diff --git a/modules/python/test/calchist.py b/modules/python/test/calchist.py new file mode 100644 index 0000000000..f379dfec1a --- /dev/null +++ b/modules/python/test/calchist.py @@ -0,0 +1,53 @@ +# Calculating and displaying 2D Hue-Saturation histogram of a color image + +import sys +import cv + +def hs_histogram(src): + # Convert to HSV + hsv = cv.CreateImage(cv.GetSize(src), 8, 3) + cv.CvtColor(src, hsv, cv.CV_BGR2HSV) + + # Extract the H and S planes + h_plane = cv.CreateMat(src.rows, src.cols, cv.CV_8UC1) + s_plane = cv.CreateMat(src.rows, src.cols, cv.CV_8UC1) + cv.Split(hsv, h_plane, s_plane, None, None) + planes = [h_plane, s_plane] + + h_bins = 30 + s_bins = 32 + hist_size = [h_bins, s_bins] + # hue varies from 0 (~0 deg red) to 180 (~360 deg red again */ + h_ranges = [0, 180] + # saturation varies from 0 (black-gray-white) to + # 255 (pure spectrum color) + s_ranges = [0, 255] + ranges = [h_ranges, s_ranges] + scale = 10 + hist = cv.CreateHist([h_bins, s_bins], cv.CV_HIST_ARRAY, ranges, 1) + cv.CalcHist([cv.GetImage(i) for i in planes], hist) + (_, max_value, _, _) = cv.GetMinMaxHistValue(hist) + + hist_img = cv.CreateImage((h_bins*scale, s_bins*scale), 8, 3) + + for h in range(h_bins): + for s in range(s_bins): + bin_val = cv.QueryHistValue_2D(hist, h, s) + intensity = cv.Round(bin_val * 255 / max_value) + cv.Rectangle(hist_img, + (h*scale, s*scale), + ((h+1)*scale - 1, (s+1)*scale - 1), + cv.RGB(intensity, intensity, intensity), + cv.CV_FILLED) + return hist_img + +if __name__ == '__main__': + src = cv.LoadImageM(sys.argv[1]) + cv.NamedWindow("Source", 1) + cv.ShowImage("Source", src) + + cv.NamedWindow("H-S Histogram", 1) + cv.ShowImage("H-S Histogram", hs_histogram(src)) + + cv.WaitKey(0) + diff --git a/modules/python/test/findstereocorrespondence.py b/modules/python/test/findstereocorrespondence.py new file mode 100644 index 0000000000..fd3e57f5fc --- /dev/null +++ b/modules/python/test/findstereocorrespondence.py @@ -0,0 +1,23 @@ +import sys +import cv + +def findstereocorrespondence(image_left, image_right): + # image_left and image_right are the input 8-bit single-channel images + # from the left and the right cameras, respectively + (r, c) = (image_left.rows, image_left.cols) + disparity_left = cv.CreateMat(r, c, cv.CV_16S) + disparity_right = cv.CreateMat(r, c, cv.CV_16S) + state = cv.CreateStereoGCState(16, 2) + cv.FindStereoCorrespondenceGC(image_left, image_right, disparity_left, disparity_right, state, 0) + return (disparity_left, disparity_right) + + +if __name__ == '__main__': + + (l, r) = [cv.LoadImageM(f, cv.CV_LOAD_IMAGE_GRAYSCALE) for f in sys.argv[1:]] + + (disparity_left, disparity_right) = findstereocorrespondence(l, r) + + disparity_left_visual = cv.CreateMat(l.rows, l.cols, cv.CV_8U) + cv.ConvertScale(disparity_left, disparity_left_visual, -16) + cv.SaveImage("disparity.pgm", disparity_left_visual) diff --git a/modules/python/test/precornerdetect.py b/modules/python/test/precornerdetect.py new file mode 100644 index 0000000000..4f4da06b17 --- /dev/null +++ b/modules/python/test/precornerdetect.py @@ -0,0 +1,14 @@ +import cv + +def precornerdetect(image): + # assume that the image is floating-point + corners = cv.CloneMat(image) + cv.PreCornerDetect(image, corners, 3) + + dilated_corners = cv.CloneMat(image) + cv.Dilate(corners, dilated_corners, None, 1) + + corner_mask = cv.CreateMat(image.rows, image.cols, cv.CV_8UC1) + cv.Sub(corners, dilated_corners, corners) + cv.CmpS(corners, 0, corner_mask, cv.CV_CMP_GE) + return (corners, corner_mask)