ONNX * Add RCNN, ZFNet, ResNet18v1 and ResNet50v1 support in ONNX * Add ResNet101_DUC_HDC * Add Tiny Yolov2 * Add CNN_MNIST, MobileNetv2 and LResNet100 support in ONNX * Add ONNX models for emotion recognition * Add DenseNet121 support in ONNX * Add Inception v1 support in ONNX * Refactoring * Fix tests * Fix tests * Skip unstable test * Modify Reshape operationpull/12488/head
parent
c331a214d0
commit
0c8590027f
10 changed files with 14229 additions and 4 deletions
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,585 @@ |
|||||||
|
// This file is part of OpenCV project.
|
||||||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||||
|
// of this distribution and at http://opencv.org/license.html.
|
||||||
|
|
||||||
|
// Copyright (C) 2018, Intel Corporation, all rights reserved.
|
||||||
|
// Third party copyrights are property of their respective owners.
|
||||||
|
|
||||||
|
#include "../precomp.hpp" |
||||||
|
|
||||||
|
#ifdef HAVE_PROTOBUF |
||||||
|
|
||||||
|
#include <iostream> |
||||||
|
#include <fstream> |
||||||
|
#include <string> |
||||||
|
#include <limits> |
||||||
|
#include <algorithm> |
||||||
|
|
||||||
|
|
||||||
|
#if defined(__GNUC__) && __GNUC__ >= 5 |
||||||
|
#pragma GCC diagnostic push |
||||||
|
#pragma GCC diagnostic ignored "-Wsuggest-override" |
||||||
|
#endif |
||||||
|
#include "opencv-onnx.pb.h" |
||||||
|
#if defined(__GNUC__) && __GNUC__ >= 5 |
||||||
|
#pragma GCC diagnostic pop |
||||||
|
#endif |
||||||
|
|
||||||
|
namespace cv { |
||||||
|
namespace dnn { |
||||||
|
CV__DNN_EXPERIMENTAL_NS_BEGIN |
||||||
|
|
||||||
|
|
||||||
|
class ONNXImporter |
||||||
|
{ |
||||||
|
opencv_onnx::ModelProto model_proto; |
||||||
|
struct LayerInfo { |
||||||
|
int layerId; |
||||||
|
int outputId; |
||||||
|
LayerInfo(int _layerId, int _outputId) : layerId(_layerId), outputId(_outputId) {} |
||||||
|
}; |
||||||
|
|
||||||
|
std::map<std::string, Mat> getGraphTensors( |
||||||
|
const opencv_onnx::GraphProto& graph_proto); |
||||||
|
Mat getBlob(const opencv_onnx::NodeProto& node_proto, const std::map<std::string, Mat>& constBlobs, int index); |
||||||
|
|
||||||
|
LayerParams getLayerParams(const opencv_onnx::NodeProto& node_proto); |
||||||
|
bool isCeilMode(const LayerParams& layerParams); |
||||||
|
|
||||||
|
public: |
||||||
|
|
||||||
|
ONNXImporter(const char *onnxFile) |
||||||
|
{ |
||||||
|
std::fstream input(onnxFile, std::ios::in | std::ios::binary); |
||||||
|
|
||||||
|
if (!model_proto.ParseFromIstream(&input)) |
||||||
|
CV_Error(Error::StsUnsupportedFormat, "Failed to parse onnx model"); |
||||||
|
} |
||||||
|
|
||||||
|
void populateNet(Net dstNet); |
||||||
|
}; |
||||||
|
|
||||||
|
inline void replaceLayerParam(LayerParams& layerParams, const String& oldKey, const String& newKey) |
||||||
|
{ |
||||||
|
if (layerParams.has(oldKey)) { |
||||||
|
layerParams.set(newKey, layerParams.get(oldKey)); |
||||||
|
layerParams.erase(oldKey); |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
void releaseONNXTensor(opencv_onnx::TensorProto& tensor_proto) |
||||||
|
{ |
||||||
|
if (!tensor_proto.raw_data().empty()) { |
||||||
|
delete tensor_proto.release_raw_data(); |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
template<typename T1, typename T2> |
||||||
|
void convertInt64ToInt32(const T1& src, T2& dst, int size) |
||||||
|
{ |
||||||
|
for (int i = 0; i < size; i++) { |
||||||
|
if (src[i] < std::numeric_limits<int32_t>::min() || src[i] > std::numeric_limits<int32_t>::max()) { |
||||||
|
CV_Error(Error::StsOutOfRange, "Input is out of OpenCV 32S range"); |
||||||
|
} |
||||||
|
dst[i] = saturate_cast<int32_t>(src[i]); |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
Mat getMatFromTensor(opencv_onnx::TensorProto& tensor_proto) |
||||||
|
{ |
||||||
|
CV_Assert(!tensor_proto.raw_data().empty() || !tensor_proto.float_data().empty() |
||||||
|
|| !tensor_proto.double_data().empty() || !tensor_proto.int64_data().empty()); |
||||||
|
|
||||||
|
opencv_onnx::TensorProto_DataType datatype = tensor_proto.data_type(); |
||||||
|
Mat blob; |
||||||
|
std::vector<int> sizes; |
||||||
|
for (int i = 0; i < tensor_proto.dims_size(); i++) { |
||||||
|
sizes.push_back(tensor_proto.dims(i)); |
||||||
|
} |
||||||
|
if (datatype == opencv_onnx::TensorProto_DataType_FLOAT) { |
||||||
|
|
||||||
|
if (!tensor_proto.float_data().empty()) { |
||||||
|
const ::google::protobuf::RepeatedField<float> field = tensor_proto.float_data(); |
||||||
|
Mat(sizes, CV_32FC1, (void*)field.data()).copyTo(blob); |
||||||
|
} |
||||||
|
else { |
||||||
|
char* val = const_cast<char*>(tensor_proto.raw_data().c_str()); |
||||||
|
Mat(sizes, CV_32FC1, val).copyTo(blob); |
||||||
|
} |
||||||
|
} |
||||||
|
else if (datatype == opencv_onnx::TensorProto_DataType_DOUBLE) |
||||||
|
{ |
||||||
|
const ::google::protobuf::RepeatedField<double> field = tensor_proto.double_data(); |
||||||
|
CV_Assert(!field.empty()); |
||||||
|
Mat(sizes, CV_64FC1, (void*)field.data()).convertTo(blob, CV_32FC1); |
||||||
|
} |
||||||
|
else if (datatype == opencv_onnx::TensorProto_DataType_INT64) |
||||||
|
{ |
||||||
|
blob.create(sizes, CV_32SC1); |
||||||
|
int32_t* dst = reinterpret_cast<int32_t*>(blob.data); |
||||||
|
|
||||||
|
if (!tensor_proto.int64_data().empty()) { |
||||||
|
::google::protobuf::RepeatedField< ::google::protobuf::int64> src = tensor_proto.int64_data(); |
||||||
|
convertInt64ToInt32(src, dst, blob.total()); |
||||||
|
} |
||||||
|
else |
||||||
|
{ |
||||||
|
char* val = const_cast<char*>(tensor_proto.raw_data().c_str()); |
||||||
|
int64_t* src = reinterpret_cast<int64_t*>(val); |
||||||
|
convertInt64ToInt32(src, dst, blob.total()); |
||||||
|
} |
||||||
|
} |
||||||
|
else |
||||||
|
CV_Error(Error::StsUnsupportedFormat, "Unsupported data type: " + |
||||||
|
opencv_onnx::TensorProto_DataType_Name(datatype)); |
||||||
|
return blob; |
||||||
|
} |
||||||
|
|
||||||
|
std::map<std::string, Mat> ONNXImporter::getGraphTensors( |
||||||
|
const opencv_onnx::GraphProto& graph_proto) |
||||||
|
{ |
||||||
|
opencv_onnx::TensorProto tensor_proto; |
||||||
|
std::map<std::string, Mat> layers_weights; |
||||||
|
|
||||||
|
for (int i = 0; i < graph_proto.initializer_size(); i++) |
||||||
|
{ |
||||||
|
tensor_proto = graph_proto.initializer(i); |
||||||
|
Mat mat = getMatFromTensor(tensor_proto); |
||||||
|
releaseONNXTensor(tensor_proto); |
||||||
|
layers_weights.insert(std::make_pair(tensor_proto.name(), mat)); |
||||||
|
} |
||||||
|
return layers_weights; |
||||||
|
} |
||||||
|
|
||||||
|
LayerParams ONNXImporter::getLayerParams(const opencv_onnx::NodeProto& node_proto) |
||||||
|
{ |
||||||
|
LayerParams lp; |
||||||
|
for(int i = 0; i < node_proto.attribute_size(); i++) |
||||||
|
{ |
||||||
|
opencv_onnx::AttributeProto attribute_proto = node_proto.attribute(i); |
||||||
|
std::string attribute_name = attribute_proto.name(); |
||||||
|
|
||||||
|
if(attribute_name == "kernel_shape") |
||||||
|
{ |
||||||
|
CV_Assert(attribute_proto.ints_size() == 2); |
||||||
|
lp.set("kernel_h", saturate_cast<int32_t>(attribute_proto.ints(0))); |
||||||
|
lp.set("kernel_w", saturate_cast<int32_t>(attribute_proto.ints(1))); |
||||||
|
} |
||||||
|
else if(attribute_name == "strides") |
||||||
|
{ |
||||||
|
CV_Assert(attribute_proto.ints_size() == 2); |
||||||
|
lp.set("stride_h", saturate_cast<int32_t>(attribute_proto.ints(0))); |
||||||
|
lp.set("stride_w", saturate_cast<int32_t>(attribute_proto.ints(1))); |
||||||
|
} |
||||||
|
else if(attribute_name == "pads") |
||||||
|
{ |
||||||
|
CV_Assert(attribute_proto.ints_size() == 4); |
||||||
|
lp.set("pad_h", saturate_cast<int32_t>(attribute_proto.ints(0))); |
||||||
|
lp.set("pad_w", saturate_cast<int32_t>(attribute_proto.ints(1))); |
||||||
|
// push pad_b and pad_r for compute ceil_mode
|
||||||
|
lp.set("pad_b", saturate_cast<int32_t>(attribute_proto.ints(2))); |
||||||
|
lp.set("pad_r", saturate_cast<int32_t>(attribute_proto.ints(3))); |
||||||
|
} |
||||||
|
else if(attribute_name == "auto_pad") |
||||||
|
{ |
||||||
|
if (attribute_proto.s() == "SAME_UPPER" || attribute_proto.s() == "SAME_LOWER") { |
||||||
|
lp.set("pad_mode", "SAME"); |
||||||
|
} |
||||||
|
else if (attribute_proto.s() == "VALID") { |
||||||
|
lp.set("pad_mode", "VALID"); |
||||||
|
} |
||||||
|
} |
||||||
|
else if(attribute_name == "dilations") |
||||||
|
{ |
||||||
|
CV_Assert(attribute_proto.ints_size() == 2); |
||||||
|
lp.set("dilation_h", saturate_cast<int32_t>(attribute_proto.ints(0))); |
||||||
|
lp.set("dilation_w", saturate_cast<int32_t>(attribute_proto.ints(1))); |
||||||
|
} |
||||||
|
else if (attribute_proto.has_i()) |
||||||
|
{ |
||||||
|
::google::protobuf::int64 src = attribute_proto.i(); |
||||||
|
if (src < std::numeric_limits<int32_t>::min() || src > std::numeric_limits<int32_t>::max()) |
||||||
|
CV_Error(Error::StsOutOfRange, "Input is out of OpenCV 32S range"); |
||||||
|
else |
||||||
|
lp.set(attribute_name, saturate_cast<int32_t>(src)); |
||||||
|
} |
||||||
|
else if (attribute_proto.has_f()) |
||||||
|
{ |
||||||
|
lp.set(attribute_name, attribute_proto.f()); |
||||||
|
} |
||||||
|
else if (attribute_proto.has_s()) |
||||||
|
{ |
||||||
|
lp.set(attribute_name, attribute_proto.s()); |
||||||
|
} |
||||||
|
else if (attribute_proto.floats_size() > 0) |
||||||
|
{ |
||||||
|
lp.set(attribute_name, DictValue::arrayReal( |
||||||
|
(float*)attribute_proto.mutable_floats(), attribute_proto.floats_size())); |
||||||
|
} |
||||||
|
else if (attribute_proto.ints_size() > 0) |
||||||
|
{ |
||||||
|
const ::google::protobuf::RepeatedField< ::google::protobuf::int64> src = attribute_proto.ints(); |
||||||
|
std::vector<int32_t> dst(attribute_proto.ints_size()); |
||||||
|
convertInt64ToInt32(src, dst, attribute_proto.ints_size()); |
||||||
|
lp.set(attribute_proto.name(), DictValue::arrayInt(&dst[0], attribute_proto.ints_size())); |
||||||
|
} |
||||||
|
else if (attribute_proto.has_t()) |
||||||
|
{ |
||||||
|
opencv_onnx::TensorProto tensor = attribute_proto.t(); |
||||||
|
Mat blob = getMatFromTensor(tensor); |
||||||
|
lp.blobs.push_back(blob); |
||||||
|
} |
||||||
|
else if (attribute_proto.has_g() || attribute_proto.strings_size() > 0 || |
||||||
|
attribute_proto.tensors_size() > 0 || attribute_proto.graphs_size() > 0) |
||||||
|
{ |
||||||
|
CV_Error(Error::StsNotImplemented, "Unexpected attribute type"); |
||||||
|
} |
||||||
|
else |
||||||
|
CV_Error(Error::StsNotImplemented, "Unsupported attribute type"); |
||||||
|
} |
||||||
|
return lp; |
||||||
|
} |
||||||
|
|
||||||
|
Mat ONNXImporter::getBlob(const opencv_onnx::NodeProto& node_proto, |
||||||
|
const std::map<std::string, Mat>& constBlobs, int index) |
||||||
|
{ |
||||||
|
CV_Assert(index < node_proto.input_size()); |
||||||
|
std::map<std::string, Mat>::const_iterator constBlob; |
||||||
|
constBlob = constBlobs.find(node_proto.input(index)); |
||||||
|
if (constBlob == constBlobs.end()) { |
||||||
|
CV_Error(Error::StsObjectNotFound, |
||||||
|
"Blob " + node_proto.input(index) + " not found in const blobs"); |
||||||
|
} |
||||||
|
return constBlob->second; |
||||||
|
} |
||||||
|
|
||||||
|
|
||||||
|
bool ONNXImporter::isCeilMode(const LayerParams& layerParams) { |
||||||
|
if (!layerParams.has("pad_mode")) { |
||||||
|
if (layerParams.has("pad_h")) { |
||||||
|
return layerParams.get<int>("pad_h") != layerParams.get<int>("pad_b") || |
||||||
|
layerParams.get<int>("pad_w") != layerParams.get<int>("pad_r"); |
||||||
|
} |
||||||
|
else |
||||||
|
return false; // all pads == 0
|
||||||
|
} |
||||||
|
return true; |
||||||
|
} |
||||||
|
|
||||||
|
void ONNXImporter::populateNet(Net dstNet) |
||||||
|
{ |
||||||
|
CV_Assert(model_proto.has_graph()); |
||||||
|
opencv_onnx::GraphProto graph_proto = model_proto.graph(); |
||||||
|
std::map<std::string, Mat> constBlobs = getGraphTensors(graph_proto); |
||||||
|
|
||||||
|
std::string framework_name; |
||||||
|
if (model_proto.has_producer_name()) { |
||||||
|
framework_name = model_proto.producer_name(); |
||||||
|
} |
||||||
|
|
||||||
|
// create map with network inputs (without const blobs)
|
||||||
|
std::map<std::string, LayerInfo> layer_id; |
||||||
|
std::map<std::string, LayerInfo>::iterator layerId; |
||||||
|
// fill map: push layer name, layer id and output id
|
||||||
|
std::vector<String> netInputs; |
||||||
|
for (int j = 0; j < graph_proto.input_size(); j++) |
||||||
|
{ |
||||||
|
const std::string& name = graph_proto.input(j).name(); |
||||||
|
if (constBlobs.find(name) == constBlobs.end()) { |
||||||
|
netInputs.push_back(name); |
||||||
|
layer_id.insert(std::make_pair(name, LayerInfo(0, netInputs.size() - 1))); |
||||||
|
} |
||||||
|
} |
||||||
|
dstNet.setInputsNames(netInputs); |
||||||
|
|
||||||
|
int layersSize = graph_proto.node_size(); |
||||||
|
LayerParams layerParams; |
||||||
|
opencv_onnx::NodeProto node_proto; |
||||||
|
|
||||||
|
for(int i = 0; i < layersSize; i++) |
||||||
|
{ |
||||||
|
node_proto = graph_proto.node(i); |
||||||
|
layerParams = getLayerParams(node_proto); |
||||||
|
CV_Assert(node_proto.output_size() >= 1); |
||||||
|
layerParams.name = node_proto.output(0); |
||||||
|
|
||||||
|
std::string layer_type = node_proto.op_type(); |
||||||
|
layerParams.type = layer_type; |
||||||
|
|
||||||
|
if (layer_type == "MaxPool") |
||||||
|
{ |
||||||
|
layerParams.type = "Pooling"; |
||||||
|
layerParams.set("pool", "MAX"); |
||||||
|
layerParams.set("ceil_mode", isCeilMode(layerParams)); |
||||||
|
} |
||||||
|
else if (layer_type == "AveragePool") |
||||||
|
{ |
||||||
|
layerParams.type = "Pooling"; |
||||||
|
layerParams.set("pool", "AVE"); |
||||||
|
layerParams.set("ceil_mode", isCeilMode(layerParams)); |
||||||
|
layerParams.set("ave_pool_padded_area", framework_name == "pytorch"); |
||||||
|
} |
||||||
|
else if (layer_type == "GlobalAveragePool") |
||||||
|
{ |
||||||
|
layerParams.type = "Pooling"; |
||||||
|
layerParams.set("pool", "AVE"); |
||||||
|
layerParams.set("global_pooling", true); |
||||||
|
} |
||||||
|
else if (layer_type == "Add" || layer_type == "Sum") |
||||||
|
{ |
||||||
|
if (layer_id.find(node_proto.input(1)) == layer_id.end()) |
||||||
|
{ |
||||||
|
Mat blob = getBlob(node_proto, constBlobs, 1); |
||||||
|
blob = blob.reshape(1, 1); |
||||||
|
if (blob.total() == 1) { |
||||||
|
layerParams.type = "Power"; |
||||||
|
layerParams.set("shift", blob.at<float>(0)); |
||||||
|
} |
||||||
|
else { |
||||||
|
layerParams.type = "Shift"; |
||||||
|
layerParams.blobs.push_back(blob); |
||||||
|
} |
||||||
|
} |
||||||
|
else { |
||||||
|
layerParams.type = "Eltwise"; |
||||||
|
} |
||||||
|
} |
||||||
|
else if (layer_type == "Sub") |
||||||
|
{ |
||||||
|
Mat blob = (-1.0f) * getBlob(node_proto, constBlobs, 1); |
||||||
|
blob = blob.reshape(1, 1); |
||||||
|
if (blob.total() == 1) { |
||||||
|
layerParams.type = "Power"; |
||||||
|
layerParams.set("shift", blob.at<float>(0)); |
||||||
|
} |
||||||
|
else { |
||||||
|
layerParams.type = "Shift"; |
||||||
|
layerParams.blobs.push_back(blob); |
||||||
|
} |
||||||
|
} |
||||||
|
else if (layer_type == "Constant") |
||||||
|
{ |
||||||
|
CV_Assert(node_proto.input_size() == 0); |
||||||
|
CV_Assert(layerParams.blobs.size() == 1); |
||||||
|
constBlobs.insert(std::make_pair(layerParams.name, layerParams.blobs[0])); |
||||||
|
continue; |
||||||
|
} |
||||||
|
else if (layer_type == "ImageScaler") |
||||||
|
{ |
||||||
|
const float scale = layerParams.has("scale") ? layerParams.get<float>("scale") : 1.0f; |
||||||
|
layerParams.erase("scale"); |
||||||
|
|
||||||
|
if (layerParams.has("bias")) |
||||||
|
{ |
||||||
|
layerParams.type = "Scale"; |
||||||
|
layerParams.blobs.push_back( |
||||||
|
Mat(Size(1, layerParams.get("bias").size()), CV_32FC1, scale)); |
||||||
|
|
||||||
|
layerParams.set("bias_term", true); |
||||||
|
Mat bias(1, layerParams.get("bias").size(), CV_32FC1); |
||||||
|
for (int j = 0; j < bias.total(); j++) { |
||||||
|
bias.at<float>(0, j) = layerParams.get("bias").getRealValue(j); |
||||||
|
} |
||||||
|
layerParams.blobs.push_back(bias); |
||||||
|
layerParams.erase("bias"); |
||||||
|
} |
||||||
|
else { |
||||||
|
layerParams.set("scale", scale); |
||||||
|
layerParams.type = "Power"; |
||||||
|
} |
||||||
|
} |
||||||
|
else if (layer_type == "LeakyRelu") |
||||||
|
{ |
||||||
|
layerParams.type = "ReLU"; |
||||||
|
replaceLayerParam(layerParams, "alpha", "negative_slope"); |
||||||
|
} |
||||||
|
else if (layer_type == "LRN") |
||||||
|
{ |
||||||
|
replaceLayerParam(layerParams, "size", "local_size"); |
||||||
|
} |
||||||
|
else if (layer_type == "BatchNormalization") |
||||||
|
{ |
||||||
|
if (node_proto.input_size() != 5) |
||||||
|
CV_Error(Error::StsNotImplemented, |
||||||
|
"Expected input, scale, bias, mean and var"); |
||||||
|
|
||||||
|
layerParams.type = "BatchNorm"; |
||||||
|
replaceLayerParam(layerParams, "epsilon", "eps"); |
||||||
|
replaceLayerParam(layerParams, "spatial", "use_global_stats"); |
||||||
|
|
||||||
|
Mat meanData = getBlob(node_proto, constBlobs, 3); |
||||||
|
Mat stdData = getBlob(node_proto, constBlobs, 4); |
||||||
|
|
||||||
|
layerParams.blobs.push_back(meanData); |
||||||
|
layerParams.blobs.push_back(stdData); |
||||||
|
|
||||||
|
if (!node_proto.input(1).empty()) { |
||||||
|
layerParams.set("has_weight", true); |
||||||
|
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, 1)); // weightData
|
||||||
|
} else { |
||||||
|
layerParams.set("has_weight", false); |
||||||
|
} |
||||||
|
|
||||||
|
if (!node_proto.input(2).empty()) { |
||||||
|
layerParams.set("has_bias", true); |
||||||
|
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, 2)); // biasData
|
||||||
|
} else { |
||||||
|
layerParams.set("has_bias", false); |
||||||
|
} |
||||||
|
} |
||||||
|
else if (layer_type == "Gemm") |
||||||
|
{ |
||||||
|
CV_Assert(node_proto.input_size() >= 2); |
||||||
|
layerParams.type = "InnerProduct"; |
||||||
|
Mat weights = getBlob(node_proto, constBlobs, 1); |
||||||
|
int ind_num_out = 0; |
||||||
|
if (layerParams.has("transB") && !layerParams.get<int>("transB")) { |
||||||
|
transpose(weights, weights); |
||||||
|
ind_num_out = 1; |
||||||
|
} |
||||||
|
layerParams.blobs.push_back(weights); |
||||||
|
|
||||||
|
if (node_proto.input_size() == 3) { |
||||||
|
Mat bias = getBlob(node_proto, constBlobs, 2); |
||||||
|
layerParams.blobs.push_back(bias); |
||||||
|
} |
||||||
|
|
||||||
|
layerParams.set("num_output", layerParams.blobs[0].size[ind_num_out]); |
||||||
|
layerParams.set("bias_term", node_proto.input_size() == 3); |
||||||
|
} |
||||||
|
else if (layer_type == "MatMul") |
||||||
|
{ |
||||||
|
CV_Assert(node_proto.input_size() == 2); |
||||||
|
layerParams.type = "InnerProduct"; |
||||||
|
Mat blob = getBlob(node_proto, constBlobs, 1); |
||||||
|
layerParams.blobs.push_back(blob.t()); |
||||||
|
layerParams.set("bias_term", false); |
||||||
|
layerParams.set("num_output", layerParams.blobs[0].size[0]); |
||||||
|
} |
||||||
|
else if (layer_type == "Mul") |
||||||
|
{ |
||||||
|
CV_Assert(node_proto.input_size() == 2); |
||||||
|
if (layer_id.find(node_proto.input(1)) == layer_id.end()) { |
||||||
|
Mat blob = getBlob(node_proto, constBlobs, 1); |
||||||
|
blob = blob.reshape(1, 1); |
||||||
|
if (blob.total() == 1) { |
||||||
|
layerParams.set("scale", blob.at<float>(0)); |
||||||
|
layerParams.type = "Power"; |
||||||
|
} |
||||||
|
else { |
||||||
|
layerParams.blobs.push_back(blob); |
||||||
|
layerParams.type = "Scale"; |
||||||
|
} |
||||||
|
} |
||||||
|
else { |
||||||
|
layerParams.type = "Eltwise"; |
||||||
|
layerParams.set("operation", "prod"); |
||||||
|
} |
||||||
|
} |
||||||
|
else if (layer_type == "Conv") |
||||||
|
{ |
||||||
|
CV_Assert(node_proto.input_size() >= 2); |
||||||
|
layerParams.type = "Convolution"; |
||||||
|
for (int j = 1; j < node_proto.input_size(); j++) { |
||||||
|
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, j)); |
||||||
|
} |
||||||
|
layerParams.set("num_output", layerParams.blobs[0].size[0]); |
||||||
|
layerParams.set("bias_term", node_proto.input_size() == 3); |
||||||
|
} |
||||||
|
else if (layer_type == "Unsqueeze") |
||||||
|
{ |
||||||
|
CV_Assert(node_proto.input_size() == 1); |
||||||
|
Mat input = getBlob(node_proto, constBlobs, 0); |
||||||
|
|
||||||
|
DictValue axes = layerParams.get("axes"); |
||||||
|
std::vector<int> dims; |
||||||
|
for (int j = 0; j < input.dims; j++) { |
||||||
|
dims.push_back(input.size[j]); |
||||||
|
} |
||||||
|
CV_Assert(axes.getIntValue(axes.size()-1) <= dims.size()); |
||||||
|
for (int j = 0; j < axes.size(); j++) { |
||||||
|
dims.insert(dims.begin() + axes.getIntValue(j), 1); |
||||||
|
} |
||||||
|
|
||||||
|
Mat out = input.reshape(0, dims); |
||||||
|
constBlobs.insert(std::make_pair(layerParams.name, out)); |
||||||
|
continue; |
||||||
|
} |
||||||
|
else if (layer_type == "Reshape") |
||||||
|
{ |
||||||
|
CV_Assert(node_proto.input_size() == 2 || layerParams.has("shape")); |
||||||
|
|
||||||
|
if (node_proto.input_size() == 2) { |
||||||
|
Mat blob = getBlob(node_proto, constBlobs, 1); |
||||||
|
CV_Assert(blob.type() == CV_32SC1); |
||||||
|
|
||||||
|
if (layer_id.find(node_proto.input(0)) == layer_id.end()) { |
||||||
|
Mat input = getBlob(node_proto, constBlobs, 0); |
||||||
|
Mat out = input.reshape(0, static_cast<std::vector<int> >(blob)); |
||||||
|
constBlobs.insert(std::make_pair(layerParams.name, out)); |
||||||
|
continue; |
||||||
|
} |
||||||
|
layerParams.set("dim", DictValue::arrayInt<int*>( |
||||||
|
blob.ptr<int>(), blob.total() )); |
||||||
|
} |
||||||
|
else { |
||||||
|
DictValue shape = layerParams.get("shape"); |
||||||
|
std::vector<int> dim; |
||||||
|
for (int j = 0; j < shape.size(); j++) { |
||||||
|
dim.push_back(shape.getIntValue(j)); |
||||||
|
} |
||||||
|
|
||||||
|
if (layer_id.find(node_proto.input(0)) == layer_id.end()) { |
||||||
|
Mat input = getBlob(node_proto, constBlobs, 0); |
||||||
|
Mat out = input.reshape(0, dim); |
||||||
|
constBlobs.insert(std::make_pair(layerParams.name, out)); |
||||||
|
continue; |
||||||
|
} |
||||||
|
replaceLayerParam(layerParams, "shape", "dim"); |
||||||
|
} |
||||||
|
} |
||||||
|
else |
||||||
|
{ |
||||||
|
for (int j = 0; j < node_proto.input_size(); j++) { |
||||||
|
if (layer_id.find(node_proto.input(j)) == layer_id.end()) |
||||||
|
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, j)); |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
int id = dstNet.addLayer(layerParams.name, layerParams.type, layerParams); |
||||||
|
layer_id.insert(std::make_pair(layerParams.name, LayerInfo(id, 0))); |
||||||
|
|
||||||
|
for (int j = 0; j < node_proto.input_size(); j++) { |
||||||
|
layerId = layer_id.find(node_proto.input(j)); |
||||||
|
|
||||||
|
if (layerId != layer_id.end()) { |
||||||
|
dstNet.connect(layerId->second.layerId, layerId->second.outputId, id, j); |
||||||
|
} |
||||||
|
} |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
Net readNetFromONNX(const String& onnxFile) |
||||||
|
{ |
||||||
|
ONNXImporter onnxImporter(onnxFile.c_str()); |
||||||
|
Net net; |
||||||
|
onnxImporter.populateNet(net); |
||||||
|
return net; |
||||||
|
} |
||||||
|
|
||||||
|
Mat readTensorFromONNX(const String& path) |
||||||
|
{ |
||||||
|
opencv_onnx::TensorProto tensor_proto = opencv_onnx::TensorProto(); |
||||||
|
std::fstream input(path.c_str(), std::ios::in | std::ios::binary); |
||||||
|
if (!tensor_proto.ParseFromIstream(&input)) { |
||||||
|
CV_Error(Error::StsUnsupportedFormat, "Failed to parse data"); |
||||||
|
} |
||||||
|
Mat mat = getMatFromTensor(tensor_proto); |
||||||
|
releaseONNXTensor(tensor_proto); |
||||||
|
return mat; |
||||||
|
} |
||||||
|
|
||||||
|
CV__DNN_EXPERIMENTAL_NS_END |
||||||
|
}} // namespace
|
||||||
|
|
||||||
|
#endif |
@ -0,0 +1,446 @@ |
|||||||
|
// |
||||||
|
// WARNING: This file is automatically generated! Please edit onnx.in.proto. |
||||||
|
// |
||||||
|
|
||||||
|
|
||||||
|
// Copyright (c) Facebook Inc. and Microsoft Corporation. |
||||||
|
// Licensed under the MIT license. |
||||||
|
|
||||||
|
syntax = "proto2"; |
||||||
|
|
||||||
|
package opencv_onnx; |
||||||
|
|
||||||
|
// Overview |
||||||
|
// |
||||||
|
// ONNX is an open specification that is comprised of the following components: |
||||||
|
// |
||||||
|
// 1) A definition of an extensible computation graph model. |
||||||
|
// 2) Definitions of standard data types. |
||||||
|
// 3) Definitions of built-in operators. |
||||||
|
// |
||||||
|
// This document describes the syntax of models and their computation graphs, |
||||||
|
// as well as the standard data types. Together, they are referred to as the ONNX |
||||||
|
// Intermediate Representation, or 'IR' for short. |
||||||
|
// |
||||||
|
// The normative semantic specification of the ONNX IR is found in docs/IR.md. |
||||||
|
// Definitions of the built-in neural network operators may be found in docs/Operators.md. |
||||||
|
|
||||||
|
// Notes |
||||||
|
// |
||||||
|
// Release |
||||||
|
// |
||||||
|
// We are still in the very early stage of defining ONNX. The current |
||||||
|
// version of ONNX is a starting point. While we are actively working |
||||||
|
// towards a complete spec, we would like to get the community involved |
||||||
|
// by sharing our working version of ONNX. |
||||||
|
// |
||||||
|
// Protobuf compatibility |
||||||
|
// |
||||||
|
// To simplify framework compatibility, ONNX is defined using the subset of protobuf |
||||||
|
// that is compatible with both protobuf v2 and v3. This means that we do not use any |
||||||
|
// protobuf features that are only available in one of the two versions. |
||||||
|
// |
||||||
|
// Here are the most notable contortions we have to carry out to work around |
||||||
|
// these limitations: |
||||||
|
// |
||||||
|
// - No 'map' (added protobuf 3.0). We instead represent mappings as lists |
||||||
|
// of key-value pairs, where order does not matter and duplicates |
||||||
|
// are not allowed. |
||||||
|
|
||||||
|
|
||||||
|
// Versioning |
||||||
|
// |
||||||
|
// ONNX versioning is specified in docs/IR.md and elaborated on in docs/Versioning.md |
||||||
|
// |
||||||
|
// To be compatible with both proto2 and proto3, we will use a version number |
||||||
|
// that is not defined by the default value but an explicit enum number. |
||||||
|
enum Version { |
||||||
|
// proto3 requires the first enum value to be zero. |
||||||
|
// We add this just to appease the compiler. |
||||||
|
_START_VERSION = 0; |
||||||
|
// The version field is always serialized and we will use it to store the |
||||||
|
// version that the graph is generated from. This helps us set up version |
||||||
|
// control. |
||||||
|
// For the IR, we are using simple numbers starting with with 0x00000001, |
||||||
|
// which was the version we published on Oct 10, 2017. |
||||||
|
IR_VERSION_2017_10_10 = 0x0000000000000001; |
||||||
|
|
||||||
|
// IR_VERSION 2 published on Oct 30, 2017 |
||||||
|
// - Added type discriminator to AttributeProto to support proto3 users |
||||||
|
IR_VERSION_2017_10_30 = 0x0000000000000002; |
||||||
|
|
||||||
|
// IR VERSION 3 published on Nov 3, 2017 |
||||||
|
// - For operator versioning: |
||||||
|
// - Added new message OperatorSetIdProto |
||||||
|
// - Added opset_import in ModelProto |
||||||
|
// - For vendor extensions, added domain in NodeProto |
||||||
|
IR_VERSION = 0x0000000000000003; |
||||||
|
} |
||||||
|
|
||||||
|
// Attributes |
||||||
|
// |
||||||
|
// A named attribute containing either singular float, integer, string, graph, |
||||||
|
// and tensor values, or repeated float, integer, string, graph, and tensor values. |
||||||
|
// An AttributeProto MUST contain the name field, and *only one* of the |
||||||
|
// following content fields, effectively enforcing a C/C++ union equivalent. |
||||||
|
message AttributeProto { |
||||||
|
|
||||||
|
// Note: this enum is structurally identical to the OpSchema::AttrType |
||||||
|
// enum defined in schema.h. If you rev one, you likely need to rev the other. |
||||||
|
enum AttributeType { |
||||||
|
UNDEFINED = 0; |
||||||
|
FLOAT = 1; |
||||||
|
INT = 2; |
||||||
|
STRING = 3; |
||||||
|
TENSOR = 4; |
||||||
|
GRAPH = 5; |
||||||
|
|
||||||
|
FLOATS = 6; |
||||||
|
INTS = 7; |
||||||
|
STRINGS = 8; |
||||||
|
TENSORS = 9; |
||||||
|
GRAPHS = 10; |
||||||
|
} |
||||||
|
|
||||||
|
// The name field MUST be present for this version of the IR. |
||||||
|
optional string name = 1; // namespace Attribute |
||||||
|
|
||||||
|
// if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function. |
||||||
|
// In this case, this AttributeProto does not contain data, and it's a reference of attribute |
||||||
|
// in parent scope. |
||||||
|
// NOTE: This should ONLY be used in function (sub-graph). It's invalid to be used in main graph. |
||||||
|
optional string ref_attr_name = 21; |
||||||
|
|
||||||
|
// A human-readable documentation for this attribute. Markdown is allowed. |
||||||
|
optional string doc_string = 13; |
||||||
|
|
||||||
|
// The type field MUST be present for this version of the IR. |
||||||
|
// For 0.0.1 versions of the IR, this field was not defined, and |
||||||
|
// implementations needed to use has_field hueristics to determine |
||||||
|
// which value field was in use. For IR_VERSION 0.0.2 or later, this |
||||||
|
// field MUST be set and match the f|i|s|t|... field in use. This |
||||||
|
// change was made to accomodate proto3 implementations. |
||||||
|
optional AttributeType type = 20; // discriminator that indicates which field below is in use |
||||||
|
|
||||||
|
// Exactly ONE of the following fields must be present for this version of the IR |
||||||
|
optional float f = 2; // float |
||||||
|
optional int64 i = 3; // int |
||||||
|
optional bytes s = 4; // UTF-8 string |
||||||
|
optional TensorProto t = 5; // tensor value |
||||||
|
optional GraphProto g = 6; // graph |
||||||
|
// Do not use field below, it's deprecated. |
||||||
|
// optional ValueProto v = 12; // value - subsumes everything but graph |
||||||
|
|
||||||
|
repeated float floats = 7; // list of floats |
||||||
|
repeated int64 ints = 8; // list of ints |
||||||
|
repeated bytes strings = 9; // list of UTF-8 strings |
||||||
|
repeated TensorProto tensors = 10; // list of tensors |
||||||
|
repeated GraphProto graphs = 11; // list of graph |
||||||
|
} |
||||||
|
|
||||||
|
// Defines information on value, including the name, the type, and |
||||||
|
// the shape of the value. |
||||||
|
message ValueInfoProto { |
||||||
|
// This field MUST be present in this version of the IR. |
||||||
|
optional string name = 1; // namespace Value |
||||||
|
// This field MUST be present in this version of the IR. |
||||||
|
optional TypeProto type = 2; |
||||||
|
// A human-readable documentation for this value. Markdown is allowed. |
||||||
|
optional string doc_string = 3; |
||||||
|
} |
||||||
|
|
||||||
|
// Nodes |
||||||
|
// |
||||||
|
// Computation graphs are made up of a DAG of nodes, which represent what is |
||||||
|
// commonly called a "layer" or "pipeline stage" in machine learning frameworks. |
||||||
|
// |
||||||
|
// For example, it can be a node of type "Conv" that takes in an image, a filter |
||||||
|
// tensor and a bias tensor, and produces the convolved output. |
||||||
|
message NodeProto { |
||||||
|
repeated string input = 1; // namespace Value |
||||||
|
repeated string output = 2; // namespace Value |
||||||
|
|
||||||
|
// An optional identifier for this node in a graph. |
||||||
|
// This field MAY be absent in ths version of the IR. |
||||||
|
optional string name = 3; // namespace Node |
||||||
|
|
||||||
|
// The symbolic identifier of the Operator to execute. |
||||||
|
optional string op_type = 4; // namespace Operator |
||||||
|
// The domain of the OperatorSet that specifies the operator named by op_type. |
||||||
|
optional string domain = 7; // namespace Domain |
||||||
|
|
||||||
|
// Additional named attributes. |
||||||
|
repeated AttributeProto attribute = 5; |
||||||
|
|
||||||
|
// A human-readable documentation for this node. Markdown is allowed. |
||||||
|
optional string doc_string = 6; |
||||||
|
} |
||||||
|
|
||||||
|
// Models |
||||||
|
// |
||||||
|
// ModelProto is a top-level file/container format for bundling a ML model and |
||||||
|
// associating its computation graph with metadata. |
||||||
|
// |
||||||
|
// The semantics of the model are described by the associated GraphProto. |
||||||
|
message ModelProto { |
||||||
|
// The version of the IR this model targets. See Version enum above. |
||||||
|
// This field MUST be present. |
||||||
|
optional int64 ir_version = 1; |
||||||
|
|
||||||
|
// The OperatorSets this model relies on. |
||||||
|
// All ModelProtos MUST have at least one entry that |
||||||
|
// specifies which version of the ONNX OperatorSet is |
||||||
|
// being imported. |
||||||
|
// |
||||||
|
// All nodes in the ModelProto's graph will bind against the operator |
||||||
|
// with the same-domain/same-op_type operator with the HIGHEST version |
||||||
|
// in the referenced operator sets. |
||||||
|
repeated OperatorSetIdProto opset_import = 8; |
||||||
|
|
||||||
|
// The name of the framework or tool used to generate this model. |
||||||
|
// This field SHOULD be present to indicate which implementation/tool/framework |
||||||
|
// emitted the model. |
||||||
|
optional string producer_name = 2; |
||||||
|
|
||||||
|
// The version of the framework or tool used to generate this model. |
||||||
|
// This field SHOULD be present to indicate which implementation/tool/framework |
||||||
|
// emitted the model. |
||||||
|
optional string producer_version = 3; |
||||||
|
|
||||||
|
// Domain name of the model. |
||||||
|
// We use reverse domain names as name space indicators. For example: |
||||||
|
// `com.facebook.fair` or `com.microsoft.cognitiveservices` |
||||||
|
// |
||||||
|
// Together with `model_version` and GraphProto.name, this forms the unique identity of |
||||||
|
// the graph. |
||||||
|
optional string domain = 4; |
||||||
|
|
||||||
|
// The version of the graph encoded. See Version enum below. |
||||||
|
optional int64 model_version = 5; |
||||||
|
|
||||||
|
// A human-readable documentation for this model. Markdown is allowed. |
||||||
|
optional string doc_string = 6; |
||||||
|
|
||||||
|
// The parameterized graph that is evaluated to execute the model. |
||||||
|
optional GraphProto graph = 7; |
||||||
|
|
||||||
|
// Named metadata values; keys should be distinct. |
||||||
|
repeated StringStringEntryProto metadata_props = 14; |
||||||
|
}; |
||||||
|
|
||||||
|
// StringStringEntryProto follows the pattern for cross-proto-version maps. |
||||||
|
// See https://developers.google.com/protocol-buffers/docs/proto3#maps |
||||||
|
message StringStringEntryProto { |
||||||
|
optional string key = 1; |
||||||
|
optional string value= 2; |
||||||
|
}; |
||||||
|
|
||||||
|
// Graphs |
||||||
|
// |
||||||
|
// A graph defines the computational logic of a model and is comprised of a parameterized |
||||||
|
// list of nodes that form a directed acyclic graph based on their inputs and outputs. |
||||||
|
// This is the equivalent of the "network" or "graph" in many deep learning |
||||||
|
// frameworks. |
||||||
|
message GraphProto { |
||||||
|
// The nodes in the graph, sorted topologically. |
||||||
|
repeated NodeProto node = 1; |
||||||
|
|
||||||
|
// The name of the graph. |
||||||
|
optional string name = 2; // namespace Graph |
||||||
|
|
||||||
|
// A list of named tensor values, used to specify constant inputs of the graph. |
||||||
|
// Each TensorProto entry must have a distinct name (within the list) that |
||||||
|
// also appears in the input list. |
||||||
|
repeated TensorProto initializer = 5; |
||||||
|
|
||||||
|
// A human-readable documentation for this graph. Markdown is allowed. |
||||||
|
optional string doc_string = 10; |
||||||
|
|
||||||
|
// The inputs and outputs of the graph. |
||||||
|
repeated ValueInfoProto input = 11; |
||||||
|
repeated ValueInfoProto output = 12; |
||||||
|
|
||||||
|
// Information for the values in the graph. The ValueInfoProto.name's |
||||||
|
// must be distinct. It is optional for a value to appear in value_info list. |
||||||
|
repeated ValueInfoProto value_info = 13; |
||||||
|
|
||||||
|
// DO NOT USE the following fields, they were deprecated from earlier versions. |
||||||
|
// repeated string input = 3; |
||||||
|
// repeated string output = 4; |
||||||
|
// optional int64 ir_version = 6; |
||||||
|
// optional int64 producer_version = 7; |
||||||
|
// optional string producer_tag = 8; |
||||||
|
// optional string domain = 9; |
||||||
|
} |
||||||
|
|
||||||
|
// Tensors |
||||||
|
// |
||||||
|
// A serialized tensor value. |
||||||
|
message TensorProto { |
||||||
|
enum DataType { |
||||||
|
UNDEFINED = 0; |
||||||
|
// Basic types. |
||||||
|
FLOAT = 1; // float |
||||||
|
UINT8 = 2; // uint8_t |
||||||
|
INT8 = 3; // int8_t |
||||||
|
UINT16 = 4; // uint16_t |
||||||
|
INT16 = 5; // int16_t |
||||||
|
INT32 = 6; // int32_t |
||||||
|
INT64 = 7; // int64_t |
||||||
|
STRING = 8; // string |
||||||
|
BOOL = 9; // bool |
||||||
|
|
||||||
|
// Advanced types |
||||||
|
FLOAT16 = 10; |
||||||
|
DOUBLE = 11; |
||||||
|
UINT32 = 12; |
||||||
|
UINT64 = 13; |
||||||
|
COMPLEX64 = 14; // complex with float32 real and imaginary components |
||||||
|
COMPLEX128 = 15; // complex with float64 real and imaginary components |
||||||
|
// Future extensions go here. |
||||||
|
} |
||||||
|
|
||||||
|
// The shape of the tensor. |
||||||
|
repeated int64 dims = 1; |
||||||
|
|
||||||
|
// The data type of the tensor. |
||||||
|
optional DataType data_type = 2; |
||||||
|
|
||||||
|
// For very large tensors, we may want to store them in chunks, in which |
||||||
|
// case the following fields will specify the segment that is stored in |
||||||
|
// the current TensorProto. |
||||||
|
message Segment { |
||||||
|
optional int64 begin = 1; |
||||||
|
optional int64 end = 2; |
||||||
|
} |
||||||
|
optional Segment segment = 3; |
||||||
|
|
||||||
|
// Tensor content must be organized in row-major order. |
||||||
|
// |
||||||
|
// Depending on the data_type field, exactly one of the fields below with |
||||||
|
// name ending in _data is used to store the elements of the tensor. |
||||||
|
|
||||||
|
// For float and complex64 values |
||||||
|
// Complex64 tensors are encoded as a single array of floats, |
||||||
|
// with the real components appearing in odd numbered positions, |
||||||
|
// and the corresponding imaginary component apparing in the |
||||||
|
// subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i] |
||||||
|
// is encoded as [1.0, 2.0 ,3.0 ,4.0] |
||||||
|
// When this field is present, the data_type field MUST be FLOAT or COMPLEX64. |
||||||
|
repeated float float_data = 4 [packed = true]; |
||||||
|
|
||||||
|
// For int32, uint8, int8, uint16, int16, bool, and float16 values |
||||||
|
// float16 values must be bit-wise converted to an uint16_t prior |
||||||
|
// to writing to the buffer. |
||||||
|
// When this field is present, the data_type field MUST be |
||||||
|
// INT32, INT16, INT8, UINT16, INT8, BOOL, or FLOAT16 |
||||||
|
repeated int32 int32_data = 5 [packed = true]; |
||||||
|
|
||||||
|
// For strings. |
||||||
|
// Each element of string_data is a UTF-8 encoded Unicode |
||||||
|
// string. No trailing null, no leading BOM. The protobuf "string" |
||||||
|
// scalar type is not used to match ML community conventions. |
||||||
|
// When this field is present, the data_type field MUST be STRING |
||||||
|
repeated bytes string_data = 6; |
||||||
|
|
||||||
|
// For int64. |
||||||
|
// When this field is present, the data_type field MUST be INT64 |
||||||
|
repeated int64 int64_data = 7 [packed = true]; |
||||||
|
|
||||||
|
// Optionally, a name for the tensor. |
||||||
|
optional string name = 8; // namespace Value |
||||||
|
|
||||||
|
// A human-readable documentation for this tensor. Markdown is allowed. |
||||||
|
optional string doc_string = 12; |
||||||
|
|
||||||
|
// Serializations can either use one of the fields above, or use this |
||||||
|
// raw bytes field. The only exception is the string case, where one is |
||||||
|
// required to store the content in the repeated bytes string_data field. |
||||||
|
// |
||||||
|
// When this raw_data field is used to store tensor value, elements MUST |
||||||
|
// be stored in as fixed-width, little-endian order. |
||||||
|
// Floating-point data types MUST be stored in IEEE 754 format. |
||||||
|
// Complex64 elements must be written as two consecutive FLOAT values, real component first. |
||||||
|
// Complex128 elements must be written as two consecutive DOUBLE values, real component first. |
||||||
|
// Boolean type MUST be written one byte per tensor element (00000001 for true, 00000000 for false). |
||||||
|
// |
||||||
|
// Note: the advantage of specific field rather than the raw_data field is |
||||||
|
// that in some cases (e.g. int data), protobuf does a better packing via |
||||||
|
// variable length storage, and may lead to smaller binary footprint. |
||||||
|
// When this field is present, the data_type field MUST NOT be STRING or UNDEFINED |
||||||
|
optional bytes raw_data = 9; |
||||||
|
|
||||||
|
// For double |
||||||
|
// Complex64 tensors are encoded as a single array of doubles, |
||||||
|
// with the real components appearing in odd numbered positions, |
||||||
|
// and the corresponding imaginary component apparing in the |
||||||
|
// subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i] |
||||||
|
// is encoded as [1.0, 2.0 ,3.0 ,4.0] |
||||||
|
// When this field is present, the data_type field MUST be DOUBLE or COMPLEX128 |
||||||
|
repeated double double_data = 10 [packed = true]; |
||||||
|
|
||||||
|
// For uint64 and uint32 values |
||||||
|
// When this field is present, the data_type field MUST be |
||||||
|
// UINT32 or UINT64 |
||||||
|
repeated uint64 uint64_data = 11 [packed = true]; |
||||||
|
} |
||||||
|
|
||||||
|
// Defines a tensor shape. A dimension can be either an integer value |
||||||
|
// or a symbolic variable. A symbolic variable represents an unknown |
||||||
|
// dimension. |
||||||
|
message TensorShapeProto { |
||||||
|
message Dimension { |
||||||
|
oneof value { |
||||||
|
int64 dim_value = 1; |
||||||
|
string dim_param = 2; // namespace Shape |
||||||
|
}; |
||||||
|
// Standard denotation can optionally be used to denote tensor |
||||||
|
// dimensions with standard semantic descriptions to ensure |
||||||
|
// that operations are applied to the correct axis of a tensor. |
||||||
|
// Refer to https://github.com/onnx/onnx/blob/master/docs/DimensionDenotation.md#denotation-definition |
||||||
|
// for pre-defined dimension denotations. |
||||||
|
optional string denotation = 3; |
||||||
|
}; |
||||||
|
repeated Dimension dim = 1; |
||||||
|
} |
||||||
|
|
||||||
|
// Types |
||||||
|
// |
||||||
|
// The standard ONNX data types. |
||||||
|
message TypeProto { |
||||||
|
|
||||||
|
message Tensor { |
||||||
|
// This field MUST NOT have the value of UNDEFINED |
||||||
|
// This field MUST be present for this version of the IR. |
||||||
|
optional TensorProto.DataType elem_type = 1; |
||||||
|
optional TensorShapeProto shape = 2; |
||||||
|
} |
||||||
|
|
||||||
|
|
||||||
|
oneof value { |
||||||
|
// The type of a tensor. |
||||||
|
Tensor tensor_type = 1; |
||||||
|
|
||||||
|
} |
||||||
|
|
||||||
|
// An optional denotation can be used to denote the whole |
||||||
|
// type with a standard semantic description as to what is |
||||||
|
// stored inside. Refer to https://github.com/onnx/onnx/blob/master/docs/TypeDenotation.md#type-denotation-definition |
||||||
|
// for pre-defined type denotations. |
||||||
|
optional string denotation = 6; |
||||||
|
} |
||||||
|
|
||||||
|
// Operator Sets |
||||||
|
// |
||||||
|
// OperatorSets are uniquely identified by a (domain, opset_version) pair. |
||||||
|
message OperatorSetIdProto { |
||||||
|
// The domain of the operator set being identified. |
||||||
|
// The empty string ("") or absence of this field implies the operator |
||||||
|
// set that is defined as part of the ONNX specification. |
||||||
|
// This field MUST be present in this version of the IR when referring to any other operator set. |
||||||
|
optional string domain = 1; |
||||||
|
|
||||||
|
// The version of the operator set being identified. |
||||||
|
// This field MUST be present in this version of the IR. |
||||||
|
optional int64 version = 2; |
||||||
|
} |
@ -0,0 +1,344 @@ |
|||||||
|
// This file is part of OpenCV project.
|
||||||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||||
|
// of this distribution and at http://opencv.org/license.html.
|
||||||
|
|
||||||
|
// Copyright (C) 2018, Intel Corporation, all rights reserved.
|
||||||
|
// Third party copyrights are property of their respective owners.
|
||||||
|
|
||||||
|
|
||||||
|
#include "test_precomp.hpp" |
||||||
|
#include "npy_blob.hpp" |
||||||
|
#include <opencv2/dnn/shape_utils.hpp> |
||||||
|
|
||||||
|
namespace opencv_test { namespace { |
||||||
|
|
||||||
|
template<typename TString> |
||||||
|
static std::string _tf(TString filename) |
||||||
|
{ |
||||||
|
String rootFolder = "dnn/onnx/"; |
||||||
|
return findDataFile(rootFolder + filename, false); |
||||||
|
} |
||||||
|
|
||||||
|
class Test_ONNX_layers : public DNNTestLayer |
||||||
|
{ |
||||||
|
public: |
||||||
|
enum Extension |
||||||
|
{ |
||||||
|
npy, |
||||||
|
pb |
||||||
|
}; |
||||||
|
|
||||||
|
void testONNXModels(const String& basename, const Extension ext = npy, const double l1 = 0, const float lInf = 0) |
||||||
|
{ |
||||||
|
String onnxmodel = _tf("models/" + basename + ".onnx"); |
||||||
|
Mat inp, ref; |
||||||
|
if (ext == npy) { |
||||||
|
inp = blobFromNPY(_tf("data/input_" + basename + ".npy")); |
||||||
|
ref = blobFromNPY(_tf("data/output_" + basename + ".npy")); |
||||||
|
} |
||||||
|
else if (ext == pb) { |
||||||
|
inp = readTensorFromONNX(_tf("data/input_" + basename + ".pb")); |
||||||
|
ref = readTensorFromONNX(_tf("data/output_" + basename + ".pb")); |
||||||
|
} |
||||||
|
else |
||||||
|
CV_Error(Error::StsUnsupportedFormat, "Unsupported extension"); |
||||||
|
|
||||||
|
checkBackend(&inp, &ref); |
||||||
|
Net net = readNetFromONNX(onnxmodel); |
||||||
|
ASSERT_FALSE(net.empty()); |
||||||
|
|
||||||
|
net.setPreferableBackend(backend); |
||||||
|
net.setPreferableTarget(target); |
||||||
|
|
||||||
|
net.setInput(inp); |
||||||
|
Mat out = net.forward(); |
||||||
|
normAssert(ref, out, "", l1 ? l1 : default_l1, lInf ? lInf : default_lInf); |
||||||
|
} |
||||||
|
}; |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_layers, MaxPooling) |
||||||
|
{ |
||||||
|
testONNXModels("maxpooling"); |
||||||
|
testONNXModels("two_maxpooling"); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_layers, Convolution) |
||||||
|
{ |
||||||
|
testONNXModels("convolution"); |
||||||
|
testONNXModels("two_convolution"); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_layers, Dropout) |
||||||
|
{ |
||||||
|
testONNXModels("dropout"); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_layers, Linear) |
||||||
|
{ |
||||||
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) |
||||||
|
throw SkipTestException(""); |
||||||
|
testONNXModels("linear"); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_layers, ReLU) |
||||||
|
{ |
||||||
|
testONNXModels("ReLU"); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_layers, MaxPooling_Sigmoid) |
||||||
|
{ |
||||||
|
testONNXModels("maxpooling_sigmoid"); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_layers, Concatenation) |
||||||
|
{ |
||||||
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && |
||||||
|
(target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_OPENCL || target == DNN_TARGET_MYRIAD)) |
||||||
|
throw SkipTestException(""); |
||||||
|
testONNXModels("concatenation"); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_layers, AveragePooling) |
||||||
|
{ |
||||||
|
testONNXModels("average_pooling"); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_layers, BatchNormalization) |
||||||
|
{ |
||||||
|
testONNXModels("batch_norm"); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_layers, Multiplication) |
||||||
|
{ |
||||||
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16 || |
||||||
|
backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) |
||||||
|
throw SkipTestException(""); |
||||||
|
testONNXModels("mul"); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_layers, Constant) |
||||||
|
{ |
||||||
|
testONNXModels("constant"); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_layers, MultyInputs) |
||||||
|
{ |
||||||
|
const String model = _tf("models/multy_inputs.onnx"); |
||||||
|
|
||||||
|
Net net = readNetFromONNX(model); |
||||||
|
ASSERT_FALSE(net.empty()); |
||||||
|
|
||||||
|
net.setPreferableBackend(backend); |
||||||
|
net.setPreferableTarget(target); |
||||||
|
|
||||||
|
Mat inp1 = blobFromNPY(_tf("data/input_multy_inputs_0.npy")); |
||||||
|
Mat inp2 = blobFromNPY(_tf("data/input_multy_inputs_1.npy")); |
||||||
|
Mat ref = blobFromNPY(_tf("data/output_multy_inputs.npy")); |
||||||
|
checkBackend(&inp1, &ref); |
||||||
|
|
||||||
|
net.setInput(inp1, "0"); |
||||||
|
net.setInput(inp2, "1"); |
||||||
|
Mat out = net.forward(); |
||||||
|
|
||||||
|
normAssert(ref, out, "", default_l1, default_lInf); |
||||||
|
} |
||||||
|
|
||||||
|
|
||||||
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_ONNX_layers, dnnBackendsAndTargets()); |
||||||
|
|
||||||
|
class Test_ONNX_nets : public Test_ONNX_layers {}; |
||||||
|
TEST_P(Test_ONNX_nets, Alexnet) |
||||||
|
{ |
||||||
|
const String model = _tf("models/alexnet.onnx"); |
||||||
|
|
||||||
|
Net net = readNetFromONNX(model); |
||||||
|
ASSERT_FALSE(net.empty()); |
||||||
|
|
||||||
|
net.setPreferableBackend(backend); |
||||||
|
net.setPreferableTarget(target); |
||||||
|
|
||||||
|
Mat inp = imread(_tf("../grace_hopper_227.png")); |
||||||
|
Mat ref = blobFromNPY(_tf("../caffe_alexnet_prob.npy")); |
||||||
|
checkBackend(&inp, &ref); |
||||||
|
|
||||||
|
net.setInput(blobFromImage(inp, 1.0f, Size(227, 227), Scalar(), false)); |
||||||
|
ASSERT_FALSE(net.empty()); |
||||||
|
Mat out = net.forward(); |
||||||
|
|
||||||
|
normAssert(out, ref, "", default_l1, default_lInf); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_nets, Squeezenet) |
||||||
|
{ |
||||||
|
testONNXModels("squeezenet", pb); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_nets, Googlenet) |
||||||
|
{ |
||||||
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE) |
||||||
|
throw SkipTestException(""); |
||||||
|
|
||||||
|
const String model = _tf("models/googlenet.onnx"); |
||||||
|
|
||||||
|
Net net = readNetFromONNX(model); |
||||||
|
ASSERT_FALSE(net.empty()); |
||||||
|
|
||||||
|
net.setPreferableBackend(backend); |
||||||
|
net.setPreferableTarget(target); |
||||||
|
|
||||||
|
std::vector<Mat> images; |
||||||
|
images.push_back( imread(_tf("../googlenet_0.png")) ); |
||||||
|
images.push_back( imread(_tf("../googlenet_1.png")) ); |
||||||
|
Mat inp = blobFromImages(images, 1.0f, Size(), Scalar(), false); |
||||||
|
Mat ref = blobFromNPY(_tf("../googlenet_prob.npy")); |
||||||
|
checkBackend(&inp, &ref); |
||||||
|
|
||||||
|
net.setInput(inp); |
||||||
|
ASSERT_FALSE(net.empty()); |
||||||
|
Mat out = net.forward(); |
||||||
|
|
||||||
|
normAssert(ref, out, "", default_l1, default_lInf); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_nets, CaffeNet) |
||||||
|
{ |
||||||
|
testONNXModels("caffenet", pb); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_nets, RCNN_ILSVRC13) |
||||||
|
{ |
||||||
|
testONNXModels("rcnn_ilsvrc13", pb); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_nets, VGG16) |
||||||
|
{ |
||||||
|
double l1 = default_l1; |
||||||
|
double lInf = default_lInf; |
||||||
|
// output range: [-69; 72]
|
||||||
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) { |
||||||
|
l1 = 0.087; |
||||||
|
lInf = 0.585; |
||||||
|
} |
||||||
|
else if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL) { |
||||||
|
lInf = 1.2e-4; |
||||||
|
} |
||||||
|
testONNXModels("vgg16", pb, l1, lInf); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_nets, VGG16_bn) |
||||||
|
{ |
||||||
|
double l1 = default_l1; |
||||||
|
double lInf = default_lInf; |
||||||
|
// output range: [-16; 27]
|
||||||
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) { |
||||||
|
l1 = 0.0086; |
||||||
|
lInf = 0.037; |
||||||
|
} |
||||||
|
else if (backend == DNN_BACKEND_INFERENCE_ENGINE && |
||||||
|
(target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)) { |
||||||
|
l1 = 0.031; |
||||||
|
lInf = 0.2; |
||||||
|
} |
||||||
|
testONNXModels("vgg16-bn", pb, l1, lInf); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_nets, ZFNet) |
||||||
|
{ |
||||||
|
testONNXModels("zfnet512", pb); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_nets, ResNet18v1) |
||||||
|
{ |
||||||
|
// output range: [-16; 22]
|
||||||
|
const double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.022 : default_l1; |
||||||
|
const double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.12 : default_lInf; |
||||||
|
testONNXModels("resnet18v1", pb, l1, lInf); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_nets, ResNet50v1) |
||||||
|
{ |
||||||
|
// output range: [-67; 75]
|
||||||
|
const double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.6 : 1.25e-5; |
||||||
|
const double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.51 : 1.2e-4; |
||||||
|
testONNXModels("resnet50v1", pb, l1, lInf); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_nets, ResNet101_DUC_HDC) |
||||||
|
{ |
||||||
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_OPENCL |
||||||
|
|| target == DNN_TARGET_MYRIAD) { |
||||||
|
throw SkipTestException(""); |
||||||
|
} |
||||||
|
testONNXModels("resnet101_duc_hdc", pb); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_nets, TinyYolov2) |
||||||
|
{ |
||||||
|
if (cvtest::skipUnstableTests || |
||||||
|
backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) { |
||||||
|
throw SkipTestException(""); |
||||||
|
} |
||||||
|
// output range: [-11; 8]
|
||||||
|
const double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.017 : default_l1; |
||||||
|
const double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.14 : default_lInf; |
||||||
|
testONNXModels("tiny_yolo2", pb, l1, lInf); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_nets, CNN_MNIST) |
||||||
|
{ |
||||||
|
// output range: [-1952; 6574]
|
||||||
|
const double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 3.82 : 4.3e-4; |
||||||
|
const double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 13.5 : 1e-3; |
||||||
|
|
||||||
|
testONNXModels("cnn_mnist", pb, l1, lInf); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_nets, MobileNet_v2) |
||||||
|
{ |
||||||
|
// output range: [-166; 317]
|
||||||
|
const double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.38 : 7e-5; |
||||||
|
const double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 2.87 : 5e-4; |
||||||
|
testONNXModels("mobilenetv2", pb, l1, lInf); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_nets, LResNet100E_IR) |
||||||
|
{ |
||||||
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE && |
||||||
|
(target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_OPENCL || target == DNN_TARGET_MYRIAD)) |
||||||
|
throw SkipTestException(""); |
||||||
|
|
||||||
|
double l1 = default_l1; |
||||||
|
double lInf = default_lInf; |
||||||
|
// output range: [-3; 3]
|
||||||
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) { |
||||||
|
l1 = 0.009; |
||||||
|
lInf = 0.035; |
||||||
|
} |
||||||
|
testONNXModels("LResNet100E_IR", pb, l1, lInf); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_nets, Emotion_ferplus) |
||||||
|
{ |
||||||
|
testONNXModels("emotion_ferplus", pb); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_nets, Inception_v2) |
||||||
|
{ |
||||||
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE) |
||||||
|
throw SkipTestException(""); |
||||||
|
|
||||||
|
testONNXModels("inception_v2", pb); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(Test_ONNX_nets, DenseNet121) |
||||||
|
{ |
||||||
|
// output range: [-87; 138]
|
||||||
|
const double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.12 : 1.88e-5; |
||||||
|
const double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.74 : 1.23e-4; |
||||||
|
testONNXModels("densenet121", pb, l1, lInf); |
||||||
|
} |
||||||
|
|
||||||
|
|
||||||
|
INSTANTIATE_TEST_CASE_P(/**/, Test_ONNX_nets, dnnBackendsAndTargets()); |
||||||
|
|
||||||
|
}} // namespace
|
Loading…
Reference in new issue