Merge pull request #16724 from liqi-c:3.4-tengine

* Add Tengine support .

* Modify printf to CV_LOG_WARNING

* a few minor fixes in the code

* Renew Tengine version

* Add header file for CV_LOG_WARNING

* Add #ifdef HAVE_TENGINE in tengine_graph_convolution.cpp

* remove trailing whitespace

* Remove trailing whitespace

* Modify for compile problem

* Modify some code style error

* remove whitespace

* Move some code style problem

* test

* add ios limit and build problem

* Modified as alalek suggested

* Add cmake 2.8 support

* modify cmake 3.5.1 problem

* test and set BUILD_ANDROID_PROJECTS OFF

* remove some compile error

* remove some extra code in tengine

* close test.

* Test again

* disable android.

* delete ndk version judgement

* Remove setenv() call . and add License information

* Set tengine default OFF. Close test .

Co-authored-by: Vadim Pisarevsky <vadim.pisarevsky@gmail.com>
pull/16764/head^2
NesQl 5 years ago committed by GitHub
parent 969cc3dd95
commit 0bcdf7d03e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 90
      3rdparty/libtengine/tengine.cmake
  2. 10
      CMakeLists.txt
  3. 65
      cmake/OpenCVFindTengine.cmake
  4. 14
      modules/dnn/CMakeLists.txt
  5. 42
      modules/dnn/src/layers/convolution_layer.cpp
  6. 42
      modules/dnn/src/tengine4dnn/include/tengine_graph_convolution.hpp
  7. 357
      modules/dnn/src/tengine4dnn/src/tengine_graph_convolution.cpp

@ -0,0 +1,90 @@
# COPYRIGHT
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# License); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# AS IS BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
# Copyright (c) 2020, OPEN AI LAB
# Author: qtang@openailab.com or https://github.com/BUG1989
# qli@openailab.com
# sqfu@openailab.com
#
SET(TENGINE_VERSION "tengine-opencv")
SET(OCV_TENGINE_DSTDIRECTORY ${OpenCV_BINARY_DIR}/3rdparty/libtengine)
SET(DEFAULT_OPENCV_TENGINE_SOURCE_PATH ${OCV_TENGINE_DSTDIRECTORY}/Tengine-${TENGINE_VERSION})
IF(EXISTS ${DEFAULT_OPENCV_TENGINE_SOURCE_PATH})
MESSAGE(STATUS "Tengine is exist already .")
SET(Tengine_FOUND ON)
set(BUILD_TENGINE ON)
ELSE()
SET(OCV_TENGINE_FILENAME "${TENGINE_VERSION}.zip")#name2
SET(OCV_TENGINE_URL "https://github.com/OAID/Tengine/archive/") #url2
SET(tengine_md5sum 9c80d91dc8413911522ec80cde013ae2) #md5sum2
MESSAGE(STATUS "**** TENGINE DOWNLOAD BEGIN ****")
ocv_download(FILENAME ${OCV_TENGINE_FILENAME}
HASH ${tengine_md5sum}
URL
"${OPENCV_TENGINE_URL}"
"$ENV{OPENCV_TENGINE_URL}"
"${OCV_TENGINE_URL}"
DESTINATION_DIR ${OCV_TENGINE_DSTDIRECTORY}
ID TENGINE
STATUS res
UNPACK RELATIVE_URL)
if (NOT res)
MESSAGE(STATUS "TENGINE DOWNLOAD FAILED .Turning Tengine_FOUND off.")
SET(Tengine_FOUND OFF)
else ()
MESSAGE(STATUS "TENGINE DOWNLOAD success . ")
SET(Tengine_FOUND ON)
set(BUILD_TENGINE ON)
endif()
ENDIF()
if (BUILD_TENGINE)
set(HAVE_TENGINE 1)
# android system
if(ANDROID)
if(${ANDROID_ABI} STREQUAL "armeabi-v7a")
set(CONFIG_ARCH_ARM32 ON)
elseif(${ANDROID_ABI} STREQUAL "arm64-v8a")
set(CONFIG_ARCH_ARM64 ON)
endif()
endif()
# linux system
if(CMAKE_SYSTEM_PROCESSOR STREQUAL arm)
set(CONFIG_ARCH_ARM32 ON)
elseif(CMAKE_SYSTEM_PROCESSOR STREQUAL aarch64) ## AARCH64
set(CONFIG_ARCH_ARM64 ON)
endif()
SET(DEFAULT_OPENCV_TENGINE_SOURCE_PATH ${OCV_TENGINE_DSTDIRECTORY}/Tengine-${TENGINE_VERSION})
set(BUILT_IN_OPENCV ON) ## set for tengine compile discern .
set(Tengine_INCLUDE_DIR ${DEFAULT_OPENCV_TENGINE_SOURCE_PATH}/core/include)
set(Tengine_LIB ${CMAKE_BINARY_DIR}/lib/${ANDROID_ABI}/libtengine.a)
if ( IS_DIRECTORY ${DEFAULT_OPENCV_TENGINE_SOURCE_PATH})
add_subdirectory("${DEFAULT_OPENCV_TENGINE_SOURCE_PATH}" ${OCV_TENGINE_DSTDIRECTORY}/build)
endif()
endif()

@ -432,6 +432,9 @@ OCV_OPTION(WITH_IMGCODEC_PXM "Include PNM (PBM,PGM,PPM) and PAM formats support"
OCV_OPTION(WITH_QUIRC "Include library QR-code decoding" ON
VISIBLE_IF TRUE
VERIFY HAVE_QUIRC)
OCV_OPTION(WITH_TENGINE "Include Arm Inference Tengine support" OFF
VISIBLE_IF (ARM OR AARCH64) AND UNIX AND NOT ANDROID AND NOT IOS
VERIFY HAVE_TENGINE)
# OpenCV build components
# ===================================================
@ -687,6 +690,9 @@ include(cmake/OpenCVFindLibsVideo.cmake)
include(cmake/OpenCVFindLibsPerf.cmake)
include(cmake/OpenCVFindLAPACK.cmake)
include(cmake/OpenCVFindProtobuf.cmake)
if(WITH_TENGINE)
include(cmake/OpenCVFindTengine.cmake)
endif()
# ----------------------------------------------------------------------------
# Detect other 3rd-party libraries/tools
@ -1472,6 +1478,10 @@ if(WITH_VA_INTEL OR HAVE_VA_INTEL)
status(" Intel VA-API/OpenCL:" HAVE_VA_INTEL THEN "YES (OpenCL: ${VA_INTEL_IOCL_ROOT})" ELSE NO)
endif()
if(WITH_TENGINE OR HAVE_TENGINE)
status(" Tengine:" HAVE_TENGINE THEN "YES (${TENGINE_LIBRARIES})" ELSE NO)
endif()
if(WITH_LAPACK OR HAVE_LAPACK)
status(" Lapack:" HAVE_LAPACK THEN "YES (${LAPACK_LIBRARIES})" ELSE NO)
endif()

@ -0,0 +1,65 @@
# COPYRIGHT
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# License); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# AS IS BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
# Copyright (c) 2020, OPEN AI LAB
# Author: qtang@openailab.com or https://github.com/BUG1989
#
# ----------------------------------------------------------------------------
# Path for Tengine modules
# ----------------------------------------------------------------------------
set(OPENCV_LIBTENGINE_ROOT_DIR "" CACHE PATH "Where to look for additional OpenCV modules (can be ;-separated list of paths)")
IF(OPENCV_LIBTENGINE_ROOT_DIR)
MESSAGE(STATUS "TENGINE:-- Set tengine lib dir by user ")
SET(Tengine_FOUND ON)
set(BUILD_TENGINE OFF)
SET(Tengine_INCLUDE_DIR ${OPENCV_LIBTENGINE_ROOT_DIR}/include)
SET(Tengine_LIB ${OPENCV_LIBTENGINE_ROOT_DIR}/lib/libtengine.a)
ELSE()
MESSAGE(STATUS "TENGINE:-- Auto download Tengine source code. ")
include("${OpenCV_SOURCE_DIR}/3rdparty/libtengine/tengine.cmake")
ENDIF()
IF(NOT Tengine_LIB)
SET(Tengine_FOUND OFF)
MESSAGE(STATUS "#### Could not find Tengine lib. Turning Tengine_FOUND off")
ENDIF()
IF (Tengine_FOUND)
MESSAGE(STATUS "Found Tengine include: ${Tengine_INCLUDE_DIR}")
MESSAGE(STATUS "Found Tengine libraries: ${Tengine_LIB}")
set(HAVE_TENGINE 1)
set(TENGINE_LIBRARIES ${Tengine_LIB})
set(TENGINE_INCLUDE_DIRS ${Tengine_INCLUDE_DIR})
ENDIF (Tengine_FOUND)
MESSAGE(STATUS "Tengine include is:" ${Tengine_INCLUDE_DIR})
MESSAGE(STATUS "Tengine library is:" ${Tengine_LIB})
MARK_AS_ADVANCED(
Tengine_INCLUDE_DIR
Tengine_LIB
Tengine
)

@ -13,6 +13,9 @@ ocv_add_dispatched_file_force_all("layers/layers_common" AVX AVX2 AVX512_SKX)
ocv_add_module(dnn opencv_core opencv_imgproc WRAP python java js)
ocv_option(OPENCV_DNN_OPENCL "Build with OpenCL support" HAVE_OPENCL AND NOT APPLE)
if(HAVE_TENGINE)
add_definitions(-DHAVE_TENGINE=1)
endif()
if(OPENCV_DNN_OPENCL AND HAVE_OPENCL)
add_definitions(-DCV_OCL4DNN=1)
@ -83,6 +86,17 @@ else()
set(sources_options EXCLUDE_OPENCL)
endif()
if(HAVE_TENGINE)
list(APPEND include_dirs ${TENGINE_INCLUDE_DIRS})
if(EXISTS ${TENGINE_LIBRARIES})
list(APPEND libs ${TENGINE_LIBRARIES})
else()
ocv_add_dependencies(opencv_dnn tengine)
list(APPEND libs ${TENGINE_LIBRARIES})
endif()
endif()
ocv_module_include_directories(${include_dirs})
if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
ocv_append_source_files_cxx_compiler_options(fw_srcs "-Wno-suggest-override") # GCC

@ -55,6 +55,9 @@
#include "opencl_kernels_dnn.hpp"
using namespace cv::dnn::ocl4dnn;
#endif
#ifdef HAVE_TENGINE
#include "../tengine4dnn/include/tengine_graph_convolution.hpp"
#endif
namespace cv
{
@ -1272,10 +1275,43 @@ public:
}
}
int nstripes = std::max(getNumThreads(), 1);
#ifdef HAVE_TENGINE
int inch = inputs[0].size[1]; // inch
int in_h = inputs[0].size[2]; // in_h
int in_w = inputs[0].size[3]; // in_w
int out_b = outputs[0].size[0]; // out batch size
int outch = outputs[0].size[1]; // outch
int out_h = outputs[0].size[2]; // out_h
int out_w = outputs[0].size[3]; // out_w
float *input_ = inputs[0].ptr<float>();
float *output_ = outputs[0].ptr<float>();
float *kernel_ = weightsMat.ptr<float>();
float *teg_bias = &biasvec[0];
bool tengine_ret = tengine_forward(input_, inch, ngroups, in_h, in_w,
output_, out_b, outch, out_h, out_w,
kernel_, kernel_size.size(), kernel.height, kernel.width,
teg_bias, stride.height, stride.width,
pad.height, pad.width, dilation.height, dilation.width,
weightsMat.step1(), padMode);
/* activation */
if((true == tengine_ret) && activ )
{
int out_cstep = out_h * out_w; // out_cstep
ParallelConv::run(inputs[0], outputs[0], weightsMat, biasvec, reluslope,
kernel_size, strides, pads_begin, pads_end, dilations, activ.get(), ngroups, nstripes);
ActivationLayer* activ_ = activ.get();
activ_->forwardSlice(output_, output_, out_cstep, out_cstep, 0, outch);
}
if(false == tengine_ret)
#endif
{
int nstripes = std::max(getNumThreads(), 1);
ParallelConv::run(inputs[0], outputs[0], weightsMat, biasvec, reluslope,
kernel_size, strides, pads_begin, pads_end, dilations, activ.get(), ngroups, nstripes);
}
}
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,

@ -0,0 +1,42 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* License); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* AS IS BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Copyright (c) 2020, OPEN AI LAB
* Author: qtang@openailab.com
*/
#ifndef TENGINE_GRAPH_CONVOLUTION_HPP
#define TENGINE_GRAPH_CONVOLUTION_HPP
#define FLOAT_TO_REALSIZE (4)
namespace cv
{
namespace dnn
{
bool tengine_forward(float *input_, int inch, int group, int in_h, int in_w,
float *output_, int out_b, int outch, int out_h, int out_w,
float *kernel_,int kernel_s , int kernel_h, int kernel_w,
float *teg_bias, int stride_h,int stride_w,
int pad_h, int pad_w, int dilation_h, int dilation_w,
size_t wstep, const std::string padMode) ;
}
}
#endif /* TENGINE_GRAPH_CONVOLUTION_HPP */

@ -0,0 +1,357 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* License); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* AS IS BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Copyright (c) 2020, OPEN AI LAB
* Author: qtang@openailab.com
*/
#include "../../precomp.hpp"
#include <iostream>
#include <vector>
#include <opencv2/core/utils/configuration.private.hpp>
#include <opencv2/core/utils/logger.hpp>
#include "../include/tengine_graph_convolution.hpp"
#ifdef HAVE_TENGINE
#include "tengine_c_api.h"
#include "tengine_c_compat.h"
#include "tengine_operations.h"
namespace cv
{
namespace dnn
{
int create_input_node(graph_t graph, const char* node_name, int inch, int in_h, int in_w)
{
node_t node = create_graph_node(graph, node_name, "InputOp");
tensor_t tensor = create_graph_tensor(graph, node_name, TENGINE_DT_FP32);
set_node_output_tensor(node, 0, tensor, TENSOR_TYPE_INPUT);
int dims[4] = {1, inch, in_h, in_w};
set_tensor_shape(tensor, dims, 4);
release_graph_tensor(tensor);
release_graph_node(node);
return 0;
}
int create_conv_node(graph_t graph, const char* node_name, const char* input_name, int in_h, int in_w, int out_h, int out_w,
int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h, int pad_w, int inch, int outch, int group,
int dilation_h, int dilation_w, int activation, std::string padMode)
{
node_t conv_node = create_graph_node(graph, node_name, "Convolution");
tensor_t input_tensor = get_graph_tensor(graph, input_name);
if (input_tensor == NULL)
{
CV_LOG_WARNING(NULL,"Tengine :input_tensor is NULL . " );
return -1;
}
set_node_input_tensor(conv_node, 0, input_tensor);
release_graph_tensor(input_tensor);
/* output */
tensor_t output_tensor = create_graph_tensor(graph, node_name, TENGINE_DT_FP32);
set_node_output_tensor(conv_node, 0, output_tensor, TENSOR_TYPE_VAR);
release_graph_tensor(output_tensor);
/* weight */
std::string weight_name(node_name);
weight_name += "/weight";
node_t w_node = create_graph_node(graph, weight_name.c_str(), "Const");
tensor_t w_tensor = create_graph_tensor(graph, weight_name.c_str(), TENGINE_DT_FP32);
set_node_output_tensor(w_node, 0, w_tensor, TENSOR_TYPE_CONST);
set_node_input_tensor(conv_node, 1, w_tensor);
int w_dims[] = {outch, inch / group, kernel_h, kernel_w};
set_tensor_shape(w_tensor, w_dims, 4);
release_graph_node(w_node);
release_graph_tensor(w_tensor);
/* bias */
std::string bias_name(node_name);
bias_name += "/bias";
node_t b_node = create_graph_node(graph, bias_name.c_str(), "Const");
tensor_t b_tensor = create_graph_tensor(graph, bias_name.c_str(), TENGINE_DT_FP32);
set_node_output_tensor(b_node, 0, b_tensor, TENSOR_TYPE_CONST);
int b_dims[] = {outch};
set_tensor_shape(b_tensor, b_dims, 1);
set_node_input_tensor(conv_node, 2, b_tensor);
release_graph_node(b_node);
release_graph_tensor(b_tensor);
int pad_h1 = pad_h;
int pad_w1 = pad_w;
if (!padMode.empty())
{
if (padMode == "SAME")
{
int out_h_temp = (in_h-kernel_h + 2*pad_h)/stride_h + 1;
int out_w_temp = (in_w-kernel_w + 2*pad_w)/stride_w + 1;
if (out_h_temp < out_h)
pad_h1 += 1;
if (out_w_temp < out_w)
pad_w1 += 1;
}
}
/* attr */
set_node_attr_int(conv_node, "kernel_h", &kernel_h);
set_node_attr_int(conv_node, "kernel_w", &kernel_w);
set_node_attr_int(conv_node, "stride_h", &stride_h);
set_node_attr_int(conv_node, "stride_w", &stride_w);
set_node_attr_int(conv_node, "pad_h0", &pad_h);
set_node_attr_int(conv_node, "pad_w0", &pad_w);
set_node_attr_int(conv_node, "pad_h1", &pad_h1);
set_node_attr_int(conv_node, "pad_w1", &pad_w1);
set_node_attr_int(conv_node, "output_channel", &outch);
set_node_attr_int(conv_node, "group", &group);
set_node_attr_int(conv_node, "dilation_h", &dilation_h);
set_node_attr_int(conv_node, "dilation_w", &dilation_w);
set_node_attr_int(conv_node, "activation", &activation);
release_graph_node(conv_node);
return 0;
}
graph_t create_conv_graph(float *input_data, int inch, int group, int in_h, int in_w,
float *output_data, int outch, int out_h, int out_w,
int kernel_h, int kernel_w,
int stride_h,int stride_w,
int pad_h, int pad_w, int dilation_h, int dilation_w, int activation,
float * teg_weight , float * teg_bias , std::string padMode)
{
node_t conv_node = NULL;
tensor_t input_tensor = NULL;
tensor_t output_tensor = NULL;
tensor_t weight_tensor = NULL;
tensor_t bias_tensor = NULL;
/* create graph for convolution */
int in_size = in_h * in_w * inch;
int out_size = out_h * out_w * outch;
int weight_size = outch * (inch / group) * kernel_w * kernel_h;
int bias_size = outch;
int buf_size = 0;
int input_num = 0;
/* create graph */
graph_t graph = create_graph(NULL, NULL, NULL);
bool ok = true;
if(graph == NULL)
{
CV_LOG_WARNING(NULL,"Tengine :create_graph failed . " );
ok = false;
}
const char* input_name = "data";
const char* conv_name = "conv";
if (ok && create_input_node(graph, input_name, inch, in_h, in_w) < 0)
{
CV_LOG_WARNING(NULL,"Tengine :create_input_node failed. " );
ok = false;
}
if (ok && create_conv_node(graph, conv_name, input_name, in_h, in_w, out_h, out_w, kernel_h, kernel_w,
stride_h, stride_w, pad_h, pad_w, inch, outch, group, dilation_h, dilation_w, activation, padMode) < 0)
{
CV_LOG_WARNING(NULL,"Tengine :create conv node failed. " );
ok = false;
}
/* set input/output node */
const char* inputs_name[] = {input_name};
const char* outputs_name[] = {conv_name};
if (ok && set_graph_input_node(graph, inputs_name, sizeof(inputs_name) / sizeof(char*)) < 0)
{
CV_LOG_WARNING(NULL,"Tengine :set inputs failed . " );
ok = false;
}
if (ok && set_graph_output_node(graph, outputs_name, sizeof(outputs_name) / sizeof(char*)) < 0)
{
CV_LOG_WARNING(NULL,"Tengine :set outputs failed . " );
ok = false;
}
/* set input data */
if (ok)
{
input_tensor = get_graph_input_tensor(graph, 0, 0);
buf_size = get_tensor_buffer_size(input_tensor);
if (buf_size != in_size * FLOAT_TO_REALSIZE)
{
CV_LOG_WARNING(NULL,"Tengine :Input data size check failed . ");
ok = false;
}
}
if (ok)
{
set_tensor_buffer(input_tensor, (float *)input_data, buf_size);
release_graph_tensor(input_tensor);
/* create convolution node */
/* set weight node */
conv_node = get_graph_node(graph, "conv");
weight_tensor = get_node_input_tensor(conv_node, 1);
buf_size = get_tensor_buffer_size(weight_tensor);
if (buf_size != weight_size * FLOAT_TO_REALSIZE)
{
CV_LOG_WARNING(NULL,"Input weight size check failed . ");
ok = false;
}
}
if (ok)
{
set_tensor_buffer(weight_tensor, teg_weight, buf_size);
/* set bias node */
input_num = get_node_input_number(conv_node);
if (input_num > 2)
{
bias_tensor = get_node_input_tensor(conv_node, 2);
buf_size = get_tensor_buffer_size(bias_tensor);
if (buf_size != bias_size * FLOAT_TO_REALSIZE)
{
CV_LOG_WARNING(NULL,"Tengine :Input bias size check failed . ");
ok = false;
}
else set_tensor_buffer(bias_tensor, teg_bias, buf_size);
}
}
if (ok)
{
/* set output data */
output_tensor = get_node_output_tensor(conv_node, 0);
int ret = set_tensor_buffer(output_tensor, output_data, out_size * FLOAT_TO_REALSIZE);
if(ret)
{
CV_LOG_WARNING(NULL,"Tengine :Set output tensor buffer failed . " );
}
}
if (!ok)
{
destroy_graph(graph);
return NULL;
}
return graph;
}
bool tengine_forward(float *input_, int inch, int group, int in_h, int in_w,
float *output_, int out_b, int outch, int out_h, int out_w,
float *kernel_, int kernel_s ,int kernel_h, int kernel_w,
float *teg_bias, int stride_h,int stride_w,
int pad_h, int pad_w, int dilation_h, int dilation_w,
size_t wstep,const std::string padMode)
{
graph_t graph = NULL;
std::vector<float> teg_weight_vec;
float *teg_weight = NULL;
int kernel_inwh = (inch / group) * kernel_w * kernel_h;
// Do not using the activation fuse mode, just convolution only.
int activation = -1;
if (!(kernel_s == 2 && kernel_h == kernel_w && pad_h == pad_w
&& dilation_h == dilation_w && stride_h == stride_w
&& out_b == 1 && pad_h < 10)) // just for Conv2D
return false;
{
/*printf("Tengine: input (1 x %d x %d x %d),output (%d x %d x %d x %d), kernel (%d x %d), stride (%d x %d), dilation (%d x %d), pad (%d x %d).\n",
inch, in_h, in_w,
out_b,outch,out_h,out_w,
kernel_w, kernel_h,
stride_w, stride_h,
dilation_w, dilation_h,
pad_w,pad_h);*/
// weight
if (kernel_inwh != wstep)
{
teg_weight_vec.resize(kernel_inwh * outch);
teg_weight = &teg_weight_vec[0];
for (int i=0; i<outch; i++)
{
memcpy(teg_weight+i*kernel_inwh, kernel_+i*wstep, kernel_inwh*FLOAT_TO_REALSIZE);
}
}
else
{
teg_weight = kernel_;
}
/* initial the resoruce of tengine */
init_tengine();
/* create the convolution graph */
graph = create_conv_graph( input_, inch, group, in_h, in_w,
output_, outch, out_h, out_w,
kernel_h, kernel_w, stride_h,stride_w,
pad_h, pad_w, dilation_h, dilation_w, activation,
teg_weight , teg_bias , padMode);
/* prerun */
if(prerun_graph(graph) < 0)
{
CV_LOG_WARNING(NULL, "Tengine :prerun_graph failed .");
return false ;
}
/* run */
if(run_graph(graph, 1) < 0)
{
CV_LOG_WARNING(NULL,"Tengine :run_graph failed .");
return false ;
}
postrun_graph(graph);
destroy_graph(graph);
}
return true ;
}
}
}
#endif
Loading…
Cancel
Save