commit
0b49680339
1 changed files with 353 additions and 0 deletions
@ -0,0 +1,353 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html
|
||||
|
||||
|
||||
#include "precomp.hpp" |
||||
#include "opencl_kernels_core.hpp" |
||||
#include "stat.hpp" |
||||
|
||||
namespace cv { |
||||
|
||||
template<typename T> |
||||
static int countNonZero_(const T* src, int len ) |
||||
{ |
||||
int i=0, nz = 0; |
||||
#if CV_ENABLE_UNROLLED |
||||
for(; i <= len - 4; i += 4 ) |
||||
nz += (src[i] != 0) + (src[i+1] != 0) + (src[i+2] != 0) + (src[i+3] != 0); |
||||
#endif |
||||
for( ; i < len; i++ ) |
||||
nz += src[i] != 0; |
||||
return nz; |
||||
} |
||||
|
||||
static int countNonZero8u( const uchar* src, int len ) |
||||
{ |
||||
int i=0, nz = 0; |
||||
#if CV_SIMD |
||||
int len0 = len & -v_uint8::nlanes; |
||||
v_uint8 v_zero = vx_setzero_u8(); |
||||
v_uint8 v_one = vx_setall_u8(1); |
||||
|
||||
v_uint32 v_sum32 = vx_setzero_u32(); |
||||
while (i < len0) |
||||
{ |
||||
v_uint16 v_sum16 = vx_setzero_u16(); |
||||
int j = i; |
||||
while (j < std::min(len0, i + 65280 * v_uint16::nlanes)) |
||||
{ |
||||
v_uint8 v_sum8 = vx_setzero_u8(); |
||||
int k = j; |
||||
for (; k < std::min(len0, j + 255 * v_uint8::nlanes); k += v_uint8::nlanes) |
||||
v_sum8 += v_one & (vx_load(src + k) == v_zero); |
||||
v_uint16 part1, part2; |
||||
v_expand(v_sum8, part1, part2); |
||||
v_sum16 += part1 + part2; |
||||
j = k; |
||||
} |
||||
v_uint32 part1, part2; |
||||
v_expand(v_sum16, part1, part2); |
||||
v_sum32 += part1 + part2; |
||||
i = j; |
||||
} |
||||
nz = i - v_reduce_sum(v_sum32); |
||||
v_cleanup(); |
||||
#endif |
||||
for( ; i < len; i++ ) |
||||
nz += src[i] != 0; |
||||
return nz; |
||||
} |
||||
|
||||
static int countNonZero16u( const ushort* src, int len ) |
||||
{ |
||||
int i = 0, nz = 0; |
||||
#if CV_SIMD |
||||
int len0 = len & -v_int8::nlanes; |
||||
v_uint16 v_zero = vx_setzero_u16(); |
||||
v_int8 v_one = vx_setall_s8(1); |
||||
|
||||
v_int32 v_sum32 = vx_setzero_s32(); |
||||
while (i < len0) |
||||
{ |
||||
v_int16 v_sum16 = vx_setzero_s16(); |
||||
int j = i; |
||||
while (j < std::min(len0, i + 32766 * v_int16::nlanes)) |
||||
{ |
||||
v_int8 v_sum8 = vx_setzero_s8(); |
||||
int k = j; |
||||
for (; k < std::min(len0, j + 127 * v_int8::nlanes); k += v_int8::nlanes) |
||||
v_sum8 += v_one & v_pack(v_reinterpret_as_s16(vx_load(src + k) == v_zero), v_reinterpret_as_s16(vx_load(src + k + v_uint16::nlanes) == v_zero)); |
||||
v_int16 part1, part2; |
||||
v_expand(v_sum8, part1, part2); |
||||
v_sum16 += part1 + part2; |
||||
j = k; |
||||
} |
||||
v_int32 part1, part2; |
||||
v_expand(v_sum16, part1, part2); |
||||
v_sum32 += part1 + part2; |
||||
i = j; |
||||
} |
||||
nz = i - v_reduce_sum(v_sum32); |
||||
v_cleanup(); |
||||
#endif |
||||
return nz + countNonZero_(src + i, len - i); |
||||
} |
||||
|
||||
static int countNonZero32s( const int* src, int len ) |
||||
{ |
||||
int i = 0, nz = 0; |
||||
#if CV_SIMD |
||||
int len0 = len & -v_int8::nlanes; |
||||
v_int32 v_zero = vx_setzero_s32(); |
||||
v_int8 v_one = vx_setall_s8(1); |
||||
|
||||
v_int32 v_sum32 = vx_setzero_s32(); |
||||
while (i < len0) |
||||
{ |
||||
v_int16 v_sum16 = vx_setzero_s16(); |
||||
int j = i; |
||||
while (j < std::min(len0, i + 32766 * v_int16::nlanes)) |
||||
{ |
||||
v_int8 v_sum8 = vx_setzero_s8(); |
||||
int k = j; |
||||
for (; k < std::min(len0, j + 127 * v_int8::nlanes); k += v_int8::nlanes) |
||||
v_sum8 += v_one & v_pack( |
||||
v_pack(vx_load(src + k ) == v_zero, vx_load(src + k + v_int32::nlanes) == v_zero), |
||||
v_pack(vx_load(src + k + 2*v_int32::nlanes) == v_zero, vx_load(src + k + 3*v_int32::nlanes) == v_zero) |
||||
); |
||||
v_int16 part1, part2; |
||||
v_expand(v_sum8, part1, part2); |
||||
v_sum16 += part1 + part2; |
||||
j = k; |
||||
} |
||||
v_int32 part1, part2; |
||||
v_expand(v_sum16, part1, part2); |
||||
v_sum32 += part1 + part2; |
||||
i = j; |
||||
} |
||||
nz = i - v_reduce_sum(v_sum32); |
||||
v_cleanup(); |
||||
#endif |
||||
return nz + countNonZero_(src + i, len - i); |
||||
} |
||||
|
||||
static int countNonZero32f( const float* src, int len ) |
||||
{ |
||||
int i = 0, nz = 0; |
||||
#if CV_SIMD |
||||
int len0 = len & -v_int8::nlanes; |
||||
v_float32 v_zero = vx_setzero_f32(); |
||||
v_int8 v_one = vx_setall_s8(1); |
||||
|
||||
v_int32 v_sum32 = vx_setzero_s32(); |
||||
while (i < len0) |
||||
{ |
||||
v_int16 v_sum16 = vx_setzero_s16(); |
||||
int j = i; |
||||
while (j < std::min(len0, i + 32766 * v_int16::nlanes)) |
||||
{ |
||||
v_int8 v_sum8 = vx_setzero_s8(); |
||||
int k = j; |
||||
for (; k < std::min(len0, j + 127 * v_int8::nlanes); k += v_int8::nlanes) |
||||
v_sum8 += v_one & v_pack( |
||||
v_pack(v_reinterpret_as_s32(vx_load(src + k ) == v_zero), v_reinterpret_as_s32(vx_load(src + k + v_float32::nlanes) == v_zero)), |
||||
v_pack(v_reinterpret_as_s32(vx_load(src + k + 2*v_float32::nlanes) == v_zero), v_reinterpret_as_s32(vx_load(src + k + 3*v_float32::nlanes) == v_zero)) |
||||
); |
||||
v_int16 part1, part2; |
||||
v_expand(v_sum8, part1, part2); |
||||
v_sum16 += part1 + part2; |
||||
j = k; |
||||
} |
||||
v_int32 part1, part2; |
||||
v_expand(v_sum16, part1, part2); |
||||
v_sum32 += part1 + part2; |
||||
i = j; |
||||
} |
||||
nz = i - v_reduce_sum(v_sum32); |
||||
v_cleanup(); |
||||
#endif |
||||
return nz + countNonZero_(src + i, len - i); |
||||
} |
||||
|
||||
static int countNonZero64f( const double* src, int len ) |
||||
{ |
||||
return countNonZero_(src, len); |
||||
} |
||||
|
||||
typedef int (*CountNonZeroFunc)(const uchar*, int); |
||||
|
||||
static CountNonZeroFunc getCountNonZeroTab(int depth) |
||||
{ |
||||
static CountNonZeroFunc countNonZeroTab[] = |
||||
{ |
||||
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero8u), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero8u), |
||||
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero16u), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero16u), |
||||
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero32s), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero32f), |
||||
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero64f), 0 |
||||
}; |
||||
|
||||
return countNonZeroTab[depth]; |
||||
} |
||||
|
||||
|
||||
#ifdef HAVE_OPENCL |
||||
static bool ocl_countNonZero( InputArray _src, int & res ) |
||||
{ |
||||
int type = _src.type(), depth = CV_MAT_DEPTH(type), kercn = ocl::predictOptimalVectorWidth(_src); |
||||
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0; |
||||
|
||||
if (depth == CV_64F && !doubleSupport) |
||||
return false; |
||||
|
||||
int dbsize = ocl::Device::getDefault().maxComputeUnits(); |
||||
size_t wgs = ocl::Device::getDefault().maxWorkGroupSize(); |
||||
|
||||
int wgs2_aligned = 1; |
||||
while (wgs2_aligned < (int)wgs) |
||||
wgs2_aligned <<= 1; |
||||
wgs2_aligned >>= 1; |
||||
|
||||
ocl::Kernel k("reduce", ocl::core::reduce_oclsrc, |
||||
format("-D srcT=%s -D srcT1=%s -D cn=1 -D OP_COUNT_NON_ZERO" |
||||
" -D WGS=%d -D kercn=%d -D WGS2_ALIGNED=%d%s%s", |
||||
ocl::typeToStr(CV_MAKE_TYPE(depth, kercn)), |
||||
ocl::typeToStr(depth), (int)wgs, kercn, |
||||
wgs2_aligned, doubleSupport ? " -D DOUBLE_SUPPORT" : "", |
||||
_src.isContinuous() ? " -D HAVE_SRC_CONT" : "")); |
||||
if (k.empty()) |
||||
return false; |
||||
|
||||
UMat src = _src.getUMat(), db(1, dbsize, CV_32SC1); |
||||
k.args(ocl::KernelArg::ReadOnlyNoSize(src), src.cols, (int)src.total(), |
||||
dbsize, ocl::KernelArg::PtrWriteOnly(db)); |
||||
|
||||
size_t globalsize = dbsize * wgs; |
||||
if (k.run(1, &globalsize, &wgs, true)) |
||||
return res = saturate_cast<int>(cv::sum(db.getMat(ACCESS_READ))[0]), true; |
||||
return false; |
||||
} |
||||
#endif |
||||
|
||||
#if defined HAVE_IPP |
||||
static bool ipp_countNonZero( Mat &src, int &res ) |
||||
{ |
||||
CV_INSTRUMENT_REGION_IPP(); |
||||
|
||||
#if IPP_VERSION_X100 < 201801 |
||||
// Poor performance of SSE42
|
||||
if(cv::ipp::getIppTopFeatures() == ippCPUID_SSE42) |
||||
return false; |
||||
#endif |
||||
|
||||
Ipp32s count = 0; |
||||
int depth = src.depth(); |
||||
|
||||
if(src.dims <= 2) |
||||
{ |
||||
IppStatus status; |
||||
IppiSize size = {src.cols*src.channels(), src.rows}; |
||||
|
||||
if(depth == CV_8U) |
||||
status = CV_INSTRUMENT_FUN_IPP(ippiCountInRange_8u_C1R, (const Ipp8u *)src.ptr(), (int)src.step, size, &count, 0, 0); |
||||
else if(depth == CV_32F) |
||||
status = CV_INSTRUMENT_FUN_IPP(ippiCountInRange_32f_C1R, (const Ipp32f *)src.ptr(), (int)src.step, size, &count, 0, 0); |
||||
else |
||||
return false; |
||||
|
||||
if(status < 0) |
||||
return false; |
||||
|
||||
res = size.width*size.height - count; |
||||
} |
||||
else |
||||
{ |
||||
IppStatus status; |
||||
const Mat *arrays[] = {&src, NULL}; |
||||
Mat planes[1]; |
||||
NAryMatIterator it(arrays, planes, 1); |
||||
IppiSize size = {(int)it.size*src.channels(), 1}; |
||||
res = 0; |
||||
for (size_t i = 0; i < it.nplanes; i++, ++it) |
||||
{ |
||||
if(depth == CV_8U) |
||||
status = CV_INSTRUMENT_FUN_IPP(ippiCountInRange_8u_C1R, it.planes->ptr<Ipp8u>(), (int)it.planes->step, size, &count, 0, 0); |
||||
else if(depth == CV_32F) |
||||
status = CV_INSTRUMENT_FUN_IPP(ippiCountInRange_32f_C1R, it.planes->ptr<Ipp32f>(), (int)it.planes->step, size, &count, 0, 0); |
||||
else |
||||
return false; |
||||
|
||||
if(status < 0 || (int)it.planes->total()*src.channels() < count) |
||||
return false; |
||||
|
||||
res += (int)it.planes->total()*src.channels() - count; |
||||
} |
||||
} |
||||
|
||||
return true; |
||||
} |
||||
#endif |
||||
|
||||
} // cv::
|
||||
|
||||
int cv::countNonZero( InputArray _src ) |
||||
{ |
||||
CV_INSTRUMENT_REGION(); |
||||
|
||||
int type = _src.type(), cn = CV_MAT_CN(type); |
||||
CV_Assert( cn == 1 ); |
||||
|
||||
#if defined HAVE_OPENCL || defined HAVE_IPP |
||||
int res = -1; |
||||
#endif |
||||
|
||||
#ifdef HAVE_OPENCL |
||||
CV_OCL_RUN_(OCL_PERFORMANCE_CHECK(_src.isUMat()) && _src.dims() <= 2, |
||||
ocl_countNonZero(_src, res), |
||||
res) |
||||
#endif |
||||
|
||||
Mat src = _src.getMat(); |
||||
CV_IPP_RUN_FAST(ipp_countNonZero(src, res), res); |
||||
|
||||
CountNonZeroFunc func = getCountNonZeroTab(src.depth()); |
||||
CV_Assert( func != 0 ); |
||||
|
||||
const Mat* arrays[] = {&src, 0}; |
||||
uchar* ptrs[1] = {}; |
||||
NAryMatIterator it(arrays, ptrs); |
||||
int total = (int)it.size, nz = 0; |
||||
|
||||
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
||||
nz += func( ptrs[0], total ); |
||||
|
||||
return nz; |
||||
} |
||||
|
||||
void cv::findNonZero( InputArray _src, OutputArray _idx ) |
||||
{ |
||||
CV_INSTRUMENT_REGION(); |
||||
|
||||
Mat src = _src.getMat(); |
||||
CV_Assert( src.type() == CV_8UC1 ); |
||||
int n = countNonZero(src); |
||||
if( n == 0 ) |
||||
{ |
||||
_idx.release(); |
||||
return; |
||||
} |
||||
if( _idx.kind() == _InputArray::MAT && !_idx.getMatRef().isContinuous() ) |
||||
_idx.release(); |
||||
_idx.create(n, 1, CV_32SC2); |
||||
Mat idx = _idx.getMat(); |
||||
CV_Assert(idx.isContinuous()); |
||||
Point* idx_ptr = idx.ptr<Point>(); |
||||
|
||||
for( int i = 0; i < src.rows; i++ ) |
||||
{ |
||||
const uchar* bin_ptr = src.ptr(i); |
||||
for( int j = 0; j < src.cols; j++ ) |
||||
if( bin_ptr[j] ) |
||||
*idx_ptr++ = Point(j, i); |
||||
} |
||||
} |
Loading…
Reference in new issue