added connectivityMask calculation function

pull/7/merge
marina.kolpakova 12 years ago
parent a9764dd910
commit 0bf10c9a47
  1. 5
      modules/gpu/include/opencv2/gpu/gpu.hpp
  2. 109
      modules/gpu/src/cuda/ccomponetns.cu
  3. 57
      modules/gpu/src/graphcuts.cpp
  4. 4
      modules/gpu/test/test_labeling.cpp

@ -917,8 +917,11 @@ CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTra
GpuMat& labels,
GpuMat& buf, Stream& stream = Stream::Null());
//! compute mask for Generalized Flood fill componetns labeling.
CV_EXPORTS void connectivityMask(const GpuMat& image, GpuMat& mask, const cv::Scalar& lo, const cv::Scalar& hi, Stream& stream = Stream::Null());
//! performs connected componnents labeling.
CV_EXPORTS void labelComponents(const GpuMat& image, GpuMat& mask, GpuMat& components, const cv::Scalar& lo, const cv::Scalar& hi, Stream& stream = Stream::Null());
CV_EXPORTS void labelComponents(const GpuMat& mask, GpuMat& components, Stream& stream = Stream::Null());
////////////////////////////////// Histograms //////////////////////////////////

@ -65,32 +65,108 @@ namespace cv { namespace gpu { namespace device
TILE_ROWS = CTA_SIZE_Y * TPB_Y
};
template<typename T> struct IntervalsTraits
{
typedef T elem_type;
};
template<> struct IntervalsTraits<unsigned char>
{
typedef int dist_type;
enum {ch = 1};
};
template<> struct IntervalsTraits<uchar3>
{
typedef int3 dist_type;
enum {ch = 3};
};
template<> struct IntervalsTraits<uchar4>
{
typedef int3 dist_type;
enum {ch = 4};
};
template<> struct IntervalsTraits<unsigned short>
{
typedef int dist_type;
enum {ch = 1};
};
template<> struct IntervalsTraits<ushort3>
{
typedef int3 dist_type;
enum {ch = 3};
};
template<> struct IntervalsTraits<ushort4>
{
typedef int4 dist_type;
enum {ch = 4};
};
template<> struct IntervalsTraits<float>
{
typedef float dist_type;
enum {ch = 1};
};
template<> struct IntervalsTraits<int>
{
typedef int dist_type;
enum {ch = 1};
};
typedef unsigned char component;
enum Edges { UP = 1, DOWN = 2, LEFT = 4, RIGHT = 8, EMPTY = 0xF0 };
template<typename T>
struct InInterval
template<typename T, int CH> struct InInterval {};
template<typename T> struct InInterval<T, 1>
{
__host__ __device__ __forceinline__ InInterval(const T& _lo, const T& _hi) : lo(-_lo), hi(_hi) {};
__host__ __device__ __forceinline__ InInterval(const float4& _lo, const float4& _hi) : lo(-_lo.x), hi(_hi.x) {};
T lo, hi;
__device__ __forceinline__ bool operator() (const T& a, const T& b) const
template<typename I> __device__ __forceinline__ bool operator() (const I& a, const I& b) const
{
T d = a - b;
return lo <= d && d <= hi;
}
};
template<typename T> struct InInterval<T, 3>
{
__host__ __device__ __forceinline__ InInterval(const float4& _lo, const float4& _hi){};
T lo, hi;
template<typename I> __device__ __forceinline__ bool operator() (const I& a, const I& b) const
{
return true;
}
};
template<typename T> struct InInterval<T, 4>
{
__host__ __device__ __forceinline__ InInterval(const float4& _lo, const float4& _hi){};
T lo, hi;
template<typename I> __device__ __forceinline__ bool operator() (const I& a, const I& b) const
{
return true;
}
};
template<typename F>
__global__ void computeConnectivity(const DevMem2D image, DevMem2D components, F connected)
template<typename T, typename F>
__global__ void computeConnectivity(const DevMem2D_<T> image, DevMem2D components, F connected)
{
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;
if (x >= image.cols || y >= image.rows) return;
int intensity = image(y, x);
T intensity = image(y, x);
component c = 0;
if ( x > 0 && connected(intensity, image(y, x - 1)))
@ -108,18 +184,31 @@ namespace cv { namespace gpu { namespace device
components(y, x) = c;
}
void computeEdges(const DevMem2D& image, DevMem2D edges, const int lo, const int hi, cudaStream_t stream)
template< typename T>
void computeEdges(const DevMem2D& image, DevMem2D edges, const float4& lo, const float4& hi, cudaStream_t stream)
{
dim3 block(CTA_SIZE_X, CTA_SIZE_Y);
dim3 grid(divUp(image.cols, block.x), divUp(image.rows, block.y));
InInterval<int> inInt(lo, hi);
computeConnectivity<InInterval<int> ><<<grid, block, 0, stream>>>(image, edges, inInt);
typedef InInterval<typename IntervalsTraits<T>::dist_type, IntervalsTraits<T>::ch> Int_t;
Int_t inInt(lo, hi);
computeConnectivity<T, Int_t><<<grid, block, 0, stream>>>(static_cast<const DevMem2D_<T> >(image), edges, inInt);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template void computeEdges<uchar> (const DevMem2D& image, DevMem2D edges, const float4& lo, const float4& hi, cudaStream_t stream);
template void computeEdges<uchar3> (const DevMem2D& image, DevMem2D edges, const float4& lo, const float4& hi, cudaStream_t stream);
template void computeEdges<uchar4> (const DevMem2D& image, DevMem2D edges, const float4& lo, const float4& hi, cudaStream_t stream);
template void computeEdges<ushort> (const DevMem2D& image, DevMem2D edges, const float4& lo, const float4& hi, cudaStream_t stream);
template void computeEdges<ushort3>(const DevMem2D& image, DevMem2D edges, const float4& lo, const float4& hi, cudaStream_t stream);
template void computeEdges<ushort4>(const DevMem2D& image, DevMem2D edges, const float4& lo, const float4& hi, cudaStream_t stream);
template void computeEdges<int> (const DevMem2D& image, DevMem2D edges, const float4& lo, const float4& hi, cudaStream_t stream);
template void computeEdges<float> (const DevMem2D& image, DevMem2D edges, const float4& lo, const float4& hi, cudaStream_t stream);
__global__ void lableTiles(const DevMem2D edges, DevMem2Di comps)
{
int x = threadIdx.x + blockIdx.x * TILE_COLS;

@ -47,7 +47,8 @@
void cv::gpu::graphcut(GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::graphcut(GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::labelComponents(const GpuMat&, GpuMat&, GpuMat&, const cv::Scalar&, const cv::Scalar&, Stream&) { throw_nogpu(); }
void cv::gpu::connectivityMask(const GpuMat&, GpuMat&, const cv::Scalar&, const cv::Scalar&, Stream&) { throw_nogpu(); }
void cv::gpu::labelComponents(const GpuMat& mask, GpuMat& components, Stream& stream) { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */
@ -56,30 +57,66 @@ namespace cv { namespace gpu { namespace device
namespace ccl
{
void labelComponents(const DevMem2D& edges, DevMem2Di comps, cudaStream_t stream);
void computeEdges(const DevMem2D& image, DevMem2D edges, const int lo, const int hi, cudaStream_t stream);
template<typename T>
void computeEdges(const DevMem2D& image, DevMem2D edges, const float4& lo, const float4& hi, cudaStream_t stream);
}
}}}
void cv::gpu::labelComponents(const GpuMat& image, GpuMat& mask, GpuMat& components, const cv::Scalar& lo, const cv::Scalar& hi, Stream& s)
float4 scalarToCudaType(const cv::Scalar& in)
{
float4 res;
res.x = in[0]; res.y = in[1]; res.z = in[2]; res.w = in[3];
return res;
}
void cv::gpu::connectivityMask(const GpuMat& image, GpuMat& mask, const cv::Scalar& lo, const cv::Scalar& hi, Stream& s)
{
CV_Assert(!image.empty());
int type = image.type();
CV_Assert(type == CV_8UC1);
int ch = image.channels();
CV_Assert(ch <= 4);
int depth = image.depth();
typedef void (*func_t)(const DevMem2D& image, DevMem2D edges, const float4& lo, const float4& hi, cudaStream_t stream);
static const func_t suppotLookup[8][4] =
{ // 1, 2, 3, 4
{ device::ccl::computeEdges<uchar>, 0, device::ccl::computeEdges<uchar3>, device::ccl::computeEdges<uchar4> },// CV_8U
{ 0, 0, 0, 0 },// CV_16U
{ device::ccl::computeEdges<ushort>, 0, device::ccl::computeEdges<ushort3>, device::ccl::computeEdges<ushort4> },// CV_8S
{ 0, 0, 0, 0 },// CV_16S
{ device::ccl::computeEdges<int>, 0, 0, 0 },// CV_32S
{ device::ccl::computeEdges<float>, 0, 0, 0 },// CV_32F
{ 0, 0, 0, 0 },// CV_64F
{ 0, 0, 0, 0 } // CV_USRTYPE1
};
func_t f = suppotLookup[depth][ch - 1];
CV_Assert(f);
if (image.size() != mask.size() || mask.type() != CV_8UC1)
mask.create(image.size(), CV_8UC1);
if (image.size() != components.size() || components.type() != CV_32SC1)
components.create(image.size(), CV_32SC1);
cudaStream_t stream = StreamAccessor::getStream(s);
float4 culo = scalarToCudaType(lo), cuhi = scalarToCudaType(hi);
f(image, mask, culo, cuhi, stream);
}
device::ccl::computeEdges(image, mask, lo[0], hi[0], stream);
void cv::gpu::labelComponents(const GpuMat& mask, GpuMat& components, Stream& s)
{
CV_Assert(!mask.empty() && mask.type() == CV_8U);
if (mask.size() != components.size() || components.type() != CV_32SC1)
components.create(mask.size(), CV_32SC1);
cudaStream_t stream = StreamAccessor::getStream(s);
device::ccl::labelComponents(mask, components, stream);
}
namespace
{
typedef NppStatus (*init_func_t)(NppiSize oSize, NppiGraphcutState** ppState, Npp8u* pDeviceMem);

@ -70,7 +70,9 @@ TEST_P(Labeling, ConnectedComponents)
cv::gpu::GpuMat components;
components.create(image.rows, image.cols, CV_32SC1);
cv::gpu::labelComponents(cv::gpu::GpuMat(image), mask, components, cv::Scalar::all(0), cv::Scalar::all(2));
cv::gpu::connectivityMask(cv::gpu::GpuMat(image), mask, cv::Scalar::all(0), cv::Scalar::all(2));
cv::gpu::labelComponents(mask, components);
// std::cout << cv::Mat(components) << std::endl;
// cv::imshow("test", image);

Loading…
Cancel
Save