diff --git a/modules/calib3d/include/opencv2/calib3d.hpp b/modules/calib3d/include/opencv2/calib3d.hpp index 0280e05e21..aedbaf930a 100644 --- a/modules/calib3d/include/opencv2/calib3d.hpp +++ b/modules/calib3d/include/opencv2/calib3d.hpp @@ -412,11 +412,11 @@ R & t \\ where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om); call x, y and z the 3 coordinates of Xc: - \f[x = Xc_1 \\ y = Xc_2 \\ z = Xc_3\f] + \f[\begin{array}{l} x = Xc_1 \\ y = Xc_2 \\ z = Xc_3 \end{array} \f] The pinhole projection coordinates of P is [a; b] where - \f[a = x / z \ and \ b = y / z \\ r^2 = a^2 + b^2 \\ \theta = atan(r)\f] + \f[\begin{array}{l} a = x / z \ and \ b = y / z \\ r^2 = a^2 + b^2 \\ \theta = atan(r) \end{array} \f] Fisheye distortion: @@ -424,12 +424,12 @@ R & t \\ The distorted point coordinates are [x'; y'] where - \f[x' = (\theta_d / r) a \\ y' = (\theta_d / r) b \f] + \f[\begin{array}{l} x' = (\theta_d / r) a \\ y' = (\theta_d / r) b \end{array} \f] Finally, conversion into pixel coordinates: The final pixel coordinates vector [u; v] where: - \f[u = f_x (x' + \alpha y') + c_x \\ - v = f_y y' + c_y\f] + \f[\begin{array}{l} u = f_x (x' + \alpha y') + c_x \\ + v = f_y y' + c_y \end{array} \f] Summary: Generic camera model @cite Kannala2006 with perspective projection and without distortion correction