Merge pull request #20367 from augustinmanecy:features2d-rw

**Merge with contrib**: https://github.com/opencv/opencv_contrib/pull/3003

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or other license that is incompatible with OpenCV
- [x] The PR is proposed to proper branch
- [ ] There is reference to original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
pull/23012/head
augustinmanecy 2 years ago committed by GitHub
parent 63b6b24cd0
commit 0bd54a60e9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 55
      modules/features2d/include/opencv2/features2d.hpp
  2. 85
      modules/features2d/misc/java/test/AGASTFeatureDetectorTest.java
  3. 67
      modules/features2d/misc/java/test/AKAZEDescriptorExtractorTest.java
  4. 4
      modules/features2d/misc/java/test/BRIEFDescriptorExtractorTest.java
  5. 63
      modules/features2d/misc/java/test/BRISKDescriptorExtractorTest.java
  6. 41
      modules/features2d/misc/java/test/FASTFeatureDetectorTest.java
  7. 4
      modules/features2d/misc/java/test/Features2dTest.java
  8. 38
      modules/features2d/misc/java/test/GFTTFeatureDetectorTest.java
  9. 66
      modules/features2d/misc/java/test/KAZEDescriptorExtractorTest.java
  10. 41
      modules/features2d/misc/java/test/MSERFeatureDetectorTest.java
  11. 35
      modules/features2d/misc/java/test/ORBDescriptorExtractorTest.java
  12. 33
      modules/features2d/misc/java/test/SIFTDescriptorExtractorTest.java
  13. 34
      modules/features2d/misc/java/test/SIMPLEBLOBFeatureDetectorTest.java
  14. 133
      modules/features2d/misc/java/test/STARFeatureDetectorTest.java
  15. 119
      modules/features2d/misc/java/test/SURFDescriptorExtractorTest.java
  16. 175
      modules/features2d/misc/java/test/SURFFeatureDetectorTest.java
  17. 6
      modules/features2d/misc/objc/gen_dict.json
  18. 21
      modules/features2d/src/agast.cpp
  19. 23
      modules/features2d/src/akaze.cpp
  20. 37
      modules/features2d/src/blobdetector.cpp
  21. 88
      modules/features2d/src/brisk.cpp
  22. 21
      modules/features2d/src/fast.cpp
  23. 37
      modules/features2d/src/gftt.cpp
  24. 20
      modules/features2d/src/kaze.cpp
  25. 60
      modules/features2d/src/mser.cpp
  26. 42
      modules/features2d/src/orb.cpp
  27. 48
      modules/features2d/src/sift.dispatch.cpp
  28. 4
      modules/java/check-tests.py

@ -319,6 +319,21 @@ public:
double sigma, int descriptorType);
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
CV_WRAP virtual void setNFeatures(int maxFeatures) = 0;
CV_WRAP virtual int getNFeatures() const = 0;
CV_WRAP virtual void setNOctaveLayers(int nOctaveLayers) = 0;
CV_WRAP virtual int getNOctaveLayers() const = 0;
CV_WRAP virtual void setContrastThreshold(double contrastThreshold) = 0;
CV_WRAP virtual double getContrastThreshold() const = 0;
CV_WRAP virtual void setEdgeThreshold(double edgeThreshold) = 0;
CV_WRAP virtual double getEdgeThreshold() const = 0;
CV_WRAP virtual void setSigma(double sigma) = 0;
CV_WRAP virtual double getSigma() const = 0;
};
typedef SIFT SiftFeatureDetector;
@ -374,14 +389,20 @@ public:
/** @brief Set detection threshold.
@param threshold AGAST detection threshold score.
*/
CV_WRAP virtual void setThreshold(int threshold) { CV_UNUSED(threshold); return; }
CV_WRAP virtual int getThreshold() const { return -1; }
CV_WRAP virtual void setThreshold(int threshold) = 0;
CV_WRAP virtual int getThreshold() const = 0;
/** @brief Set detection octaves.
@param octaves detection octaves. Use 0 to do single scale.
*/
CV_WRAP virtual void setOctaves(int octaves) { CV_UNUSED(octaves); return; }
CV_WRAP virtual int getOctaves() const { return -1; }
CV_WRAP virtual void setOctaves(int octaves) = 0;
CV_WRAP virtual int getOctaves() const = 0;
/** @brief Set detection patternScale.
@param patternScale apply this scale to the pattern used for sampling the neighbourhood of a
keypoint.
*/
CV_WRAP virtual void setPatternScale(float patternScale) = 0;
CV_WRAP virtual float getPatternScale() const = 0;
};
/** @brief Class implementing the ORB (*oriented BRIEF*) keypoint detector and descriptor extractor
@ -514,8 +535,27 @@ public:
CV_WRAP virtual void setMaxArea(int maxArea) = 0;
CV_WRAP virtual int getMaxArea() const = 0;
CV_WRAP virtual void setMaxVariation(double maxVariation) = 0;
CV_WRAP virtual double getMaxVariation() const = 0;
CV_WRAP virtual void setMinDiversity(double minDiversity) = 0;
CV_WRAP virtual double getMinDiversity() const = 0;
CV_WRAP virtual void setMaxEvolution(int maxEvolution) = 0;
CV_WRAP virtual int getMaxEvolution() const = 0;
CV_WRAP virtual void setAreaThreshold(double areaThreshold) = 0;
CV_WRAP virtual double getAreaThreshold() const = 0;
CV_WRAP virtual void setMinMargin(double min_margin) = 0;
CV_WRAP virtual double getMinMargin() const = 0;
CV_WRAP virtual void setEdgeBlurSize(int edge_blur_size) = 0;
CV_WRAP virtual int getEdgeBlurSize() const = 0;
CV_WRAP virtual void setPass2Only(bool f) = 0;
CV_WRAP virtual bool getPass2Only() const = 0;
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
};
@ -660,6 +700,9 @@ public:
CV_WRAP virtual void setBlockSize(int blockSize) = 0;
CV_WRAP virtual int getBlockSize() const = 0;
CV_WRAP virtual void setGradientSize(int gradientSize_) = 0;
CV_WRAP virtual int getGradientSize() = 0;
CV_WRAP virtual void setHarrisDetector(bool val) = 0;
CV_WRAP virtual bool getHarrisDetector() const = 0;
@ -734,6 +777,10 @@ public:
CV_WRAP static Ptr<SimpleBlobDetector>
create(const SimpleBlobDetector::Params &parameters = SimpleBlobDetector::Params());
CV_WRAP virtual void setParams(const SimpleBlobDetector::Params& params ) = 0;
CV_WRAP virtual SimpleBlobDetector::Params getParams() const = 0;
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
CV_WRAP virtual const std::vector<std::vector<cv::Point> >& getBlobContours() const;
};

@ -0,0 +1,85 @@
package org.opencv.test.features2d;
import org.opencv.test.OpenCVTestCase;
import org.opencv.test.OpenCVTestRunner;
import org.opencv.features2d.AgastFeatureDetector;
public class AGASTFeatureDetectorTest extends OpenCVTestCase {
AgastFeatureDetector detector;
@Override
protected void setUp() throws Exception {
super.setUp();
detector = AgastFeatureDetector.create(); // default (10,true,3)
}
public void testCreate() {
assertNotNull(detector);
}
public void testDetectListOfMatListOfListOfKeyPoint() {
fail("Not yet implemented");
}
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
fail("Not yet implemented");
}
public void testDetectMatListOfKeyPoint() {
fail("Not yet implemented");
}
public void testDetectMatListOfKeyPointMat() {
fail("Not yet implemented");
}
public void testEmpty() {
fail("Not yet implemented");
}
public void testRead() {
String filename = OpenCVTestRunner.getTempFileName("xml");
writeFile(filename, "<?xml version=\"1.0\"?>\n<opencv_storage>\n<name>Feature2D.AgastFeatureDetector</name>\n<threshold>11</threshold>\n<nonmaxSuppression>0</nonmaxSuppression>\n<type>2</type>\n</opencv_storage>\n");
detector.read(filename);
assertEquals(11, detector.getThreshold());
assertEquals(false, detector.getNonmaxSuppression());
assertEquals(2, detector.getType());
}
public void testReadYml() {
String filename = OpenCVTestRunner.getTempFileName("yml");
writeFile(filename, "%YAML:1.0\n---\nname: \"Feature2D.AgastFeatureDetector\"\nthreshold: 11\nnonmaxSuppression: 0\ntype: 2\n");
detector.read(filename);
assertEquals(11, detector.getThreshold());
assertEquals(false, detector.getNonmaxSuppression());
assertEquals(2, detector.getType());
}
public void testWrite() {
String filename = OpenCVTestRunner.getTempFileName("xml");
detector.write(filename);
String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n<name>Feature2D.AgastFeatureDetector</name>\n<threshold>10</threshold>\n<nonmaxSuppression>1</nonmaxSuppression>\n<type>3</type>\n</opencv_storage>\n";
String actual = readFile(filename);
actual = actual.replaceAll("e([+-])0(\\d\\d)", "e$1$2"); // NOTE: workaround for different platforms double representation
assertEquals(truth, actual);
}
public void testWriteYml() {
String filename = OpenCVTestRunner.getTempFileName("yml");
detector.write(filename);
String truth = "%YAML:1.0\n---\nname: \"Feature2D.AgastFeatureDetector\"\nthreshold: 10\nnonmaxSuppression: 1\ntype: 3\n";
String actual = readFile(filename);
actual = actual.replaceAll("e([+-])0(\\d\\d)", "e$1$2"); // NOTE: workaround for different platforms double representation
assertEquals(truth, actual);
}
}

@ -0,0 +1,67 @@
package org.opencv.test.features2d;
import org.opencv.test.OpenCVTestCase;
import org.opencv.test.OpenCVTestRunner;
import org.opencv.features2d.AKAZE;
public class AKAZEDescriptorExtractorTest extends OpenCVTestCase {
AKAZE extractor;
@Override
protected void setUp() throws Exception {
super.setUp();
extractor = AKAZE.create(); // default (5,0,3,0.001f,4,4,1)
}
public void testCreate() {
assertNotNull(extractor);
}
public void testDetectListOfMatListOfListOfKeyPoint() {
fail("Not yet implemented");
}
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
fail("Not yet implemented");
}
public void testDetectMatListOfKeyPoint() {
fail("Not yet implemented");
}
public void testDetectMatListOfKeyPointMat() {
fail("Not yet implemented");
}
public void testEmpty() {
fail("Not yet implemented");
}
public void testReadYml() {
String filename = OpenCVTestRunner.getTempFileName("yml");
writeFile(filename, "%YAML:1.0\n---\nformat: 3\nname: \"Feature2D.AKAZE\"\ndescriptor: 4\ndescriptor_channels: 2\ndescriptor_size: 32\nthreshold: 0.125\noctaves: 3\nsublevels: 5\ndiffusivity: 2\n");
extractor.read(filename);
assertEquals(4, extractor.getDescriptorType());
assertEquals(2, extractor.getDescriptorChannels());
assertEquals(32, extractor.getDescriptorSize());
assertEquals(0.125, extractor.getThreshold());
assertEquals(3, extractor.getNOctaves());
assertEquals(5, extractor.getNOctaveLayers());
assertEquals(2, extractor.getDiffusivity());
}
public void testWriteYml() {
String filename = OpenCVTestRunner.getTempFileName("yml");
extractor.write(filename);
String truth = "%YAML:1.0\n---\nformat: 3\nname: \"Feature2D.AKAZE\"\ndescriptor: 5\ndescriptor_channels: 3\ndescriptor_size: 0\nthreshold: 1.0000000474974513e-03\noctaves: 4\nsublevels: 4\ndiffusivity: 1\n";
String actual = readFile(filename);
actual = actual.replaceAll("e([+-])0(\\d\\d)", "e$1$2"); // NOTE: workaround for different platforms double representation
assertEquals(truth, actual);
}
}

@ -86,7 +86,7 @@ public class BRIEFDescriptorExtractorTest extends OpenCVTestCase {
extractor.write(filename);
String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n<descriptorSize>32</descriptorSize>\n</opencv_storage>\n";
String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n<name>Feature2D.BRIEF</name>\n<descriptorSize>32</descriptorSize>\n<use_orientation>0</use_orientation>\n</opencv_storage>\n";
assertEquals(truth, readFile(filename));
}
@ -95,7 +95,7 @@ public class BRIEFDescriptorExtractorTest extends OpenCVTestCase {
extractor.write(filename);
String truth = "%YAML:1.0\n---\ndescriptorSize: 32\n";
String truth = "%YAML:1.0\n---\nname: \"Feature2D.BRIEF\"\ndescriptorSize: 32\nuse_orientation: 0\n";
assertEquals(truth, readFile(filename));
}

@ -0,0 +1,63 @@
package org.opencv.test.features2d;
import org.opencv.test.OpenCVTestCase;
import org.opencv.test.OpenCVTestRunner;
import org.opencv.features2d.BRISK;
public class BRISKDescriptorExtractorTest extends OpenCVTestCase {
BRISK extractor;
@Override
protected void setUp() throws Exception {
super.setUp();
extractor = BRISK.create(); // default (30,3,1)
}
public void testCreate() {
assertNotNull(extractor);
}
public void testDetectListOfMatListOfListOfKeyPoint() {
fail("Not yet implemented");
}
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
fail("Not yet implemented");
}
public void testDetectMatListOfKeyPoint() {
fail("Not yet implemented");
}
public void testDetectMatListOfKeyPointMat() {
fail("Not yet implemented");
}
public void testEmpty() {
fail("Not yet implemented");
}
public void testReadYml() {
String filename = OpenCVTestRunner.getTempFileName("yml");
writeFile(filename, "%YAML:1.0\n---\nname: \"Feature2D.BRISK\"\nthreshold: 31\noctaves: 4\npatternScale: 1.1\n");
extractor.read(filename);
assertEquals(31, extractor.getThreshold());
assertEquals(4, extractor.getOctaves());
assertEquals(1.1f, extractor.getPatternScale());
}
public void testWriteYml() {
String filename = OpenCVTestRunner.getTempFileName("yml");
extractor.write(filename);
String truth = "%YAML:1.0\n---\nname: \"Feature2D.BRISK\"\nthreshold: 30\noctaves: 3\npatternScale: 1.\n";
String actual = readFile(filename);
actual = actual.replaceAll("e([+-])0(\\d\\d)", "e$1$2"); // NOTE: workaround for different platforms double representation
assertEquals(truth, actual);
}
}

@ -8,7 +8,6 @@ import org.opencv.core.Mat;
import org.opencv.core.MatOfKeyPoint;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.features2d.Feature2D;
import org.opencv.features2d.FastFeatureDetector;
import org.opencv.core.KeyPoint;
import org.opencv.test.OpenCVTestCase;
@ -17,7 +16,7 @@ import org.opencv.imgproc.Imgproc;
public class FASTFeatureDetectorTest extends OpenCVTestCase {
Feature2D detector;
FastFeatureDetector detector;
KeyPoint[] truth;
private Mat getMaskImg() {
@ -78,20 +77,24 @@ public class FASTFeatureDetectorTest extends OpenCVTestCase {
public void testEmpty() {
// assertFalse(detector.empty());
fail("Not yet implemented"); //FAST does not override empty() method
fail("Not yet implemented"); // FAST does not override empty() method
}
public void testRead() {
String filename = OpenCVTestRunner.getTempFileName("yml");
String filename = OpenCVTestRunner.getTempFileName("xml");
writeFile(filename, "%YAML:1.0\n---\nthreshold: 130\nnonmaxSuppression: 1\n");
writeFile(filename, "<?xml version=\"1.0\"?>\n<opencv_storage>\n<name>Feature2D.FastFeatureDetector</name>\n<threshold>10</threshold>\n<nonmaxSuppression>1</nonmaxSuppression>\n<type>2</type>\n</opencv_storage>\n");
detector.read(filename);
assertEquals(10, detector.getThreshold());
assertEquals(true, detector.getNonmaxSuppression());
assertEquals(2, detector.getType());
MatOfKeyPoint keypoints1 = new MatOfKeyPoint();
detector.detect(grayChess, keypoints1);
writeFile(filename, "%YAML:1.0\n---\nthreshold: 150\nnonmaxSuppression: 1\n");
writeFile(filename, "<?xml version=\"1.0\"?>\n<opencv_storage>\n<name>Feature2D.FastFeatureDetector</name>\n<threshold>150</threshold>\n<nonmaxSuppression>1</nonmaxSuppression>\n<type>2</type>\n</opencv_storage>\n");
detector.read(filename);
MatOfKeyPoint keypoints2 = new MatOfKeyPoint();
@ -104,16 +107,18 @@ public class FASTFeatureDetectorTest extends OpenCVTestCase {
public void testReadYml() {
String filename = OpenCVTestRunner.getTempFileName("yml");
writeFile(filename,
"<?xml version=\"1.0\"?>\n<opencv_storage>\n<threshold>130</threshold>\n<nonmaxSuppression>1</nonmaxSuppression>\n</opencv_storage>\n");
writeFile(filename, "%YAML:1.0\n---\nthreshold: 130\nnonmaxSuppression: 1\ntype: 2\n");
detector.read(filename);
assertEquals(130, detector.getThreshold());
assertEquals(true, detector.getNonmaxSuppression());
assertEquals(2, detector.getType());
MatOfKeyPoint keypoints1 = new MatOfKeyPoint();
detector.detect(grayChess, keypoints1);
writeFile(filename,
"<?xml version=\"1.0\"?>\n<opencv_storage>\n<threshold>150</threshold>\n<nonmaxSuppression>1</nonmaxSuppression>\n</opencv_storage>\n");
writeFile(filename, "%YAML:1.0\n---\nthreshold: 150\nnonmaxSuppression: 1\ntype: 2\n");
detector.read(filename);
MatOfKeyPoint keypoints2 = new MatOfKeyPoint();
@ -123,28 +128,14 @@ public class FASTFeatureDetectorTest extends OpenCVTestCase {
assertTrue(keypoints2.total() <= keypoints1.total());
}
public void testWrite() {
String filename = OpenCVTestRunner.getTempFileName("xml");
detector.write(filename);
// String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n<name>Feature2D.FAST</name>\n<nonmaxSuppression>1</nonmaxSuppression>\n<threshold>10</threshold>\n<type>2</type>\n</opencv_storage>\n";
String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n</opencv_storage>\n";
String data = readFile(filename);
//Log.d("qqq", "\"" + data + "\"");
assertEquals(truth, data);
}
public void testWriteYml() {
String filename = OpenCVTestRunner.getTempFileName("yml");
detector.write(filename);
// String truth = "%YAML:1.0\n---\nname: \"Feature2D.FAST\"\nnonmaxSuppression: 1\nthreshold: 10\ntype: 2\n";
String truth = "%YAML:1.0\n---\n";
String truth = "%YAML:1.0\n---\nname: \"Feature2D.FastFeatureDetector\"\nthreshold: 10\nnonmaxSuppression: 1\ntype: 2\n";
String data = readFile(filename);
//Log.d("qqq", "\"" + data + "\"");
assertEquals(truth, data);
}
}

@ -79,8 +79,8 @@ public class Features2dTest extends OpenCVTestCase {
public void testPTOD()
{
String detectorCfg = "%YAML:1.0\n---\nhessianThreshold: 4000.\noctaves: 3\noctaveLayers: 4\nupright: 0\n";
String extractorCfg = "%YAML:1.0\n---\nnOctaves: 4\nnOctaveLayers: 2\nextended: 0\nupright: 0\n";
String detectorCfg = "%YAML:1.0\n---\nhessianThreshold: 4000.\nextended: 0\nupright: 0\nOctaves: 4\nOctaveLayers: 3\n";
String extractorCfg = "%YAML:1.0\n---\nhessianThreshold: 4000.\nextended: 0\nupright: 0\nOctaves: 4\nOctaveLayers: 3\n";
Feature2D detector = createClassInstance(XFEATURES2D+"SURF", DEFAULT_FACTORY, null, null);
Feature2D extractor = createClassInstance(XFEATURES2D+"SURF", DEFAULT_FACTORY, null, null);

@ -1,11 +1,21 @@
package org.opencv.test.features2d;
import org.opencv.test.OpenCVTestCase;
import org.opencv.test.OpenCVTestRunner;
import org.opencv.features2d.GFTTDetector;
public class GFTTFeatureDetectorTest extends OpenCVTestCase {
GFTTDetector detector;
@Override
protected void setUp() throws Exception {
super.setUp();
detector = GFTTDetector.create(); // default constructor have (1000, 0.01, 1, 3, 3, false, 0.04)
}
public void testCreate() {
fail("Not yet implemented");
assertNotNull(detector);
}
public void testDetectListOfMatListOfListOfKeyPoint() {
@ -28,12 +38,30 @@ public class GFTTFeatureDetectorTest extends OpenCVTestCase {
fail("Not yet implemented");
}
public void testRead() {
fail("Not yet implemented");
public void testReadYml() {
String filename = OpenCVTestRunner.getTempFileName("yml");
writeFile(filename, "%YAML:1.0\n---\nname: \"Feature2D.GFTTDetector\"\nnfeatures: 500\nqualityLevel: 2.0000000000000000e-02\nminDistance: 2.\nblockSize: 4\ngradSize: 5\nuseHarrisDetector: 1\nk: 5.0000000000000000e-02\n");
detector.read(filename);
assertEquals(500, detector.getMaxFeatures());
assertEquals(0.02, detector.getQualityLevel());
assertEquals(2.0, detector.getMinDistance());
assertEquals(4, detector.getBlockSize());
assertEquals(5, detector.getGradientSize());
assertEquals(true, detector.getHarrisDetector());
assertEquals(0.05, detector.getK());
}
public void testWrite() {
fail("Not yet implemented");
public void testWriteYml() {
String filename = OpenCVTestRunner.getTempFileName("yml");
detector.write(filename);
String truth = "%YAML:1.0\n---\nname: \"Feature2D.GFTTDetector\"\nnfeatures: 1000\nqualityLevel: 1.0000000000000000e-02\nminDistance: 1.\nblockSize: 3\ngradSize: 3\nuseHarrisDetector: 0\nk: 4.0000000000000001e-02\n";
String actual = readFile(filename);
actual = actual.replaceAll("e([+-])0(\\d\\d)", "e$1$2"); // NOTE: workaround for different platforms double representation
assertEquals(truth, actual);
}
}

@ -0,0 +1,66 @@
package org.opencv.test.features2d;
import org.opencv.test.OpenCVTestCase;
import org.opencv.test.OpenCVTestRunner;
import org.opencv.features2d.KAZE;
public class KAZEDescriptorExtractorTest extends OpenCVTestCase {
KAZE extractor;
@Override
protected void setUp() throws Exception {
super.setUp();
extractor = KAZE.create(); // default (false,false,0.001f,4,4,1)
}
public void testCreate() {
assertNotNull(extractor);
}
public void testDetectListOfMatListOfListOfKeyPoint() {
fail("Not yet implemented");
}
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
fail("Not yet implemented");
}
public void testDetectMatListOfKeyPoint() {
fail("Not yet implemented");
}
public void testDetectMatListOfKeyPointMat() {
fail("Not yet implemented");
}
public void testEmpty() {
fail("Not yet implemented");
}
public void testReadYml() {
String filename = OpenCVTestRunner.getTempFileName("yml");
writeFile(filename, "%YAML:1.0\n---\nformat: 3\nname: \"Feature2D.KAZE\"\nextended: 1\nupright: 1\nthreshold: 0.125\noctaves: 3\nsublevels: 5\ndiffusivity: 2\n");
extractor.read(filename);
assertEquals(true, extractor.getExtended());
assertEquals(true, extractor.getUpright());
assertEquals(0.125, extractor.getThreshold());
assertEquals(3, extractor.getNOctaves());
assertEquals(5, extractor.getNOctaveLayers());
assertEquals(2, extractor.getDiffusivity());
}
public void testWriteYml() {
String filename = OpenCVTestRunner.getTempFileName("yml");
extractor.write(filename);
String truth = "%YAML:1.0\n---\nformat: 3\nname: \"Feature2D.KAZE\"\nextended: 0\nupright: 0\nthreshold: 1.0000000474974513e-03\noctaves: 4\nsublevels: 4\ndiffusivity: 1\n";
String actual = readFile(filename);
actual = actual.replaceAll("e([+-])0(\\d\\d)", "e$1$2"); // NOTE: workaround for different platforms double representation
assertEquals(truth, actual);
}
}

@ -1,11 +1,21 @@
package org.opencv.test.features2d;
import org.opencv.test.OpenCVTestCase;
import org.opencv.test.OpenCVTestRunner;
import org.opencv.features2d.MSER;
public class MSERFeatureDetectorTest extends OpenCVTestCase {
MSER detector;
@Override
protected void setUp() throws Exception {
super.setUp();
detector = MSER.create(); // default constructor have (5, 60, 14400, .25, .2, 200, 1.01, .003, 5)
}
public void testCreate() {
fail("Not yet implemented");
assertNotNull(detector);
}
public void testDetectListOfMatListOfListOfKeyPoint() {
@ -28,12 +38,33 @@ public class MSERFeatureDetectorTest extends OpenCVTestCase {
fail("Not yet implemented");
}
public void testRead() {
fail("Not yet implemented");
public void testReadYml() {
String filename = OpenCVTestRunner.getTempFileName("yml");
writeFile(filename, "%YAML:1.0\n---\nname: \"Feature2D.MSER\"\ndelta: 6\nminArea: 62\nmaxArea: 14402\nmaxVariation: .26\nminDiversity: .3\nmaxEvolution: 201\nareaThreshold: 1.02\nminMargin: 3.0e-3\nedgeBlurSize: 3\npass2Only: 1\n");
detector.read(filename);
assertEquals(6, detector.getDelta());
assertEquals(62, detector.getMinArea());
assertEquals(14402, detector.getMaxArea());
assertEquals(.26, detector.getMaxVariation());
assertEquals(.3, detector.getMinDiversity());
assertEquals(201, detector.getMaxEvolution());
assertEquals(1.02, detector.getAreaThreshold());
assertEquals(0.003, detector.getMinMargin());
assertEquals(3, detector.getEdgeBlurSize());
assertEquals(true, detector.getPass2Only());
}
public void testWrite() {
fail("Not yet implemented");
public void testWriteYml() {
String filename = OpenCVTestRunner.getTempFileName("yml");
detector.write(filename);
String truth = "%YAML:1.0\n---\nname: \"Feature2D.MSER\"\ndelta: 5\nminArea: 60\nmaxArea: 14400\nmaxVariation: 2.5000000000000000e-01\nminDiversity: 2.0000000000000001e-01\nmaxEvolution: 200\nareaThreshold: 1.0100000000000000e+00\nminMargin: 3.0000000000000001e-03\nedgeBlurSize: 5\npass2Only: 0\n";
String actual = readFile(filename);
actual = actual.replaceAll("e([+-])0(\\d\\d)", "e$1$2"); // NOTE: workaround for different platforms double representation
assertEquals(truth, actual);
}
}

@ -75,16 +75,25 @@ public class ORBDescriptorExtractorTest extends OpenCVTestCase {
fail("Not yet implemented"); // ORB does not override empty() method
}
public void testRead() {
public void testReadYml() {
KeyPoint point = new KeyPoint(55.775577545166016f, 44.224422454833984f, 16, 9.754629f, 8617.863f, 1, -1);
MatOfKeyPoint keypoints = new MatOfKeyPoint(point);
Mat img = getTestImg();
Mat descriptors = new Mat();
// String filename = OpenCVTestRunner.getTempFileName("yml");
// writeFile(filename, "%YAML:1.0\n---\nscaleFactor: 1.1\nnLevels: 3\nfirstLevel: 0\nedgeThreshold: 31\npatchSize: 31\n");
// extractor.read(filename);
extractor = ORB.create(500, 1.1f, 3, 31, 0, 2, ORB.HARRIS_SCORE, 31, 20);
String filename = OpenCVTestRunner.getTempFileName("yml");
writeFile(filename, "%YAML:1.0\n---\nnfeatures: 500\nscaleFactor: 1.1\nnlevels: 3\nedgeThreshold: 31\nfirstLevel: 0\nwta_k: 2\nscoreType: 0\npatchSize: 31\nfastThreshold: 20\n");
extractor.read(filename);
assertEquals(500, extractor.getMaxFeatures());
assertEquals(1.1, extractor.getScaleFactor());
assertEquals(3, extractor.getNLevels());
assertEquals(31, extractor.getEdgeThreshold());
assertEquals(0, extractor.getFirstLevel());
assertEquals(2, extractor.getWTA_K());
assertEquals(0, extractor.getScoreType());
assertEquals(31, extractor.getPatchSize());
assertEquals(20, extractor.getFastThreshold());
extractor.compute(img, keypoints, descriptors);
@ -97,25 +106,13 @@ public class ORBDescriptorExtractorTest extends OpenCVTestCase {
assertDescriptorsClose(truth, descriptors, 1);
}
public void testWrite() {
String filename = OpenCVTestRunner.getTempFileName("xml");
extractor.write(filename);
// String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n<name>Feature2D.ORB</name>\n<WTA_K>2</WTA_K>\n<edgeThreshold>31</edgeThreshold>\n<firstLevel>0</firstLevel>\n<nFeatures>500</nFeatures>\n<nLevels>8</nLevels>\n<patchSize>31</patchSize>\n<scaleFactor>1.2000000476837158e+00</scaleFactor>\n<scoreType>0</scoreType>\n</opencv_storage>\n";
String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n</opencv_storage>\n";
String actual = readFile(filename);
actual = actual.replaceAll("e\\+000", "e+00"); // NOTE: workaround for different platforms double representation
assertEquals(truth, actual);
}
public void testWriteYml() {
String filename = OpenCVTestRunner.getTempFileName("yml");
extractor.write(filename);
// String truth = "%YAML:1.0\n---\nname: \"Feature2D.ORB\"\nWTA_K: 2\nedgeThreshold: 31\nfirstLevel: 0\nnFeatures: 500\nnLevels: 8\npatchSize: 31\nscaleFactor: 1.2000000476837158e+00\nscoreType: 0\n";
String truth = "%YAML:1.0\n---\n";
String truth = "%YAML:1.0\n---\nname: \"Feature2D.ORB\"\nnfeatures: 500\nscaleFactor: 1.2000000476837158e+00\nnlevels: 8\nedgeThreshold: 31\nfirstLevel: 0\nwta_k: 2\nscoreType: 0\npatchSize: 31\nfastThreshold: 20\n";
// String truth = "%YAML:1.0\n---\n";
String actual = readFile(filename);
actual = actual.replaceAll("e\\+000", "e+00"); // NOTE: workaround for different platforms double representation
assertEquals(truth, actual);

@ -10,11 +10,11 @@ import org.opencv.features2d.SIFT;
import org.opencv.test.OpenCVTestCase;
import org.opencv.test.OpenCVTestRunner;
import org.opencv.imgproc.Imgproc;
import org.opencv.features2d.Feature2D;
import org.opencv.features2d.SIFT;
public class SIFTDescriptorExtractorTest extends OpenCVTestCase {
Feature2D extractor;
SIFT extractor;
KeyPoint keypoint;
int matSize;
Mat truth;
@ -43,7 +43,7 @@ public class SIFTDescriptorExtractorTest extends OpenCVTestCase {
117, 112, 117, 76, 117, 54, 117, 25, 29, 22, 117, 117, 16, 11, 14,
1, 0, 0, 22, 26, 0, 0, 0, 0, 1, 4, 15, 2, 47, 8, 0, 0, 82, 56, 31,
17, 81, 12, 0, 0, 26, 23, 18, 23, 0, 0, 0, 0, 0, 0, 0, 0
);
);
}
};
}
@ -76,23 +76,23 @@ public class SIFTDescriptorExtractorTest extends OpenCVTestCase {
public void testEmpty() {
// assertFalse(extractor.empty());
fail("Not yet implemented"); //SIFT does not override empty() method
fail("Not yet implemented"); // SIFT does not override empty() method
}
public void testRead() {
fail("Not yet implemented");
}
public void testReadYml() {
String filename = OpenCVTestRunner.getTempFileName("yml");
writeFile(filename, "%YAML:1.0\n---\nname: \"Feature2D.SIFT\"\nnfeatures: 100\nnOctaveLayers: 4\ncontrastThreshold: 5.0000000000000001e-02\nedgeThreshold: 11\nsigma: 1.7\ndescriptorType: 5\n");
public void testWrite() {
String filename = OpenCVTestRunner.getTempFileName("xml");
extractor.read(filename);
extractor.write(filename);
assertEquals(128, extractor.descriptorSize());
// String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n<name>Feature2D.SIFT</name>\n<contrastThreshold>4.0000000000000001e-02</contrastThreshold>\n<edgeThreshold>10.</edgeThreshold>\n<nFeatures>0</nFeatures>\n<nOctaveLayers>3</nOctaveLayers>\n<sigma>1.6000000000000001e+00</sigma>\n</opencv_storage>\n";
String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n</opencv_storage>\n";
String actual = readFile(filename);
actual = actual.replaceAll("e([+-])0(\\d\\d)", "e$1$2"); // NOTE: workaround for different platforms double representation
assertEquals(truth, actual);
assertEquals(100, extractor.getNFeatures());
assertEquals(4, extractor.getNOctaveLayers());
assertEquals(0.05, extractor.getContrastThreshold());
assertEquals(11., extractor.getEdgeThreshold());
assertEquals(1.7, extractor.getSigma());
assertEquals(5, extractor.descriptorType());
}
public void testWriteYml() {
@ -100,8 +100,7 @@ public class SIFTDescriptorExtractorTest extends OpenCVTestCase {
extractor.write(filename);
// String truth = "%YAML:1.0\n---\nname: \"Feature2D.SIFT\"\ncontrastThreshold: 4.0000000000000001e-02\nedgeThreshold: 10.\nnFeatures: 0\nnOctaveLayers: 3\nsigma: 1.6000000000000001e+00\n";
String truth = "%YAML:1.0\n---\n";
String truth = "%YAML:1.0\n---\nname: \"Feature2D.SIFT\"\nnfeatures: 0\nnOctaveLayers: 3\ncontrastThreshold: 4.0000000000000001e-02\nedgeThreshold: 10.\nsigma: 1.6000000000000001e+00\ndescriptorType: 5\n";
String actual = readFile(filename);
actual = actual.replaceAll("e([+-])0(\\d\\d)", "e$1$2"); // NOTE: workaround for different platforms double representation
assertEquals(truth, actual);

@ -11,12 +11,12 @@ import org.opencv.core.KeyPoint;
import org.opencv.test.OpenCVTestCase;
import org.opencv.test.OpenCVTestRunner;
import org.opencv.imgproc.Imgproc;
import org.opencv.features2d.Feature2D;
import org.opencv.features2d.SimpleBlobDetector;
import org.opencv.features2d.SimpleBlobDetector_Params;
public class SIMPLEBLOBFeatureDetectorTest extends OpenCVTestCase {
Feature2D detector;
SimpleBlobDetector detector;
int matSize;
KeyPoint[] truth;
@ -47,8 +47,8 @@ public class SIMPLEBLOBFeatureDetectorTest extends OpenCVTestCase {
detector = SimpleBlobDetector.create();
matSize = 200;
truth = new KeyPoint[] {
new KeyPoint( 140, 100, 41.036568f, -1, 0, 0, -1),
new KeyPoint( 60, 100, 48.538486f, -1, 0, 0, -1),
new KeyPoint(140, 100, 41.036568f, -1, 0, 0, -1),
new KeyPoint(60, 100, 48.538486f, -1, 0, 0, -1),
new KeyPoint(100, 60, 36.769554f, -1, 0, 0, -1),
new KeyPoint(100, 140, 28.635643f, -1, 0, 0, -1),
new KeyPoint(100, 100, 20.880613f, -1, 0, 0, -1)
@ -91,16 +91,38 @@ public class SIMPLEBLOBFeatureDetectorTest extends OpenCVTestCase {
fail("Not yet implemented");
}
public void testRead() {
public void testReadYml() {
Mat img = getTestImg();
MatOfKeyPoint keypoints1 = new MatOfKeyPoint();
detector.detect(img, keypoints1);
String filename = OpenCVTestRunner.getTempFileName("yml");
writeFile(filename, "%YAML:1.0\nthresholdStep: 10\nminThreshold: 50\nmaxThreshold: 220\nminRepeatability: 2\nfilterByArea: true\nminArea: 800\nmaxArea: 5000\n");
writeFile(filename, "%YAML:1.0\nthresholdStep: 10.0\nminThreshold: 50\nmaxThreshold: 220\nminRepeatability: 2\nminDistBetweenBlobs: 10.\nfilterByColor: 1\nblobColor: 0\nfilterByArea: 1\nminArea: 800\nmaxArea: 6000\nfilterByCircularity: 0\nminCircularity: 0.7\nmaxCircularity: 10.\nfilterByInertia: 1\nminInertiaRatio: 0.2\nmaxInertiaRatio: 11.\nfilterByConvexity: true\nminConvexity: 0.9\nmaxConvexity: 12.\n");
detector.read(filename);
SimpleBlobDetector_Params params = detector.getParams();
assertEquals(10.0f, params.get_thresholdStep());
assertEquals(50f, params.get_minThreshold());
assertEquals(220f, params.get_maxThreshold());
assertEquals(2, params.get_minRepeatability());
assertEquals(10.0f, params.get_minDistBetweenBlobs());
assertEquals(true, params.get_filterByColor());
// FIXME: blobColor field has uchar type in C++ and cannot be automatically wrapped to Java as it does not support unsigned types
//assertEquals(0, params.get_blobColor());
assertEquals(true, params.get_filterByArea());
assertEquals(800f, params.get_minArea());
assertEquals(6000f, params.get_maxArea());
assertEquals(false, params.get_filterByCircularity());
assertEquals(0.7f, params.get_minCircularity());
assertEquals(10.0f, params.get_maxCircularity());
assertEquals(true, params.get_filterByInertia());
assertEquals(0.2f, params.get_minInertiaRatio());
assertEquals(11.0f, params.get_maxInertiaRatio());
assertEquals(true, params.get_filterByConvexity());
assertEquals(0.9f, params.get_minConvexity());
assertEquals(12.0f, params.get_maxConvexity());
MatOfKeyPoint keypoints2 = new MatOfKeyPoint();
detector.detect(img, keypoints2);

@ -1,133 +0,0 @@
package org.opencv.test.features2d;
import java.util.Arrays;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfKeyPoint;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.core.KeyPoint;
import org.opencv.test.OpenCVTestCase;
import org.opencv.test.OpenCVTestRunner;
import org.opencv.imgproc.Imgproc;
import org.opencv.features2d.Feature2D;
public class STARFeatureDetectorTest extends OpenCVTestCase {
Feature2D detector;
int matSize;
KeyPoint[] truth;
private Mat getMaskImg() {
Mat mask = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
Mat right = mask.submat(0, matSize, matSize / 2, matSize);
right.setTo(new Scalar(0));
return mask;
}
private Mat getTestImg() {
Scalar color = new Scalar(0);
int center = matSize / 2;
int radius = 6;
int offset = 40;
Mat img = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
Imgproc.circle(img, new Point(center - offset, center), radius, color, -1);
Imgproc.circle(img, new Point(center + offset, center), radius, color, -1);
Imgproc.circle(img, new Point(center, center - offset), radius, color, -1);
Imgproc.circle(img, new Point(center, center + offset), radius, color, -1);
Imgproc.circle(img, new Point(center, center), radius, color, -1);
return img;
}
protected void setUp() throws Exception {
super.setUp();
detector = createClassInstance(XFEATURES2D+"StarDetector", DEFAULT_FACTORY, null, null);
matSize = 200;
truth = new KeyPoint[] {
new KeyPoint( 95, 80, 22, -1, 31.5957f, 0, -1),
new KeyPoint(105, 80, 22, -1, 31.5957f, 0, -1),
new KeyPoint( 80, 95, 22, -1, 31.5957f, 0, -1),
new KeyPoint(120, 95, 22, -1, 31.5957f, 0, -1),
new KeyPoint(100, 100, 8, -1, 30.f, 0, -1),
new KeyPoint( 80, 105, 22, -1, 31.5957f, 0, -1),
new KeyPoint(120, 105, 22, -1, 31.5957f, 0, -1),
new KeyPoint( 95, 120, 22, -1, 31.5957f, 0, -1),
new KeyPoint(105, 120, 22, -1, 31.5957f, 0, -1)
};
}
public void testCreate() {
assertNotNull(detector);
}
public void testDetectListOfMatListOfListOfKeyPoint() {
fail("Not yet implemented");
}
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
fail("Not yet implemented");
}
public void testDetectMatListOfKeyPoint() {
Mat img = getTestImg();
MatOfKeyPoint keypoints = new MatOfKeyPoint();
detector.detect(img, keypoints);
assertListKeyPointEquals(Arrays.asList(truth), keypoints.toList(), EPS);
}
public void testDetectMatListOfKeyPointMat() {
Mat img = getTestImg();
Mat mask = getMaskImg();
MatOfKeyPoint keypoints = new MatOfKeyPoint();
detector.detect(img, keypoints, mask);
assertListKeyPointEquals(Arrays.asList(truth[0], truth[2], truth[5], truth[7]), keypoints.toList(), EPS);
}
public void testEmpty() {
// assertFalse(detector.empty());
fail("Not yet implemented");
}
public void testRead() {
Mat img = getTestImg();
MatOfKeyPoint keypoints1 = new MatOfKeyPoint();
detector.detect(img, keypoints1);
String filename = OpenCVTestRunner.getTempFileName("yml");
writeFile(filename, "%YAML:1.0\n---\nmaxSize: 45\nresponseThreshold: 150\nlineThresholdProjected: 10\nlineThresholdBinarized: 8\nsuppressNonmaxSize: 5\n");
detector.read(filename);
MatOfKeyPoint keypoints2 = new MatOfKeyPoint();
detector.detect(img, keypoints2);
assertTrue(keypoints2.total() <= keypoints1.total());
}
public void testWrite() {
String filename = OpenCVTestRunner.getTempFileName("xml");
detector.write(filename);
// String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n<name>Feature2D.STAR</name>\n<lineThresholdBinarized>8</lineThresholdBinarized>\n<lineThresholdProjected>10</lineThresholdProjected>\n<maxSize>45</maxSize>\n<responseThreshold>30</responseThreshold>\n<suppressNonmaxSize>5</suppressNonmaxSize>\n</opencv_storage>\n";
String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n</opencv_storage>\n";
assertEquals(truth, readFile(filename));
}
public void testWriteYml() {
String filename = OpenCVTestRunner.getTempFileName("yml");
detector.write(filename);
// String truth = "%YAML:1.0\n---\nname: \"Feature2D.STAR\"\nlineThresholdBinarized: 8\nlineThresholdProjected: 10\nmaxSize: 45\nresponseThreshold: 30\nsuppressNonmaxSize: 5\n";
String truth = "%YAML:1.0\n---\n";
assertEquals(truth, readFile(filename));
}
}

@ -1,119 +0,0 @@
package org.opencv.test.features2d;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfKeyPoint;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.core.KeyPoint;
import org.opencv.test.OpenCVTestCase;
import org.opencv.test.OpenCVTestRunner;
import org.opencv.imgproc.Imgproc;
import org.opencv.features2d.Feature2D;
public class SURFDescriptorExtractorTest extends OpenCVTestCase {
Feature2D extractor;
int matSize;
private Mat getTestImg() {
Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
Imgproc.line(cross, new Point(20, matSize / 2), new Point(matSize - 21, matSize / 2), new Scalar(100), 2);
Imgproc.line(cross, new Point(matSize / 2, 20), new Point(matSize / 2, matSize - 21), new Scalar(100), 2);
return cross;
}
@Override
protected void setUp() throws Exception {
super.setUp();
Class[] cParams = {double.class, int.class, int.class, boolean.class, boolean.class};
Object[] oValues = {100, 2, 4, true, false};
extractor = createClassInstance(XFEATURES2D+"SURF", DEFAULT_FACTORY, cParams, oValues);
matSize = 100;
}
public void testComputeListOfMatListOfListOfKeyPointListOfMat() {
fail("Not yet implemented");
}
public void testComputeMatListOfKeyPointMat() {
KeyPoint point = new KeyPoint(55.775577545166016f, 44.224422454833984f, 16, 9.754629f, 8617.863f, 1, -1);
MatOfKeyPoint keypoints = new MatOfKeyPoint(point);
Mat img = getTestImg();
Mat descriptors = new Mat();
extractor.compute(img, keypoints, descriptors);
Mat truth = new Mat(1, 128, CvType.CV_32FC1) {
{
put(0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0.058821894, 0.058821894, -0.045962855, 0.046261817, 0.0085156476,
0.0085754395, -0.0064509804, 0.0064509804, 0.00044069235, 0.00044069235, 0, 0, 0.00025723741,
0.00025723741, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00025723741, 0.00025723741, -0.00044069235,
0.00044069235, 0, 0, 0.36278215, 0.36278215, -0.24688604, 0.26173124, 0.052068226, 0.052662034,
-0.032815345, 0.032815345, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.0064523756,
0.0064523756, 0.0082002236, 0.0088908644, -0.059001274, 0.059001274, 0.045789491, 0.04648013,
0.11961588, 0.22789426, -0.01322381, 0.18291828, -0.14042182, 0.23973691, 0.073782086, 0.23769434,
-0.027880307, 0.027880307, 0.049587864, 0.049587864, -0.33991757, 0.33991757, 0.21437603, 0.21437603,
-0.0020763327, 0.0020763327, 0.006245892, 0.006245892, -0.04067041, 0.04067041, 0.019361559,
0.019361559, 0, 0, -0.0035977389, 0.0035977389, 0, 0, -0.00099993451, 0.00099993451, 0.040670406,
0.040670406, -0.019361559, 0.019361559, 0.006245892, 0.006245892, -0.0020763327, 0.0020763327,
-0.00034532088, 0.00034532088, 0, 0, 0, 0, 0.00034532088, 0.00034532088, -0.00099993451,
0.00099993451, 0, 0, 0, 0, 0.0035977389, 0.0035977389
);
}
};
assertMatEqual(truth, descriptors, EPS);
}
public void testCreate() {
assertNotNull(extractor);
}
public void testDescriptorSize() {
assertEquals(128, extractor.descriptorSize());
}
public void testDescriptorType() {
assertEquals(CvType.CV_32F, extractor.descriptorType());
}
public void testEmpty() {
// assertFalse(extractor.empty());
fail("Not yet implemented");
}
public void testRead() {
String filename = OpenCVTestRunner.getTempFileName("yml");
writeFile(filename, "%YAML:1.0\n---\nnOctaves: 4\nnOctaveLayers: 2\nextended: 1\nupright: 0\n");
extractor.read(filename);
assertEquals(128, extractor.descriptorSize());
}
public void testWrite() {
String filename = OpenCVTestRunner.getTempFileName("xml");
extractor.write(filename);
// String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n<name>Feature2D.SURF</name>\n<extended>1</extended>\n<hessianThreshold>100.</hessianThreshold>\n<nOctaveLayers>2</nOctaveLayers>\n<nOctaves>4</nOctaves>\n<upright>0</upright>\n</opencv_storage>\n";
String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n</opencv_storage>\n";
assertEquals(truth, readFile(filename));
}
public void testWriteYml() {
String filename = OpenCVTestRunner.getTempFileName("yml");
extractor.write(filename);
// String truth = "%YAML:1.0\n---\nname: \"Feature2D.SURF\"\nextended: 1\nhessianThreshold: 100.\nnOctaveLayers: 2\nnOctaves: 4\nupright: 0\n";
String truth = "%YAML:1.0\n---\n";
assertEquals(truth, readFile(filename));
}
}

@ -1,175 +0,0 @@
package org.opencv.test.features2d;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfKeyPoint;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.core.KeyPoint;
import org.opencv.test.OpenCVTestCase;
import org.opencv.test.OpenCVTestRunner;
import org.opencv.imgproc.Imgproc;
import org.opencv.features2d.Feature2D;
public class SURFFeatureDetectorTest extends OpenCVTestCase {
Feature2D detector;
int matSize;
KeyPoint[] truth;
private Mat getMaskImg() {
Mat mask = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
Mat right = mask.submat(0, matSize, matSize / 2, matSize);
right.setTo(new Scalar(0));
return mask;
}
private Mat getTestImg() {
Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
Imgproc.line(cross, new Point(20, matSize / 2), new Point(matSize - 21, matSize / 2), new Scalar(100), 2);
Imgproc.line(cross, new Point(matSize / 2, 20), new Point(matSize / 2, matSize - 21), new Scalar(100), 2);
return cross;
}
private void order(List<KeyPoint> points) {
Collections.sort(points, new Comparator<KeyPoint>() {
public int compare(KeyPoint p1, KeyPoint p2) {
if (p1.angle < p2.angle)
return -1;
if (p1.angle > p2.angle)
return 1;
return 0;
}
});
}
@Override
protected void setUp() throws Exception {
super.setUp();
detector = createClassInstance(XFEATURES2D+"SURF", DEFAULT_FACTORY, null, null);
matSize = 100;
truth = new KeyPoint[] {
new KeyPoint(55.775578f, 55.775578f, 16, 80.245735f, 8617.8633f, 0, -1),
new KeyPoint(44.224422f, 55.775578f, 16, 170.24574f, 8617.8633f, 0, -1),
new KeyPoint(44.224422f, 44.224422f, 16, 260.24573f, 8617.8633f, 0, -1),
new KeyPoint(55.775578f, 44.224422f, 16, 350.24573f, 8617.8633f, 0, -1)
};
}
public void testCreate() {
assertNotNull(detector);
}
public void testDetectListOfMatListOfListOfKeyPoint() {
setProperty(detector, "hessianThreshold", "double", 8000);
setProperty(detector, "nOctaves", "int", 3);
setProperty(detector, "nOctaveLayers", "int", 4);
setProperty(detector, "upright", "boolean", false);
List<MatOfKeyPoint> keypoints = new ArrayList<MatOfKeyPoint>();
Mat cross = getTestImg();
List<Mat> crosses = new ArrayList<Mat>(3);
crosses.add(cross);
crosses.add(cross);
crosses.add(cross);
detector.detect(crosses, keypoints);
assertEquals(3, keypoints.size());
for (MatOfKeyPoint mkp : keypoints) {
List<KeyPoint> lkp = mkp.toList();
order(lkp);
assertListKeyPointEquals(Arrays.asList(truth), lkp, EPS);
}
}
public void testDetectListOfMatListOfListOfKeyPointListOfMat() {
fail("Not yet implemented");
}
public void testDetectMatListOfKeyPoint() {
setProperty(detector, "hessianThreshold", "double", 8000);
setProperty(detector, "nOctaves", "int", 3);
setProperty(detector, "nOctaveLayers", "int", 4);
setProperty(detector, "upright", "boolean", false);
MatOfKeyPoint keypoints = new MatOfKeyPoint();
Mat cross = getTestImg();
detector.detect(cross, keypoints);
List<KeyPoint> lkp = keypoints.toList();
order(lkp);
assertListKeyPointEquals(Arrays.asList(truth), lkp, EPS);
}
public void testDetectMatListOfKeyPointMat() {
setProperty(detector, "hessianThreshold", "double", 8000);
setProperty(detector, "nOctaves", "int", 3);
setProperty(detector, "nOctaveLayers", "int", 4);
setProperty(detector, "upright", "boolean", false);
Mat img = getTestImg();
Mat mask = getMaskImg();
MatOfKeyPoint keypoints = new MatOfKeyPoint();
detector.detect(img, keypoints, mask);
List<KeyPoint> lkp = keypoints.toList();
order(lkp);
assertListKeyPointEquals(Arrays.asList(truth[1], truth[2]), lkp, EPS);
}
public void testEmpty() {
// assertFalse(detector.empty());
fail("Not yet implemented");
}
public void testRead() {
Mat cross = getTestImg();
MatOfKeyPoint keypoints1 = new MatOfKeyPoint();
detector.detect(cross, keypoints1);
String filename = OpenCVTestRunner.getTempFileName("yml");
writeFile(filename, "%YAML:1.0\n---\nhessianThreshold: 8000.\noctaves: 3\noctaveLayers: 4\nupright: 0\n");
detector.read(filename);
MatOfKeyPoint keypoints2 = new MatOfKeyPoint();
detector.detect(cross, keypoints2);
assertTrue(keypoints2.total() <= keypoints1.total());
}
public void testWrite() {
String filename = OpenCVTestRunner.getTempFileName("xml");
detector.write(filename);
// String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n<name>Feature2D.SURF</name>\n<extended>0</extended>\n<hessianThreshold>100.</hessianThreshold>\n<nOctaveLayers>3</nOctaveLayers>\n<nOctaves>4</nOctaves>\n<upright>0</upright>\n</opencv_storage>\n";
String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n</opencv_storage>\n";
assertEquals(truth, readFile(filename));
}
public void testWriteYml() {
String filename = OpenCVTestRunner.getTempFileName("yml");
detector.write(filename);
// String truth = "%YAML:1.0\n---\nname: \"Feature2D.SURF\"\nextended: 0\nhessianThreshold: 100.\nnOctaveLayers: 3\nnOctaves: 4\nupright: 0\n";
String truth = "%YAML:1.0\n---\n";
assertEquals(truth, readFile(filename));
}
}

@ -1,4 +1,10 @@
{
"ManualFuncs" : {
"SimpleBlobDetector": {
"setParams": { "declaration" : [""], "implementation" : [""] },
"getParams": { "declaration" : [""], "implementation" : [""] }
}
},
"enum_fix" : {
"FastFeatureDetector" : { "DetectorType": "FastDetectorType" },
"AgastFeatureDetector" : { "DetectorType": "AgastDetectorType" }

@ -7948,6 +7948,27 @@ public:
: threshold(_threshold), nonmaxSuppression(_nonmaxSuppression), type(_type)
{}
void read( const FileNode& fn) CV_OVERRIDE
{
// if node is empty, keep previous value
if (!fn["threshold"].empty())
fn["threshold"] >> threshold;
if (!fn["nonmaxSuppression"].empty())
fn["nonmaxSuppression"] >> nonmaxSuppression;
if (!fn["type"].empty())
fn["type"] >> type;
}
void write( FileStorage& fs) const CV_OVERRIDE
{
if(fs.isOpened())
{
fs << "name" << getDefaultName();
fs << "threshold" << threshold;
fs << "nonmaxSuppression" << nonmaxSuppression;
fs << "type" << type;
}
}
void detect( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask ) CV_OVERRIDE
{
CV_INSTRUMENT_REGION();

@ -207,6 +207,7 @@ namespace cv
void write(FileStorage& fs) const CV_OVERRIDE
{
writeFormat(fs);
fs << "name" << getDefaultName();
fs << "descriptor" << descriptor;
fs << "descriptor_channels" << descriptor_channels;
fs << "descriptor_size" << descriptor_size;
@ -218,13 +219,21 @@ namespace cv
void read(const FileNode& fn) CV_OVERRIDE
{
descriptor = static_cast<DescriptorType>((int)fn["descriptor"]);
descriptor_channels = (int)fn["descriptor_channels"];
descriptor_size = (int)fn["descriptor_size"];
threshold = (float)fn["threshold"];
octaves = (int)fn["octaves"];
sublevels = (int)fn["sublevels"];
diffusivity = static_cast<KAZE::DiffusivityType>((int)fn["diffusivity"]);
// if node is empty, keep previous value
if (!fn["descriptor"].empty())
descriptor = static_cast<DescriptorType>((int)fn["descriptor"]);
if (!fn["descriptor_channels"].empty())
descriptor_channels = (int)fn["descriptor_channels"];
if (!fn["descriptor_size"].empty())
descriptor_size = (int)fn["descriptor_size"];
if (!fn["threshold"].empty())
threshold = (float)fn["threshold"];
if (!fn["octaves"].empty())
octaves = (int)fn["octaves"];
if (!fn["sublevels"].empty())
sublevels = (int)fn["sublevels"];
if (!fn["diffusivity"].empty())
diffusivity = static_cast<KAZE::DiffusivityType>((int)fn["diffusivity"]);
}
DescriptorType descriptor;

@ -71,6 +71,37 @@ public:
virtual void read( const FileNode& fn ) CV_OVERRIDE;
virtual void write( FileStorage& fs ) const CV_OVERRIDE;
void setParams(const SimpleBlobDetector::Params& _params ) CV_OVERRIDE {
SimpleBlobDetectorImpl::validateParameters(_params);
params = _params;
}
SimpleBlobDetector::Params getParams() const CV_OVERRIDE { return params; }
static void validateParameters(const SimpleBlobDetector::Params& p)
{
if (p.thresholdStep <= 0)
CV_Error(Error::StsBadArg, "thresholdStep>0");
if (p.minThreshold > p.maxThreshold || p.minThreshold <= 0)
CV_Error(Error::StsBadArg, "0<minThreshold<=maxThreshold");
if (p.minDistBetweenBlobs <=0 )
CV_Error(Error::StsBadArg, "minDistBetweenBlobs>0");
if (p.minArea > p.maxArea || p.minArea <=0)
CV_Error(Error::StsBadArg, "0<minArea<=maxArea");
if (p.minCircularity > p.maxCircularity || p.minCircularity <= 0)
CV_Error(Error::StsBadArg, "0<minCircularity<=maxCircularity");
if (p.minInertiaRatio > p.maxInertiaRatio || p.minInertiaRatio <= 0)
CV_Error(Error::StsBadArg, "0<minInertiaRatio<=maxInertiaRatio");
if (p.minConvexity > p.maxConvexity || p.minConvexity <= 0)
CV_Error(Error::StsBadArg, "0<minConvexity<=maxConvexity");
}
protected:
struct CV_EXPORTS Center
{
@ -192,7 +223,10 @@ params(parameters)
void SimpleBlobDetectorImpl::read( const cv::FileNode& fn )
{
params.read(fn);
SimpleBlobDetector::Params rp;
rp.read(fn);
SimpleBlobDetectorImpl::validateParameters(rp);
params = rp;
}
void SimpleBlobDetectorImpl::write( cv::FileStorage& fs ) const
@ -455,6 +489,7 @@ const std::vector<std::vector<Point> >& SimpleBlobDetectorImpl::getBlobContours(
Ptr<SimpleBlobDetector> SimpleBlobDetector::create(const SimpleBlobDetector::Params& params)
{
SimpleBlobDetectorImpl::validateParameters(params);
return makePtr<SimpleBlobDetectorImpl>(params);
}

@ -54,7 +54,7 @@ namespace cv
class BRISK_Impl CV_FINAL : public BRISK
{
public:
explicit BRISK_Impl(int thresh=30, int octaves=3, float patternScale=1.0f);
explicit BRISK_Impl(int _threshold=30, int _octaves=3, float _patternScale=1.0f);
// custom setup
explicit BRISK_Impl(const std::vector<float> &radiusList, const std::vector<int> &numberList,
float dMax=5.85f, float dMin=8.2f, const std::vector<int> indexChange=std::vector<int>());
@ -65,6 +65,9 @@ public:
virtual ~BRISK_Impl();
void read( const FileNode& fn) CV_OVERRIDE;
void write( FileStorage& fs) const CV_OVERRIDE;
int descriptorSize() const CV_OVERRIDE
{
return strings_;
@ -99,6 +102,35 @@ public:
{
return octaves;
}
virtual void setPatternScale(float _patternScale) CV_OVERRIDE
{
patternScale = _patternScale;
std::vector<float> rList;
std::vector<int> nList;
// this is the standard pattern found to be suitable also
rList.resize(5);
nList.resize(5);
const double f = 0.85 * patternScale;
rList[0] = (float)(f * 0.);
rList[1] = (float)(f * 2.9);
rList[2] = (float)(f * 4.9);
rList[3] = (float)(f * 7.4);
rList[4] = (float)(f * 10.8);
nList[0] = 1;
nList[1] = 10;
nList[2] = 14;
nList[3] = 15;
nList[4] = 20;
generateKernel(rList, nList, (float)(5.85 * patternScale), (float)(8.2 * patternScale));
}
virtual float getPatternScale() const CV_OVERRIDE
{
return patternScale;
}
// call this to generate the kernel:
// circle of radius r (pixels), with n points;
@ -122,6 +154,7 @@ protected:
// Feature parameters
CV_PROP_RW int threshold;
CV_PROP_RW int octaves;
CV_PROP_RW float patternScale;
// some helper structures for the Brisk pattern representation
struct BriskPatternPoint{
@ -309,32 +342,12 @@ const float BriskScaleSpace::safetyFactor_ = 1.0f;
const float BriskScaleSpace::basicSize_ = 12.0f;
// constructors
BRISK_Impl::BRISK_Impl(int thresh, int octaves_in, float patternScale)
BRISK_Impl::BRISK_Impl(int _threshold, int _octaves, float _patternScale)
{
threshold = thresh;
octaves = octaves_in;
std::vector<float> rList;
std::vector<int> nList;
// this is the standard pattern found to be suitable also
rList.resize(5);
nList.resize(5);
const double f = 0.85 * patternScale;
rList[0] = (float)(f * 0.);
rList[1] = (float)(f * 2.9);
rList[2] = (float)(f * 4.9);
rList[3] = (float)(f * 7.4);
rList[4] = (float)(f * 10.8);
threshold = _threshold;
octaves = _octaves;
nList[0] = 1;
nList[1] = 10;
nList[2] = 14;
nList[3] = 15;
nList[4] = 20;
generateKernel(rList, nList, (float)(5.85 * patternScale), (float)(8.2 * patternScale));
setPatternScale(_patternScale);
}
BRISK_Impl::BRISK_Impl(const std::vector<float> &radiusList,
@ -359,6 +372,31 @@ BRISK_Impl::BRISK_Impl(int thresh,
octaves = octaves_in;
}
void BRISK_Impl::read( const FileNode& fn)
{
// if node is empty, keep previous value
if (!fn["threshold"].empty())
fn["threshold"] >> threshold;
if (!fn["octaves"].empty())
fn["octaves"] >> octaves;
if (!fn["patternScale"].empty())
{
float _patternScale;
fn["patternScale"] >> _patternScale;
setPatternScale(_patternScale);
}
}
void BRISK_Impl::write( FileStorage& fs) const
{
if(fs.isOpened())
{
fs << "name" << getDefaultName();
fs << "threshold" << threshold;
fs << "octaves" << octaves;
fs << "patternScale" << patternScale;
}
}
void
BRISK_Impl::generateKernel(const std::vector<float> &radiusList,
const std::vector<int> &numberList,

@ -539,6 +539,27 @@ public:
: threshold(_threshold), nonmaxSuppression(_nonmaxSuppression), type(_type)
{}
void read( const FileNode& fn) CV_OVERRIDE
{
// if node is empty, keep previous value
if (!fn["threshold"].empty())
fn["threshold"] >> threshold;
if (!fn["nonmaxSuppression"].empty())
fn["nonmaxSuppression"] >> nonmaxSuppression;
if (!fn["type"].empty())
fn["type"] >> type;
}
void write( FileStorage& fs) const CV_OVERRIDE
{
if(fs.isOpened())
{
fs << "name" << getDefaultName();
fs << "threshold" << threshold;
fs << "nonmaxSuppression" << nonmaxSuppression;
fs << "type" << type;
}
}
void detect( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask ) CV_OVERRIDE
{
CV_INSTRUMENT_REGION();

@ -55,6 +55,39 @@ public:
{
}
void read( const FileNode& fn) CV_OVERRIDE
{
// if node is empty, keep previous value
if (!fn["nfeatures"].empty())
fn["nfeatures"] >> nfeatures;
if (!fn["qualityLevel"].empty())
fn["qualityLevel"] >> qualityLevel;
if (!fn["minDistance"].empty())
fn["minDistance"] >> minDistance;
if (!fn["blockSize"].empty())
fn["blockSize"] >> blockSize;
if (!fn["gradSize"].empty())
fn["gradSize"] >> gradSize;
if (!fn["useHarrisDetector"].empty())
fn["useHarrisDetector"] >> useHarrisDetector;
if (!fn["k"].empty())
fn["k"] >> k;
}
void write( FileStorage& fs) const CV_OVERRIDE
{
if(fs.isOpened())
{
fs << "name" << getDefaultName();
fs << "nfeatures" << nfeatures;
fs << "qualityLevel" << qualityLevel;
fs << "minDistance" << minDistance;
fs << "blockSize" << blockSize;
fs << "gradSize" << gradSize;
fs << "useHarrisDetector" << useHarrisDetector;
fs << "k" << k;
}
}
void setMaxFeatures(int maxFeatures) CV_OVERRIDE { nfeatures = maxFeatures; }
int getMaxFeatures() const CV_OVERRIDE { return nfeatures; }
@ -67,8 +100,8 @@ public:
void setBlockSize(int blockSize_) CV_OVERRIDE { blockSize = blockSize_; }
int getBlockSize() const CV_OVERRIDE { return blockSize; }
//void setGradientSize(int gradientSize_) { gradSize = gradientSize_; }
//int getGradientSize() { return gradSize; }
void setGradientSize(int gradientSize_) CV_OVERRIDE { gradSize = gradientSize_; }
int getGradientSize() CV_OVERRIDE { return gradSize; }
void setHarrisDetector(bool val) CV_OVERRIDE { useHarrisDetector = val; }
bool getHarrisDetector() const CV_OVERRIDE { return useHarrisDetector; }

@ -163,6 +163,7 @@ namespace cv
void write(FileStorage& fs) const CV_OVERRIDE
{
writeFormat(fs);
fs << "name" << getDefaultName();
fs << "extended" << (int)extended;
fs << "upright" << (int)upright;
fs << "threshold" << threshold;
@ -173,12 +174,19 @@ namespace cv
void read(const FileNode& fn) CV_OVERRIDE
{
extended = (int)fn["extended"] != 0;
upright = (int)fn["upright"] != 0;
threshold = (float)fn["threshold"];
octaves = (int)fn["octaves"];
sublevels = (int)fn["sublevels"];
diffusivity = static_cast<KAZE::DiffusivityType>((int)fn["diffusivity"]);
// if node is empty, keep previous value
if (!fn["extended"].empty())
extended = (int)fn["extended"] != 0;
if (!fn["upright"].empty())
upright = (int)fn["upright"] != 0;
if (!fn["threshold"].empty())
threshold = (float)fn["threshold"];
if (!fn["octaves"].empty())
octaves = (int)fn["octaves"];
if (!fn["sublevels"].empty())
sublevels = (int)fn["sublevels"];
if (!fn["diffusivity"].empty())
diffusivity = static_cast<KAZE::DiffusivityType>((int)fn["diffusivity"]);
}
bool extended;

@ -87,6 +87,48 @@ public:
virtual ~MSER_Impl() CV_OVERRIDE {}
void read( const FileNode& fn) CV_OVERRIDE
{
// if node is empty, keep previous value
if (!fn["delta"].empty())
fn["delta"] >> params.delta;
if (!fn["minArea"].empty())
fn["minArea"] >> params.minArea;
if (!fn["maxArea"].empty())
fn["maxArea"] >> params.maxArea;
if (!fn["maxVariation"].empty())
fn["maxVariation"] >> params.maxVariation;
if (!fn["minDiversity"].empty())
fn["minDiversity"] >> params.minDiversity;
if (!fn["maxEvolution"].empty())
fn["maxEvolution"] >> params.maxEvolution;
if (!fn["areaThreshold"].empty())
fn["areaThreshold"] >> params.areaThreshold;
if (!fn["minMargin"].empty())
fn["minMargin"] >> params.minMargin;
if (!fn["edgeBlurSize"].empty())
fn["edgeBlurSize"] >> params.edgeBlurSize;
if (!fn["pass2Only"].empty())
fn["pass2Only"] >> params.pass2Only;
}
void write( FileStorage& fs) const CV_OVERRIDE
{
if(fs.isOpened())
{
fs << "name" << getDefaultName();
fs << "delta" << params.delta;
fs << "minArea" << params.minArea;
fs << "maxArea" << params.maxArea;
fs << "maxVariation" << params.maxVariation;
fs << "minDiversity" << params.minDiversity;
fs << "maxEvolution" << params.maxEvolution;
fs << "areaThreshold" << params.areaThreshold;
fs << "minMargin" << params.minMargin;
fs << "edgeBlurSize" << params.edgeBlurSize;
fs << "pass2Only" << params.pass2Only;
}
}
void setDelta(int delta) CV_OVERRIDE { params.delta = delta; }
int getDelta() const CV_OVERRIDE { return params.delta; }
@ -96,6 +138,24 @@ public:
void setMaxArea(int maxArea) CV_OVERRIDE { params.maxArea = maxArea; }
int getMaxArea() const CV_OVERRIDE { return params.maxArea; }
void setMaxVariation(double maxVariation) CV_OVERRIDE { params.maxVariation = maxVariation; }
double getMaxVariation() const CV_OVERRIDE { return params.maxVariation; }
void setMinDiversity(double minDiversity) CV_OVERRIDE { params.minDiversity = minDiversity; }
double getMinDiversity() const CV_OVERRIDE { return params.minDiversity; }
void setMaxEvolution(int maxEvolution) CV_OVERRIDE { params.maxEvolution = maxEvolution; }
int getMaxEvolution() const CV_OVERRIDE { return params.maxEvolution; }
void setAreaThreshold(double areaThreshold) CV_OVERRIDE { params.areaThreshold = areaThreshold; }
double getAreaThreshold() const CV_OVERRIDE { return params.areaThreshold; }
void setMinMargin(double min_margin) CV_OVERRIDE { params.minMargin = min_margin; }
double getMinMargin() const CV_OVERRIDE { return params.minMargin; }
void setEdgeBlurSize(int edge_blur_size) CV_OVERRIDE { params.edgeBlurSize = edge_blur_size; }
int getEdgeBlurSize() const CV_OVERRIDE { return params.edgeBlurSize; }
void setPass2Only(bool f) CV_OVERRIDE { params.pass2Only = f; }
bool getPass2Only() const CV_OVERRIDE { return params.pass2Only; }

@ -666,6 +666,9 @@ public:
scoreType(_scoreType), patchSize(_patchSize), fastThreshold(_fastThreshold)
{}
void read( const FileNode& fn) CV_OVERRIDE;
void write( FileStorage& fs) const CV_OVERRIDE;
void setMaxFeatures(int maxFeatures) CV_OVERRIDE { nfeatures = maxFeatures; }
int getMaxFeatures() const CV_OVERRIDE { return nfeatures; }
@ -717,6 +720,45 @@ protected:
int fastThreshold;
};
void ORB_Impl::read( const FileNode& fn)
{
// if node is empty, keep previous value
if (!fn["nfeatures"].empty())
fn["nfeatures"] >> nfeatures;
if (!fn["scaleFactor"].empty())
fn["scaleFactor"] >> scaleFactor;
if (!fn["nlevels"].empty())
fn["nlevels"] >> nlevels;
if (!fn["edgeThreshold"].empty())
fn["edgeThreshold"] >> edgeThreshold;
if (!fn["firstLevel"].empty())
fn["firstLevel"] >> firstLevel;
if (!fn["wta_k"].empty())
fn["wta_k"] >> wta_k;
if (!fn["scoreType"].empty())
fn["scoreType"] >> scoreType;
if (!fn["patchSize"].empty())
fn["patchSize"] >> patchSize;
if (!fn["fastThreshold"].empty())
fn["fastThreshold"] >> fastThreshold;
}
void ORB_Impl::write( FileStorage& fs) const
{
if(fs.isOpened())
{
fs << "name" << getDefaultName();
fs << "nfeatures" << nfeatures;
fs << "scaleFactor" << scaleFactor;
fs << "nlevels" << nlevels;
fs << "edgeThreshold" << edgeThreshold;
fs << "firstLevel" << firstLevel;
fs << "wta_k" << wta_k;
fs << "scoreType" << scoreType;
fs << "patchSize" << patchSize;
fs << "fastThreshold" << fastThreshold;
}
}
int ORB_Impl::descriptorSize() const
{
return kBytes;

@ -111,6 +111,24 @@ public:
void findScaleSpaceExtrema( const std::vector<Mat>& gauss_pyr, const std::vector<Mat>& dog_pyr,
std::vector<KeyPoint>& keypoints ) const;
void read( const FileNode& fn) CV_OVERRIDE;
void write( FileStorage& fs) const CV_OVERRIDE;
void setNFeatures(int maxFeatures) CV_OVERRIDE { nfeatures = maxFeatures; }
int getNFeatures() const CV_OVERRIDE { return nfeatures; }
void setNOctaveLayers(int nOctaveLayers_) CV_OVERRIDE { nOctaveLayers = nOctaveLayers_; }
int getNOctaveLayers() const CV_OVERRIDE { return nOctaveLayers; }
void setContrastThreshold(double contrastThreshold_) CV_OVERRIDE { contrastThreshold = contrastThreshold_; }
double getContrastThreshold() const CV_OVERRIDE { return contrastThreshold; }
void setEdgeThreshold(double edgeThreshold_) CV_OVERRIDE { edgeThreshold = edgeThreshold_; }
double getEdgeThreshold() const CV_OVERRIDE { return edgeThreshold; }
void setSigma(double sigma_) CV_OVERRIDE { sigma = sigma_; }
double getSigma() const CV_OVERRIDE { return sigma; }
protected:
CV_PROP_RW int nfeatures;
CV_PROP_RW int nOctaveLayers;
@ -554,4 +572,34 @@ void SIFT_Impl::detectAndCompute(InputArray _image, InputArray _mask,
}
}
void SIFT_Impl::read( const FileNode& fn)
{
// if node is empty, keep previous value
if (!fn["nfeatures"].empty())
fn["nfeatures"] >> nfeatures;
if (!fn["nOctaveLayers"].empty())
fn["nOctaveLayers"] >> nOctaveLayers;
if (!fn["contrastThreshold"].empty())
fn["contrastThreshold"] >> contrastThreshold;
if (!fn["edgeThreshold"].empty())
fn["edgeThreshold"] >> edgeThreshold;
if (!fn["sigma"].empty())
fn["sigma"] >> sigma;
if (!fn["descriptorType"].empty())
fn["descriptorType"] >> descriptor_type;
}
void SIFT_Impl::write( FileStorage& fs) const
{
if(fs.isOpened())
{
fs << "name" << getDefaultName();
fs << "nfeatures" << nfeatures;
fs << "nOctaveLayers" << nOctaveLayers;
fs << "contrastThreshold" << contrastThreshold;
fs << "edgeThreshold" << edgeThreshold;
fs << "sigma" << sigma;
fs << "descriptorType" << descriptor_type;
}
}
}

@ -68,11 +68,11 @@ class JavaParser:
if os.path.isfile(path):
if path.endswith("FeatureDetector.java"):
for prefix1 in ("", "Grid", "Pyramid", "Dynamic"):
for prefix2 in ("FAST", "STAR", "MSER", "ORB", "SIFT", "SURF", "GFTT", "HARRIS", "SIMPLEBLOB", "DENSE"):
for prefix2 in ("FAST", "STAR", "MSER", "ORB", "SIFT", "SURF", "GFTT", "HARRIS", "SIMPLEBLOB", "DENSE", "AKAZE", "KAZE", "BRISK", "AGAST"):
parser.parse_file(path,prefix1+prefix2)
elif path.endswith("DescriptorExtractor.java"):
for prefix1 in ("", "Opponent"):
for prefix2 in ("BRIEF", "ORB", "SIFT", "SURF"):
for prefix2 in ("BRIEF", "ORB", "SIFT", "SURF", "AKAZE", "KAZE", "BEBLID", "DAISY", "FREAK", "LUCID", "LATCH"):
parser.parse_file(path,prefix1+prefix2)
elif path.endswith("GenericDescriptorMatcher.java"):
for prefix in ("OneWay", "Fern"):

Loading…
Cancel
Save