diff --git a/CMakeLists.txt b/CMakeLists.txt index c87d6fbf91..f9baf672eb 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -197,7 +197,6 @@ OCV_OPTION(ENABLE_SSE41 "Enable SSE4.1 instructions" OCV_OPTION(ENABLE_SSE42 "Enable SSE4.2 instructions" OFF IF (CMAKE_COMPILER_IS_GNUCXX AND (X86 OR X86_64)) ) OCV_OPTION(ENABLE_NOISY_WARNINGS "Show all warnings even if they are too noisy" OFF ) OCV_OPTION(OPENCV_WARNINGS_ARE_ERRORS "Treat warnings as errors" OFF ) -OCV_OPTION(ENABLE_MULTI_PROCESSOR_COMPILATION "Enabling multi-processory compilation" OFF IF MSVC) # uncategorized options diff --git a/cmake/OpenCVCompilerOptions.cmake b/cmake/OpenCVCompilerOptions.cmake index b3d71c8c8d..1913527451 100644 --- a/cmake/OpenCVCompilerOptions.cmake +++ b/cmake/OpenCVCompilerOptions.cmake @@ -282,9 +282,4 @@ if(MSVC) if(NOT ENABLE_NOISY_WARNINGS) set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /wd4251") #class 'std::XXX' needs to have dll-interface to be used by clients of YYY endif() -endif() - - -if (MSVC AND ENABLE_MULTI_PROCESSOR_COMPILATION) - SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /MP") -endif() +endif() \ No newline at end of file diff --git a/modules/gpu/doc/image_processing.rst b/modules/gpu/doc/image_processing.rst index 858b707bae..c8fd7491e7 100644 --- a/modules/gpu/doc/image_processing.rst +++ b/modules/gpu/doc/image_processing.rst @@ -818,9 +818,57 @@ Performs linear blending of two images. :param result: Destination image. :param stream: Stream for the asynchronous version. + + +gpu::bilateralFilter +------------------- +Performs bilateral filtering of passed image + +.. ocv:function:: void gpu::bilateralFilter(const GpuMat& src, GpuMat& dst, int kernel_size, float sigma_color, float sigma_spatial, int borderMode, Stream& stream = Stream::Null()); + + :param src: Source image. Supports only (channles != 2 && depth() != CV_8S && depth() != CV_32S && depth() != CV_64F). + + :param dst: Destination imagwe. + + :param kernel_size: Kernel window size. + + :param sigma_color: Filter sigma in the color space. + + :param sigma_spatial: Filter sigma in the coordinate space. + + :param borderMode: Border type. See :ocv:func:`borderInterpolate` for details. ``BORDER_REFLECT101`` , ``BORDER_REPLICATE`` , ``BORDER_CONSTANT`` , ``BORDER_REFLECT`` and ``BORDER_WRAP`` are supported for now. + + :param stream: Stream for the asynchronous version. +.. seealso:: + + :ocv:func:`bilateralFilter`, + + +gpu::nonLocalMeans +------------------- +Performs pure non local means denoising without any simplification, and thus it is not fast. + +.. ocv:function:: void nonLocalMeans(const GpuMat& src, GpuMat& dst, float h, int search_widow_size = 11, int block_size = 7, int borderMode = BORDER_DEFAULT, Stream& s = Stream::Null()); + + :param src: Source image. Supports only CV_8UC1, CV_8UC3. + + :param dst: Destination imagwe. + + :param h: Filter sigma regulating filter strength for color. + + :param search_widow_size: Size of search window. + + :param block_size: Size of block used for computing weights. + + :param borderMode: Border type. See :ocv:func:`borderInterpolate` for details. ``BORDER_REFLECT101`` , ``BORDER_REPLICATE`` , ``BORDER_CONSTANT`` , ``BORDER_REFLECT`` and ``BORDER_WRAP`` are supported for now. + + :param stream: Stream for the asynchronous version. +.. seealso:: + :ocv:func:`fastNlMeansDenoising` + gpu::alphaComp ------------------- Composites two images using alpha opacity values contained in each image. diff --git a/modules/gpu/include/opencv2/gpu/gpu.hpp b/modules/gpu/include/opencv2/gpu/gpu.hpp index c2fcc31a2e..2faa1751d4 100644 --- a/modules/gpu/include/opencv2/gpu/gpu.hpp +++ b/modules/gpu/include/opencv2/gpu/gpu.hpp @@ -769,6 +769,14 @@ CV_EXPORTS void pyrUp(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::N CV_EXPORTS void blendLinear(const GpuMat& img1, const GpuMat& img2, const GpuMat& weights1, const GpuMat& weights2, GpuMat& result, Stream& stream = Stream::Null()); +//! Performa bilateral filtering of passsed image +CV_EXPORTS void bilateralFilter(const GpuMat& src, GpuMat& dst, int kernel_size, float sigma_color, float sigma_spatial, + int borderMode = BORDER_DEFAULT, Stream& stream = Stream::Null()); + +//! Brute force non-local means algorith (slow but universal) +CV_EXPORTS void nonLocalMeans(const GpuMat& src, GpuMat& dst, float h, + int search_widow_size = 11, int block_size = 7, int borderMode = BORDER_DEFAULT, Stream& s = Stream::Null()); + struct CV_EXPORTS CannyBuf; diff --git a/modules/gpu/perf/perf_core.cpp b/modules/gpu/perf/perf_core.cpp index b638fbf4ad..915a9a20b4 100644 --- a/modules/gpu/perf/perf_core.cpp +++ b/modules/gpu/perf/perf_core.cpp @@ -882,7 +882,7 @@ PERF_TEST_P(Sz_Depth, Core_BitwiseAndMat, Combine(GPU_TYPICAL_MAT_SIZES, Values( ////////////////////////////////////////////////////////////////////// // BitwiseAndScalar -PERF_TEST_P(Sz_Depth_Cn, Core_BitwiseAndScalar, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32S), Values(1, 3, 4))) +PERF_TEST_P(Sz_Depth_Cn, Core_BitwiseAndScalar, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32S), GPU_CHANNELS_1_3_4)) { const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); @@ -963,7 +963,7 @@ PERF_TEST_P(Sz_Depth, Core_BitwiseOrMat, Combine(GPU_TYPICAL_MAT_SIZES, Values(C ////////////////////////////////////////////////////////////////////// // BitwiseOrScalar -PERF_TEST_P(Sz_Depth_Cn, Core_BitwiseOrScalar, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32S), Values(1, 3, 4))) +PERF_TEST_P(Sz_Depth_Cn, Core_BitwiseOrScalar, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32S), GPU_CHANNELS_1_3_4)) { const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); @@ -1044,7 +1044,7 @@ PERF_TEST_P(Sz_Depth, Core_BitwiseXorMat, Combine(GPU_TYPICAL_MAT_SIZES, Values( ////////////////////////////////////////////////////////////////////// // BitwiseXorScalar -PERF_TEST_P(Sz_Depth_Cn, Core_BitwiseXorScalar, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32S), Values(1, 3, 4))) +PERF_TEST_P(Sz_Depth_Cn, Core_BitwiseXorScalar, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32S), GPU_CHANNELS_1_3_4)) { const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); @@ -1085,7 +1085,7 @@ PERF_TEST_P(Sz_Depth_Cn, Core_BitwiseXorScalar, Combine(GPU_TYPICAL_MAT_SIZES, V ////////////////////////////////////////////////////////////////////// // RShift -PERF_TEST_P(Sz_Depth_Cn, Core_RShift, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32S), Values(1, 3, 4))) +PERF_TEST_P(Sz_Depth_Cn, Core_RShift, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32S), GPU_CHANNELS_1_3_4)) { const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); @@ -1119,7 +1119,7 @@ PERF_TEST_P(Sz_Depth_Cn, Core_RShift, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8 ////////////////////////////////////////////////////////////////////// // LShift -PERF_TEST_P(Sz_Depth_Cn, Core_LShift, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32S), Values(1, 3, 4))) +PERF_TEST_P(Sz_Depth_Cn, Core_LShift, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32S), GPU_CHANNELS_1_3_4)) { const cv::Size size = GET_PARAM(0); const int depth = GET_PARAM(1); @@ -1461,7 +1461,7 @@ DEF_PARAM_TEST(Sz_Depth_Cn_Code, cv::Size, MatDepth, int, FlipCode); PERF_TEST_P(Sz_Depth_Cn_Code, Core_Flip, Combine( GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), - Values(1, 3, 4), + GPU_CHANNELS_1_3_4, ALL_FLIP_CODES)) { cv::Size size = GET_PARAM(0); @@ -1973,7 +1973,7 @@ PERF_TEST_P(Sz_Norm, Core_NormDiff, Combine( PERF_TEST_P(Sz_Depth_Cn, Core_Sum, Combine( GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), - Values(1, 3, 4))) + GPU_CHANNELS_1_3_4)) { cv::Size size = GET_PARAM(0); int depth = GET_PARAM(1); @@ -2015,7 +2015,7 @@ PERF_TEST_P(Sz_Depth_Cn, Core_Sum, Combine( PERF_TEST_P(Sz_Depth_Cn, Core_SumAbs, Combine( GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), - Values(1, 3, 4))) + GPU_CHANNELS_1_3_4)) { cv::Size size = GET_PARAM(0); int depth = GET_PARAM(1); @@ -2052,7 +2052,7 @@ PERF_TEST_P(Sz_Depth_Cn, Core_SumAbs, Combine( PERF_TEST_P(Sz_Depth_Cn, Core_SumSqr, Combine( GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), - Values(1, 3, 4))) + GPU_CHANNELS_1_3_4)) { cv::Size size = GET_PARAM(0); int depth = GET_PARAM(1); diff --git a/modules/gpu/perf/perf_denoising.cpp b/modules/gpu/perf/perf_denoising.cpp new file mode 100644 index 0000000000..ee76b55943 --- /dev/null +++ b/modules/gpu/perf/perf_denoising.cpp @@ -0,0 +1,98 @@ +#include "perf_precomp.hpp" + +using namespace std; +using namespace testing; + + +////////////////////////////////////////////////////////////////////// +// BilateralFilter + +DEF_PARAM_TEST(Sz_Depth_Cn_KernelSz, cv::Size, MatDepth , int, int); + +PERF_TEST_P(Sz_Depth_Cn_KernelSz, Denoising_BilateralFilter, + Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), GPU_CHANNELS_1_3_4, Values(3, 5, 9))) +{ + declare.time(30.0); + + cv::Size size = GET_PARAM(0); + int depth = GET_PARAM(1); + int channels = GET_PARAM(2); + int kernel_size = GET_PARAM(3); + + float sigma_color = 7; + float sigma_spatial = 5; + int borderMode = cv::BORDER_REFLECT101; + + int type = CV_MAKE_TYPE(depth, channels); + + cv::Mat src(size, type); + fillRandom(src); + + if (runOnGpu) + { + cv::gpu::GpuMat d_src(src); + cv::gpu::GpuMat d_dst; + + cv::gpu::bilateralFilter(d_src, d_dst, kernel_size, sigma_color, sigma_spatial, borderMode); + + TEST_CYCLE() + { + cv::gpu::bilateralFilter(d_src, d_dst, kernel_size, sigma_color, sigma_spatial, borderMode); + } + } + else + { + cv::Mat dst; + + cv::bilateralFilter(src, dst, kernel_size, sigma_color, sigma_spatial, borderMode); + + TEST_CYCLE() + { + cv::bilateralFilter(src, dst, kernel_size, sigma_color, sigma_spatial, borderMode); + } + } +} + + +////////////////////////////////////////////////////////////////////// +// nonLocalMeans + +DEF_PARAM_TEST(Sz_Depth_Cn_WinSz_BlockSz, cv::Size, MatDepth , int, int, int); + +PERF_TEST_P(Sz_Depth_Cn_WinSz_BlockSz, Denoising_NonLocalMeans, + Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U), Values(1), Values(21), Values(5, 7))) +{ + declare.time(30.0); + + cv::Size size = GET_PARAM(0); + int depth = GET_PARAM(1); + int channels = GET_PARAM(2); + + int search_widow_size = GET_PARAM(3); + int block_size = GET_PARAM(4); + + float h = 10; + int borderMode = cv::BORDER_REFLECT101; + + int type = CV_MAKE_TYPE(depth, channels); + + cv::Mat src(size, type); + fillRandom(src); + + if (runOnGpu) + { + cv::gpu::GpuMat d_src(src); + cv::gpu::GpuMat d_dst; + + cv::gpu::nonLocalMeans(d_src, d_dst, h, search_widow_size, block_size, borderMode); + + TEST_CYCLE() + { + cv::gpu::nonLocalMeans(d_src, d_dst, h, search_widow_size, block_size, borderMode); + } + } + else + { + FAIL(); + } +} \ No newline at end of file diff --git a/modules/gpu/perf/perf_imgproc.cpp b/modules/gpu/perf/perf_imgproc.cpp index 80d4af54df..761510da35 100644 --- a/modules/gpu/perf/perf_imgproc.cpp +++ b/modules/gpu/perf/perf_imgproc.cpp @@ -54,7 +54,7 @@ DEF_PARAM_TEST(Sz_Depth_Cn_Inter_Border_Mode, cv::Size, MatDepth, int, Interpola PERF_TEST_P(Sz_Depth_Cn_Inter_Border_Mode, ImgProc_Remap, Combine( GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), - Values(1, 3, 4), + GPU_CHANNELS_1_3_4, Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)), ALL_BORDER_MODES, ALL_REMAP_MODES)) @@ -113,7 +113,7 @@ DEF_PARAM_TEST(Sz_Depth_Cn_Inter_Scale, cv::Size, MatDepth, int, Interpolation, PERF_TEST_P(Sz_Depth_Cn_Inter_Scale, ImgProc_Resize, Combine( GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), - Values(1, 3, 4), + GPU_CHANNELS_1_3_4, ALL_INTERPOLATIONS, Values(0.5, 0.3, 2.0))) { @@ -163,7 +163,7 @@ DEF_PARAM_TEST(Sz_Depth_Cn_Scale, cv::Size, MatDepth, int, double); PERF_TEST_P(Sz_Depth_Cn_Scale, ImgProc_ResizeArea, Combine( GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), - Values(1, 3, 4), + GPU_CHANNELS_1_3_4, Values(0.2, 0.1, 0.05))) { declare.time(1.0); @@ -212,7 +212,7 @@ DEF_PARAM_TEST(Sz_Depth_Cn_Inter_Border, cv::Size, MatDepth, int, Interpolation, PERF_TEST_P(Sz_Depth_Cn_Inter_Border, ImgProc_WarpAffine, Combine( GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), - Values(1, 3, 4), + GPU_CHANNELS_1_3_4, Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)), ALL_BORDER_MODES)) { @@ -265,7 +265,7 @@ PERF_TEST_P(Sz_Depth_Cn_Inter_Border, ImgProc_WarpAffine, Combine( PERF_TEST_P(Sz_Depth_Cn_Inter_Border, ImgProc_WarpPerspective, Combine( GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), - Values(1, 3, 4), + GPU_CHANNELS_1_3_4, Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)), ALL_BORDER_MODES)) { @@ -321,7 +321,7 @@ DEF_PARAM_TEST(Sz_Depth_Cn_Border, cv::Size, MatDepth, int, BorderMode); PERF_TEST_P(Sz_Depth_Cn_Border, ImgProc_CopyMakeBorder, Combine( GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), - Values(1, 3, 4), + GPU_CHANNELS_1_3_4, ALL_BORDER_MODES)) { cv::Size size = GET_PARAM(0); @@ -789,7 +789,7 @@ PERF_TEST_P(Image, ImgProc_MeanShiftSegmentation, Values("gpu/meanshift/ ////////////////////////////////////////////////////////////////////// // BlendLinear -PERF_TEST_P(Sz_Depth_Cn, ImgProc_BlendLinear, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_32F), Values(1, 3, 4))) +PERF_TEST_P(Sz_Depth_Cn, ImgProc_BlendLinear, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_32F), GPU_CHANNELS_1_3_4)) { cv::Size size = GET_PARAM(0); int depth = GET_PARAM(1); @@ -887,7 +887,7 @@ DEF_PARAM_TEST(Sz_TemplateSz_Cn_Method, cv::Size, cv::Size, int, TemplateMethod) PERF_TEST_P(Sz_TemplateSz_Cn_Method, ImgProc_MatchTemplate8U, Combine( GPU_TYPICAL_MAT_SIZES, Values(cv::Size(5, 5), cv::Size(16, 16), cv::Size(30, 30)), - Values(1, 3, 4), + GPU_CHANNELS_1_3_4, ALL_TEMPLATE_METHODS)) { cv::Size size = GET_PARAM(0); @@ -933,7 +933,7 @@ PERF_TEST_P(Sz_TemplateSz_Cn_Method, ImgProc_MatchTemplate8U, Combine( PERF_TEST_P(Sz_TemplateSz_Cn_Method, ImgProc_MatchTemplate32F, Combine( GPU_TYPICAL_MAT_SIZES, Values(cv::Size(5, 5), cv::Size(16, 16), cv::Size(30, 30)), - Values(1, 3, 4), + GPU_CHANNELS_1_3_4, Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR)))) { cv::Size size = GET_PARAM(0); @@ -1287,7 +1287,7 @@ DEF_PARAM_TEST(Sz_Depth_Cn_Inter, cv::Size, MatDepth, int, Interpolation); PERF_TEST_P(Sz_Depth_Cn_Inter, ImgProc_Rotate, Combine( GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), - Values(1, 3, 4), + GPU_CHANNELS_1_3_4, Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)))) { cv::Size size = GET_PARAM(0); @@ -1324,7 +1324,7 @@ PERF_TEST_P(Sz_Depth_Cn_Inter, ImgProc_Rotate, Combine( PERF_TEST_P(Sz_Depth_Cn, ImgProc_PyrDown, Combine( GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), - Values(1, 3, 4))) + GPU_CHANNELS_1_3_4)) { cv::Size size = GET_PARAM(0); int depth = GET_PARAM(1); @@ -1366,7 +1366,7 @@ PERF_TEST_P(Sz_Depth_Cn, ImgProc_PyrDown, Combine( PERF_TEST_P(Sz_Depth_Cn, ImgProc_PyrUp, Combine( GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), - Values(1, 3, 4))) + GPU_CHANNELS_1_3_4)) { cv::Size size = GET_PARAM(0); int depth = GET_PARAM(1); @@ -1540,7 +1540,7 @@ PERF_TEST_P(Sz_Type_Op, ImgProc_AlphaComp, Combine(GPU_TYPICAL_MAT_SIZES, Values ////////////////////////////////////////////////////////////////////// // ImagePyramidBuild -PERF_TEST_P(Sz_Depth_Cn, ImgProc_ImagePyramidBuild, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), Values(1, 3, 4))) +PERF_TEST_P(Sz_Depth_Cn, ImgProc_ImagePyramidBuild, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), GPU_CHANNELS_1_3_4)) { cv::Size size = GET_PARAM(0); int depth = GET_PARAM(1); @@ -1573,7 +1573,7 @@ PERF_TEST_P(Sz_Depth_Cn, ImgProc_ImagePyramidBuild, Combine(GPU_TYPICAL_MAT_SIZE ////////////////////////////////////////////////////////////////////// // ImagePyramidGetLayer -PERF_TEST_P(Sz_Depth_Cn, ImgProc_ImagePyramidGetLayer, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), Values(1, 3, 4))) +PERF_TEST_P(Sz_Depth_Cn, ImgProc_ImagePyramidGetLayer, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F), GPU_CHANNELS_1_3_4)) { cv::Size size = GET_PARAM(0); int depth = GET_PARAM(1); diff --git a/modules/gpu/perf/perf_matop.cpp b/modules/gpu/perf/perf_matop.cpp index cdae962f23..83e27875a2 100644 --- a/modules/gpu/perf/perf_matop.cpp +++ b/modules/gpu/perf/perf_matop.cpp @@ -8,7 +8,7 @@ namespace { ////////////////////////////////////////////////////////////////////// // SetTo -PERF_TEST_P(Sz_Depth_Cn, MatOp_SetTo, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F, CV_64F), Values(1, 3, 4))) +PERF_TEST_P(Sz_Depth_Cn, MatOp_SetTo, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F, CV_64F), GPU_CHANNELS_1_3_4)) { cv::Size size = GET_PARAM(0); int depth = GET_PARAM(1); @@ -45,7 +45,7 @@ PERF_TEST_P(Sz_Depth_Cn, MatOp_SetTo, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8 ////////////////////////////////////////////////////////////////////// // SetToMasked -PERF_TEST_P(Sz_Depth_Cn, MatOp_SetToMasked, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F, CV_64F), Values(1, 3, 4))) +PERF_TEST_P(Sz_Depth_Cn, MatOp_SetToMasked, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F, CV_64F), GPU_CHANNELS_1_3_4)) { cv::Size size = GET_PARAM(0); int depth = GET_PARAM(1); @@ -87,7 +87,7 @@ PERF_TEST_P(Sz_Depth_Cn, MatOp_SetToMasked, Combine(GPU_TYPICAL_MAT_SIZES, Value ////////////////////////////////////////////////////////////////////// // CopyToMasked -PERF_TEST_P(Sz_Depth_Cn, MatOp_CopyToMasked, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F, CV_64F), Values(1, 3, 4))) +PERF_TEST_P(Sz_Depth_Cn, MatOp_CopyToMasked, Combine(GPU_TYPICAL_MAT_SIZES, Values(CV_8U, CV_16U, CV_32F, CV_64F), GPU_CHANNELS_1_3_4)) { cv::Size size = GET_PARAM(0); int depth = GET_PARAM(1); diff --git a/modules/gpu/perf/perf_video.cpp b/modules/gpu/perf/perf_video.cpp index aa802fbf54..7a64034691 100644 --- a/modules/gpu/perf/perf_video.cpp +++ b/modules/gpu/perf/perf_video.cpp @@ -423,7 +423,7 @@ PERF_TEST_P(Video, Video_FGDStatModel, Values("gpu/video/768x576.avi", "gpu/vide DEF_PARAM_TEST(Video_Cn_LearningRate, string, int, double); -PERF_TEST_P(Video_Cn_LearningRate, Video_MOG, Combine(Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi"), Values(1, 3, 4), Values(0.0, 0.01))) +PERF_TEST_P(Video_Cn_LearningRate, Video_MOG, Combine(Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi"), GPU_CHANNELS_1_3_4, Values(0.0, 0.01))) { string inputFile = perf::TestBase::getDataPath(GET_PARAM(0)); int cn = GET_PARAM(1); @@ -511,7 +511,7 @@ PERF_TEST_P(Video_Cn_LearningRate, Video_MOG, Combine(Values("gpu/video/768x576. DEF_PARAM_TEST(Video_Cn, string, int); -PERF_TEST_P(Video_Cn, Video_MOG2, Combine(Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi"), Values(1, 3, 4))) +PERF_TEST_P(Video_Cn, Video_MOG2, Combine(Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi"), GPU_CHANNELS_1_3_4)) { string inputFile = perf::TestBase::getDataPath(GET_PARAM(0)); int cn = GET_PARAM(1); @@ -596,7 +596,7 @@ PERF_TEST_P(Video_Cn, Video_MOG2, Combine(Values("gpu/video/768x576.avi", "gpu/v ////////////////////////////////////////////////////// // MOG2GetBackgroundImage -PERF_TEST_P(Video_Cn, Video_MOG2GetBackgroundImage, Combine(Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi"), Values(1, 3, 4))) +PERF_TEST_P(Video_Cn, Video_MOG2GetBackgroundImage, Combine(Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi"), GPU_CHANNELS_1_3_4)) { string inputFile = perf::TestBase::getDataPath(GET_PARAM(0)); int cn = GET_PARAM(1); @@ -676,7 +676,7 @@ PERF_TEST_P(Video_Cn, Video_MOG2GetBackgroundImage, Combine(Values("gpu/video/76 ////////////////////////////////////////////////////// // VIBE -PERF_TEST_P(Video_Cn, Video_VIBE, Combine(Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi"), Values(1, 3, 4))) +PERF_TEST_P(Video_Cn, Video_VIBE, Combine(Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi"), GPU_CHANNELS_1_3_4)) { string inputFile = perf::TestBase::getDataPath(GET_PARAM(0)); int cn = GET_PARAM(1); @@ -739,7 +739,7 @@ PERF_TEST_P(Video_Cn, Video_VIBE, Combine(Values("gpu/video/768x576.avi", "gpu/v DEF_PARAM_TEST(Video_Cn_MaxFeatures, string, int, int); -PERF_TEST_P(Video_Cn_MaxFeatures, Video_GMG, Combine(Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi"), Values(1, 3, 4), Values(20, 40, 60))) +PERF_TEST_P(Video_Cn_MaxFeatures, Video_GMG, Combine(Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi"), GPU_CHANNELS_1_3_4, Values(20, 40, 60))) { std::string inputFile = perf::TestBase::getDataPath(GET_PARAM(0)); int cn = GET_PARAM(1); diff --git a/modules/gpu/perf/utility.hpp b/modules/gpu/perf/utility.hpp index 441d32adb1..d2e3a070f5 100644 --- a/modules/gpu/perf/utility.hpp +++ b/modules/gpu/perf/utility.hpp @@ -41,5 +41,6 @@ DEF_PARAM_TEST(Sz_Depth, cv::Size, MatDepth); DEF_PARAM_TEST(Sz_Depth_Cn, cv::Size, MatDepth, int); #define GPU_TYPICAL_MAT_SIZES testing::Values(perf::sz720p, perf::szSXGA, perf::sz1080p) +#define GPU_CHANNELS_1_3_4 testing::Values(1, 3, 4) #endif // __OPENCV_PERF_GPU_UTILITY_HPP__ diff --git a/modules/gpu/src/cuda/bilateral_filter.cu b/modules/gpu/src/cuda/bilateral_filter.cu index abae91d2c5..9e9135e109 100644 --- a/modules/gpu/src/cuda/bilateral_filter.cu +++ b/modules/gpu/src/cuda/bilateral_filter.cu @@ -12,6 +12,7 @@ // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 1993-2011, NVIDIA Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, @@ -28,7 +29,7 @@ // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and -// any express or implied warranties, including, but not limited to, the implied +// any express or bpied warranties, including, but not limited to, the bpied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages @@ -41,186 +42,155 @@ //M*/ #include "internal_shared.hpp" -#include "opencv2/gpu/device/limits.hpp" -namespace cv { namespace gpu { namespace device -{ - namespace bilateral_filter - { - __constant__ float* ctable_color; - __constant__ float* ctable_space; - __constant__ size_t ctable_space_step; +#include "opencv2/gpu/device/vec_traits.hpp" +#include "opencv2/gpu/device/vec_math.hpp" +#include "opencv2/gpu/device/border_interpolate.hpp" - __constant__ int cndisp; - __constant__ int cradius; +using namespace cv::gpu; - __constant__ short cedge_disc; - __constant__ short cmax_disc; +typedef unsigned char uchar; +typedef unsigned short ushort; - void load_constants(float* table_color, PtrStepSzf table_space, int ndisp, int radius, short edge_disc, short max_disc) - { - cudaSafeCall( cudaMemcpyToSymbol(ctable_color, &table_color, sizeof(table_color)) ); - cudaSafeCall( cudaMemcpyToSymbol(ctable_space, &table_space.data, sizeof(table_space.data)) ); - size_t table_space_step = table_space.step / sizeof(float); - cudaSafeCall( cudaMemcpyToSymbol(ctable_space_step, &table_space_step, sizeof(size_t)) ); - - cudaSafeCall( cudaMemcpyToSymbol(cndisp, &ndisp, sizeof(int)) ); - cudaSafeCall( cudaMemcpyToSymbol(cradius, &radius, sizeof(int)) ); +////////////////////////////////////////////////////////////////////////////////// +/// Bilateral filtering - cudaSafeCall( cudaMemcpyToSymbol(cedge_disc, &edge_disc, sizeof(short)) ); - cudaSafeCall( cudaMemcpyToSymbol(cmax_disc, &max_disc, sizeof(short)) ); - } - - template - struct DistRgbMax - { - static __device__ __forceinline__ uchar calc(const uchar* a, const uchar* b) - { - uchar x = ::abs(a[0] - b[0]); - uchar y = ::abs(a[1] - b[1]); - uchar z = ::abs(a[2] - b[2]); - return (::max(::max(x, y), z)); - } - }; +namespace cv { namespace gpu { namespace device +{ + namespace imgproc + { + __device__ __forceinline__ float norm_l1(const float& a) { return ::fabs(a); } + __device__ __forceinline__ float norm_l1(const float2& a) { return ::fabs(a.x) + ::fabs(a.y); } + __device__ __forceinline__ float norm_l1(const float3& a) { return ::fabs(a.x) + ::fabs(a.y) + ::fabs(a.z); } + __device__ __forceinline__ float norm_l1(const float4& a) { return ::fabs(a.x) + ::fabs(a.y) + ::fabs(a.z) + ::fabs(a.w); } - template <> - struct DistRgbMax<1> - { - static __device__ __forceinline__ uchar calc(const uchar* a, const uchar* b) - { - return ::abs(a[0] - b[0]); - } - }; + __device__ __forceinline__ float sqr(const float& a) { return a * a; } - template - __global__ void bilateral_filter(int t, T* disp, size_t disp_step, const uchar* img, size_t img_step, int h, int w) + template + __global__ void bilateral_kernel(const PtrStepSz src, PtrStep dst, const B b, const int ksz, const float sigma_spatial2_inv_half, const float sigma_color2_inv_half) { - const int y = blockIdx.y * blockDim.y + threadIdx.y; - const int x = ((blockIdx.x * blockDim.x + threadIdx.x) << 1) + ((y + t) & 1); + typedef typename TypeVec::cn>::vec_type value_type; + + int x = threadIdx.x + blockIdx.x * blockDim.x; + int y = threadIdx.y + blockIdx.y * blockDim.y; - T dp[5]; + if (x >= src.cols || y >= src.rows) + return; - if (y > 0 && y < h - 1 && x > 0 && x < w - 1) - { - dp[0] = *(disp + (y ) * disp_step + x + 0); - dp[1] = *(disp + (y-1) * disp_step + x + 0); - dp[2] = *(disp + (y ) * disp_step + x - 1); - dp[3] = *(disp + (y+1) * disp_step + x + 0); - dp[4] = *(disp + (y ) * disp_step + x + 1); + value_type center = saturate_cast(src(y, x)); - if(::abs(dp[1] - dp[0]) >= cedge_disc || ::abs(dp[2] - dp[0]) >= cedge_disc || ::abs(dp[3] - dp[0]) >= cedge_disc || ::abs(dp[4] - dp[0]) >= cedge_disc) - { - const int ymin = ::max(0, y - cradius); - const int xmin = ::max(0, x - cradius); - const int ymax = ::min(h - 1, y + cradius); - const int xmax = ::min(w - 1, x + cradius); + value_type sum1 = VecTraits::all(0); + float sum2 = 0; - float cost[] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f}; + int r = ksz / 2; + float r2 = (float)(r * r); - const uchar* ic = img + y * img_step + channels * x; + int tx = x - r + ksz; + int ty = y - r + ksz; - for(int yi = ymin; yi <= ymax; yi++) + if (x - ksz/2 >=0 && y - ksz/2 >=0 && tx < src.cols && ty < src.rows) + { + for (int cy = y - r; cy < ty; ++cy) + for (int cx = x - r; cx < tx; ++cx) { - const T* disp_y = disp + yi * disp_step; - - for(int xi = xmin; xi <= xmax; xi++) - { - const uchar* in = img + yi * img_step + channels * xi; - - uchar dist_rgb = DistRgbMax::calc(in, ic); - - const float weight = ctable_color[dist_rgb] * (ctable_space + ::abs(y-yi)* ctable_space_step)[::abs(x-xi)]; + float space2 = (x - cx) * (x - cx) + (y - cy) * (y - cy); + if (space2 > r2) + continue; - const T disp_reg = disp_y[xi]; + value_type value = saturate_cast(src(cy, cx)); - cost[0] += ::min(cmax_disc, ::abs(disp_reg - dp[0])) * weight; - cost[1] += ::min(cmax_disc, ::abs(disp_reg - dp[1])) * weight; - cost[2] += ::min(cmax_disc, ::abs(disp_reg - dp[2])) * weight; - cost[3] += ::min(cmax_disc, ::abs(disp_reg - dp[3])) * weight; - cost[4] += ::min(cmax_disc, ::abs(disp_reg - dp[4])) * weight; - } + float weight = ::exp(space2 * sigma_spatial2_inv_half + sqr(norm_l1(value - center)) * sigma_color2_inv_half); + sum1 = sum1 + weight * value; + sum2 = sum2 + weight; } + } + else + { + for (int cy = y - r; cy < ty; ++cy) + for (int cx = x - r; cx < tx; ++cx) + { + float space2 = (x - cx) * (x - cx) + (y - cy) * (y - cy); + if (space2 > r2) + continue; - float minimum = numeric_limits::max(); - int id = 0; + value_type value = saturate_cast(b.at(cy, cx, src.data, src.step)); - if (cost[0] < minimum) - { - minimum = cost[0]; - id = 0; - } - if (cost[1] < minimum) - { - minimum = cost[1]; - id = 1; - } - if (cost[2] < minimum) - { - minimum = cost[2]; - id = 2; - } - if (cost[3] < minimum) - { - minimum = cost[3]; - id = 3; - } - if (cost[4] < minimum) - { - minimum = cost[4]; - id = 4; - } + float weight = ::exp(space2 * sigma_spatial2_inv_half + sqr(norm_l1(value - center)) * sigma_color2_inv_half); - *(disp + y * disp_step + x) = dp[id]; - } + sum1 = sum1 + weight * value; + sum2 = sum2 + weight; + } } + dst(y, x) = saturate_cast(sum1 / sum2); } - template - void bilateral_filter_caller(PtrStepSz disp, PtrStepSzb img, int channels, int iters, cudaStream_t stream) + template class B> + void bilateral_caller(const PtrStepSzb& src, PtrStepSzb dst, int kernel_size, float sigma_spatial, float sigma_color, cudaStream_t stream) { - dim3 threads(32, 8, 1); - dim3 grid(1, 1, 1); - grid.x = divUp(disp.cols, threads.x << 1); - grid.y = divUp(disp.rows, threads.y); + dim3 block (32, 8); + dim3 grid (divUp (src.cols, block.x), divUp (src.rows, block.y)); - switch (channels) - { - case 1: - for (int i = 0; i < iters; ++i) - { - bilateral_filter<1><<>>(0, disp.data, disp.step/sizeof(T), img.data, img.step, disp.rows, disp.cols); - cudaSafeCall( cudaGetLastError() ); - - bilateral_filter<1><<>>(1, disp.data, disp.step/sizeof(T), img.data, img.step, disp.rows, disp.cols); - cudaSafeCall( cudaGetLastError() ); - } - break; - case 3: - for (int i = 0; i < iters; ++i) - { - bilateral_filter<3><<>>(0, disp.data, disp.step/sizeof(T), img.data, img.step, disp.rows, disp.cols); - cudaSafeCall( cudaGetLastError() ); - - bilateral_filter<3><<>>(1, disp.data, disp.step/sizeof(T), img.data, img.step, disp.rows, disp.cols); - cudaSafeCall( cudaGetLastError() ); - } - break; - default: - cv::gpu::error("Unsupported channels count", __FILE__, __LINE__, "bilateral_filter_caller"); - } + B b(src.rows, src.cols); + + float sigma_spatial2_inv_half = -0.5f/(sigma_spatial * sigma_spatial); + float sigma_color2_inv_half = -0.5f/(sigma_color * sigma_color); + + cudaSafeCall( cudaFuncSetCacheConfig (bilateral_kernel >, cudaFuncCachePreferL1) ); + bilateral_kernel<<>>((PtrStepSz)src, (PtrStepSz)dst, b, kernel_size, sigma_spatial2_inv_half, sigma_color2_inv_half); + cudaSafeCall ( cudaGetLastError () ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } - void bilateral_filter_gpu(PtrStepSzb disp, PtrStepSzb img, int channels, int iters, cudaStream_t stream) + template + void bilateral_filter_gpu(const PtrStepSzb& src, PtrStepSzb dst, int kernel_size, float gauss_spatial_coeff, float gauss_color_coeff, int borderMode, cudaStream_t stream) { - bilateral_filter_caller(disp, img, channels, iters, stream); - } + typedef void (*caller_t)(const PtrStepSzb& src, PtrStepSzb dst, int kernel_size, float sigma_spatial, float sigma_color, cudaStream_t stream); - void bilateral_filter_gpu(PtrStepSz disp, PtrStepSzb img, int channels, int iters, cudaStream_t stream) - { - bilateral_filter_caller(disp, img, channels, iters, stream); + static caller_t funcs[] = + { + bilateral_caller, + bilateral_caller, + bilateral_caller, + bilateral_caller, + bilateral_caller, + }; + funcs[borderMode](src, dst, kernel_size, gauss_spatial_coeff, gauss_color_coeff, stream); } - } // namespace bilateral_filter -}}} // namespace cv { namespace gpu { namespace device + } +}}} + + +#define OCV_INSTANTIATE_BILATERAL_FILTER(T) \ + template void cv::gpu::device::imgproc::bilateral_filter_gpu(const PtrStepSzb&, PtrStepSzb, int, float, float, int, cudaStream_t); + +OCV_INSTANTIATE_BILATERAL_FILTER(uchar) +//OCV_INSTANTIATE_BILATERAL_FILTER(uchar2) +OCV_INSTANTIATE_BILATERAL_FILTER(uchar3) +OCV_INSTANTIATE_BILATERAL_FILTER(uchar4) + +//OCV_INSTANTIATE_BILATERAL_FILTER(schar) +//OCV_INSTANTIATE_BILATERAL_FILTER(schar2) +//OCV_INSTANTIATE_BILATERAL_FILTER(schar3) +//OCV_INSTANTIATE_BILATERAL_FILTER(schar4) + +OCV_INSTANTIATE_BILATERAL_FILTER(short) +//OCV_INSTANTIATE_BILATERAL_FILTER(short2) +OCV_INSTANTIATE_BILATERAL_FILTER(short3) +OCV_INSTANTIATE_BILATERAL_FILTER(short4) + +OCV_INSTANTIATE_BILATERAL_FILTER(ushort) +//OCV_INSTANTIATE_BILATERAL_FILTER(ushort2) +OCV_INSTANTIATE_BILATERAL_FILTER(ushort3) +OCV_INSTANTIATE_BILATERAL_FILTER(ushort4) + +//OCV_INSTANTIATE_BILATERAL_FILTER(int) +//OCV_INSTANTIATE_BILATERAL_FILTER(int2) +//OCV_INSTANTIATE_BILATERAL_FILTER(int3) +//OCV_INSTANTIATE_BILATERAL_FILTER(int4) + +OCV_INSTANTIATE_BILATERAL_FILTER(float) +//OCV_INSTANTIATE_BILATERAL_FILTER(float2) +OCV_INSTANTIATE_BILATERAL_FILTER(float3) +OCV_INSTANTIATE_BILATERAL_FILTER(float4) diff --git a/modules/gpu/src/cuda/nlm.cu b/modules/gpu/src/cuda/nlm.cu new file mode 100644 index 0000000000..1acbe7fe7b --- /dev/null +++ b/modules/gpu/src/cuda/nlm.cu @@ -0,0 +1,143 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 1993-2011, NVIDIA Corporation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or bpied warranties, including, but not limited to, the bpied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#include "internal_shared.hpp" + +#include "opencv2/gpu/device/vec_traits.hpp" +#include "opencv2/gpu/device/vec_math.hpp" +#include "opencv2/gpu/device/border_interpolate.hpp" + +using namespace cv::gpu; + +typedef unsigned char uchar; +typedef unsigned short ushort; + +////////////////////////////////////////////////////////////////////////////////// +/// Non local means denosings + +namespace cv { namespace gpu { namespace device +{ + namespace imgproc + { + __device__ __forceinline__ float norm2(const float& v) { return v*v; } + __device__ __forceinline__ float norm2(const float2& v) { return v.x*v.x + v.y*v.y; } + __device__ __forceinline__ float norm2(const float3& v) { return v.x*v.x + v.y*v.y + v.z*v.z; } + __device__ __forceinline__ float norm2(const float4& v) { return v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w; } + + template + __global__ void nlm_kernel(const PtrStepSz src, PtrStep dst, const B b, int search_radius, int block_radius, float h2_inv_half) + { + typedef typename TypeVec::cn>::vec_type value_type; + + const int x = blockDim.x * blockIdx.x + threadIdx.x; + const int y = blockDim.y * blockIdx.y + threadIdx.y; + + if (x >= src.cols || y >= src.rows) + return; + + float block_radius2_inv = -1.f/(block_radius * block_radius); + + value_type sum1 = VecTraits::all(0); + float sum2 = 0.f; + + for(float cy = -search_radius; cy <= search_radius; ++cy) + for(float cx = -search_radius; cx <= search_radius; ++cx) + { + float color2 = 0; + for(float by = -block_radius; by <= block_radius; ++by) + for(float bx = -block_radius; bx <= block_radius; ++bx) + { + value_type v1 = saturate_cast(src(y + by, x + bx)); + value_type v2 = saturate_cast(src(y + cy + by, x + cx + bx)); + color2 += norm2(v1 - v2); + } + + float dist2 = cx * cx + cy * cy; + float w = __expf(color2 * h2_inv_half + dist2 * block_radius2_inv); + + sum1 = sum1 + saturate_cast(src(y + cy, x + cy)) * w; + sum2 += w; + } + + dst(y, x) = saturate_cast(sum1 / sum2); + + } + + template class B> + void nlm_caller(const PtrStepSzb src, PtrStepSzb dst, int search_radius, int block_radius, float h, cudaStream_t stream) + { + dim3 block (32, 8); + dim3 grid (divUp (src.cols, block.x), divUp (src.rows, block.y)); + + B b(src.rows, src.cols); + + float h2_inv_half = -0.5f/(h * h * VecTraits::cn); + + cudaSafeCall( cudaFuncSetCacheConfig (nlm_kernel >, cudaFuncCachePreferL1) ); + nlm_kernel<<>>((PtrStepSz)src, (PtrStepSz)dst, b, search_radius, block_radius, h2_inv_half); + cudaSafeCall ( cudaGetLastError () ); + + if (stream == 0) + cudaSafeCall( cudaDeviceSynchronize() ); + } + + template + void nlm_bruteforce_gpu(const PtrStepSzb& src, PtrStepSzb dst, int search_radius, int block_radius, float h, int borderMode, cudaStream_t stream) + { + typedef void (*func_t)(const PtrStepSzb src, PtrStepSzb dst, int search_radius, int block_radius, float h, cudaStream_t stream); + + static func_t funcs[] = + { + nlm_caller, + nlm_caller, + nlm_caller, + nlm_caller, + nlm_caller, + }; + funcs[borderMode](src, dst, search_radius, block_radius, h, stream); + } + + template void nlm_bruteforce_gpu(const PtrStepSzb&, PtrStepSzb, int, int, float, int, cudaStream_t); + template void nlm_bruteforce_gpu(const PtrStepSzb&, PtrStepSzb, int, int, float, int, cudaStream_t); + } +}}} diff --git a/modules/gpu/src/denoising.cpp b/modules/gpu/src/denoising.cpp new file mode 100644 index 0000000000..f7dd2fbfa9 --- /dev/null +++ b/modules/gpu/src/denoising.cpp @@ -0,0 +1,135 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other GpuMaterials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or bpied warranties, including, but not limited to, the bpied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#include "precomp.hpp" + +using namespace cv; +using namespace cv::gpu; + +#if !defined (HAVE_CUDA) + +cv::gpu::bilateralFilter(const GpuMat&, GpuMat&, int, float, float, int, Stream&) { throw_nogpu(); } + +#else + + +namespace cv { namespace gpu { namespace device +{ + namespace imgproc + { + template + void bilateral_filter_gpu(const PtrStepSzb& src, PtrStepSzb dst, int kernel_size, float sigma_spatial, float sigma_color, int borderMode, cudaStream_t stream); + + template + void nlm_bruteforce_gpu(const PtrStepSzb& src, PtrStepSzb dst, int search_radius, int block_radius, float h, int borderMode, cudaStream_t stream); + } +}}} + +void cv::gpu::bilateralFilter(const GpuMat& src, GpuMat& dst, int kernel_size, float sigma_color, float sigma_spatial, int borderMode, Stream& s) +{ + using cv::gpu::device::imgproc::bilateral_filter_gpu; + + typedef void (*func_t)(const PtrStepSzb& src, PtrStepSzb dst, int kernel_size, float sigma_spatial, float sigma_color, int borderMode, cudaStream_t s); + + static const func_t funcs[6][4] = + { + {bilateral_filter_gpu , 0 /*bilateral_filter_gpu*/ , bilateral_filter_gpu , bilateral_filter_gpu }, + {0 /*bilateral_filter_gpu*/, 0 /*bilateral_filter_gpu*/ , 0 /*bilateral_filter_gpu*/, 0 /*bilateral_filter_gpu*/}, + {bilateral_filter_gpu , 0 /*bilateral_filter_gpu*/, bilateral_filter_gpu , bilateral_filter_gpu }, + {bilateral_filter_gpu , 0 /*bilateral_filter_gpu*/ , bilateral_filter_gpu , bilateral_filter_gpu }, + {0 /*bilateral_filter_gpu*/ , 0 /*bilateral_filter_gpu*/ , 0 /*bilateral_filter_gpu*/ , 0 /*bilateral_filter_gpu*/ }, + {bilateral_filter_gpu , 0 /*bilateral_filter_gpu*/ , bilateral_filter_gpu , bilateral_filter_gpu } + }; + + sigma_color = (sigma_color <= 0 ) ? 1 : sigma_color; + sigma_spatial = (sigma_spatial <= 0 ) ? 1 : sigma_spatial; + + + int radius = (kernel_size <= 0) ? cvRound(sigma_spatial*1.5) : kernel_size/2; + kernel_size = std::max(radius, 1)*2 + 1; + + CV_Assert(src.depth() <= CV_32F && src.channels() <= 4); + const func_t func = funcs[src.depth()][src.channels() - 1]; + CV_Assert(func != 0); + + CV_Assert(borderMode == BORDER_REFLECT101 || borderMode == BORDER_REPLICATE || borderMode == BORDER_CONSTANT || borderMode == BORDER_REFLECT || borderMode == BORDER_WRAP); + + int gpuBorderType; + CV_Assert(tryConvertToGpuBorderType(borderMode, gpuBorderType)); + + dst.create(src.size(), src.type()); + func(src, dst, kernel_size, sigma_spatial, sigma_color, gpuBorderType, StreamAccessor::getStream(s)); +} + +void cv::gpu::nonLocalMeans(const GpuMat& src, GpuMat& dst, float h, int search_window_size, int block_size, int borderMode, Stream& s) +{ + using cv::gpu::device::imgproc::nlm_bruteforce_gpu; + typedef void (*func_t)(const PtrStepSzb& src, PtrStepSzb dst, int search_radius, int block_radius, float h, int borderMode, cudaStream_t stream); + + static const func_t funcs[4] = { nlm_bruteforce_gpu, 0 /*nlm_bruteforce_gpu*/ , nlm_bruteforce_gpu, 0/*nlm_bruteforce_gpu,*/ }; + + CV_Assert(src.type() == CV_8U || src.type() == CV_8UC3); + + const func_t func = funcs[src.channels() - 1]; + CV_Assert(func != 0); + + int b = borderMode; + CV_Assert(b == BORDER_REFLECT101 || b == BORDER_REPLICATE || b == BORDER_CONSTANT || b == BORDER_REFLECT || b == BORDER_WRAP); + + int gpuBorderType; + CV_Assert(tryConvertToGpuBorderType(borderMode, gpuBorderType)); + + int search_radius = search_window_size/2; + int block_radius = block_size/2; + + dst.create(src.size(), src.type()); + func(src, dst, search_radius, block_radius, h, gpuBorderType, StreamAccessor::getStream(s)); +} + + + + + + + + +#endif \ No newline at end of file diff --git a/modules/gpu/src/hough.cpp b/modules/gpu/src/hough.cpp index fd53057006..399de3684f 100644 --- a/modules/gpu/src/hough.cpp +++ b/modules/gpu/src/hough.cpp @@ -239,8 +239,8 @@ void cv::gpu::HoughCircles(const GpuMat& src, GpuMat& circles, HoughCirclesBuf& for(size_t j = 0; j < m.size(); ++j) { - float dx = p.x - m[j].x; - float dy = p.y - m[j].y; + float dx = (float)(p.x - m[j].x); + float dy = (float)(p.y - m[j].y); if (dx * dx + dy * dy < minDist) { diff --git a/modules/gpu/src/opencv2/gpu/device/functional.hpp b/modules/gpu/src/opencv2/gpu/device/functional.hpp index 1b836c7a56..96e96bded7 100644 --- a/modules/gpu/src/opencv2/gpu/device/functional.hpp +++ b/modules/gpu/src/opencv2/gpu/device/functional.hpp @@ -47,6 +47,7 @@ #include "saturate_cast.hpp" #include "vec_traits.hpp" #include "type_traits.hpp" +#include "device_functions.h" namespace cv { namespace gpu { namespace device { @@ -408,6 +409,7 @@ namespace cv { namespace gpu { namespace device OPENCV_GPU_IMPLEMENT_BIN_FUNCTOR(pow, ::pow) #undef OPENCV_GPU_IMPLEMENT_UN_FUNCTOR + #undef OPENCV_GPU_IMPLEMENT_UN_FUNCTOR_NO_DOUBLE #undef OPENCV_GPU_IMPLEMENT_BIN_FUNCTOR template struct hypot_sqr_func : binary_function diff --git a/modules/gpu/test/test_denoising.cpp b/modules/gpu/test/test_denoising.cpp new file mode 100644 index 0000000000..0f6cd69c57 --- /dev/null +++ b/modules/gpu/test/test_denoising.cpp @@ -0,0 +1,140 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// Intel License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000, Intel Corporation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of Intel Corporation may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#include "test_precomp.hpp" + +#ifdef HAVE_CUDA + +//////////////////////////////////////////////////////// +// BilateralFilter + +PARAM_TEST_CASE(BilateralFilter, cv::gpu::DeviceInfo, cv::Size, MatType) +{ + cv::gpu::DeviceInfo devInfo; + cv::Size size; + int type; + int kernel_size; + float sigma_color; + float sigma_spatial; + + virtual void SetUp() + { + devInfo = GET_PARAM(0); + size = GET_PARAM(1); + type = GET_PARAM(2); + + kernel_size = 5; + sigma_color = 10.f; + sigma_spatial = 3.5f; + + cv::gpu::setDevice(devInfo.deviceID()); + } +}; + +TEST_P(BilateralFilter, Accuracy) +{ + cv::Mat src = randomMat(size, type); + //cv::Mat src = readImage("hog/road.png", cv::IMREAD_GRAYSCALE); + //cv::Mat src = readImage("csstereobp/aloe-R.png", cv::IMREAD_GRAYSCALE); + + src.convertTo(src, type); + cv::gpu::GpuMat dst; + + cv::gpu::bilateralFilter(loadMat(src), dst, kernel_size, sigma_color, sigma_spatial); + + cv::Mat dst_gold; + cv::bilateralFilter(src, dst_gold, kernel_size, sigma_color, sigma_spatial); + + EXPECT_MAT_NEAR(dst_gold, dst, src.depth() == CV_32F ? 1e-3 : 1.0); +} + +INSTANTIATE_TEST_CASE_P(GPU_ImgProc, BilateralFilter, testing::Combine( + ALL_DEVICES, + testing::Values(cv::Size(128, 128), cv::Size(113, 113), cv::Size(639, 481)), + testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_32FC1), MatType(CV_32FC3)) + )); + + +//////////////////////////////////////////////////////// +// Brute Force Non local means + +struct NonLocalMeans: testing::TestWithParam +{ + cv::gpu::DeviceInfo devInfo; + + virtual void SetUp() + { + devInfo = GetParam(); + cv::gpu::setDevice(devInfo.deviceID()); + } +}; + +TEST_P(NonLocalMeans, Regression) +{ + using cv::gpu::GpuMat; + + cv::Mat bgr = readImage("denoising/lena_noised_gaussian_sigma=20_multi_0.png", cv::IMREAD_COLOR); + ASSERT_FALSE(bgr.empty()); + + cv::Mat gray; + cv::cvtColor(bgr, gray, CV_BGR2GRAY); + + GpuMat dbgr, dgray; + cv::gpu::nonLocalMeans(GpuMat(bgr), dbgr, 10); + cv::gpu::nonLocalMeans(GpuMat(gray), dgray, 10); + +#if 0 + dumpImage("denoising/denoised_lena_bgr.png", cv::Mat(dbgr)); + dumpImage("denoising/denoised_lena_gray.png", cv::Mat(dgray)); +#endif + + cv::Mat bgr_gold = readImage("denoising/denoised_lena_bgr.png", cv::IMREAD_COLOR); + cv::Mat gray_gold = readImage("denoising/denoised_lena_gray.png", cv::IMREAD_GRAYSCALE); + ASSERT_FALSE(bgr_gold.empty() || gray_gold.empty()); + + EXPECT_MAT_NEAR(bgr_gold, dbgr, 1e-4); + EXPECT_MAT_NEAR(gray_gold, dgray, 1e-4); +} + +INSTANTIATE_TEST_CASE_P(GPU_ImgProc, NonLocalMeans, ALL_DEVICES); + + +#endif // HAVE_CUDA \ No newline at end of file diff --git a/modules/gpu/test/utility.cpp b/modules/gpu/test/utility.cpp index cf3b0fc8cb..a92d2c52f1 100644 --- a/modules/gpu/test/utility.cpp +++ b/modules/gpu/test/utility.cpp @@ -127,6 +127,14 @@ Mat readImageType(const std::string& fname, int type) return src; } +////////////////////////////////////////////////////////////////////// +// Image dumping + +void dumpImage(const std::string& fileName, const cv::Mat& image) +{ + cv::imwrite(TS::ptr()->get_data_path() + fileName, image); +} + ////////////////////////////////////////////////////////////////////// // Gpu devices diff --git a/modules/gpu/test/utility.hpp b/modules/gpu/test/utility.hpp index f509b786ad..1d153fcf02 100644 --- a/modules/gpu/test/utility.hpp +++ b/modules/gpu/test/utility.hpp @@ -74,6 +74,11 @@ cv::Mat readImage(const std::string& fileName, int flags = cv::IMREAD_COLOR); //! read image from testdata folder and convert it to specified type cv::Mat readImageType(const std::string& fname, int type); +////////////////////////////////////////////////////////////////////// +// Image dumping + +void dumpImage(const std::string& fileName, const cv::Mat& image); + ////////////////////////////////////////////////////////////////////// // Gpu devices diff --git a/modules/imgproc/src/smooth.cpp b/modules/imgproc/src/smooth.cpp index 8ec6f6d793..13340511f9 100644 --- a/modules/imgproc/src/smooth.cpp +++ b/modules/imgproc/src/smooth.cpp @@ -1285,6 +1285,8 @@ void cv::medianBlur( InputArray _src0, OutputArray _dst, int ksize ) Bilateral Filtering \****************************************************************************************/ +#undef CV_SSE3 + namespace cv {