|
|
|
@ -543,3 +543,815 @@ TEST(Objdetect_HOGDetectorReadWrite, regression) |
|
|
|
|
|
|
|
|
|
TEST(Objdetect_CascadeDetector, regression) { CV_CascadeDetectorTest test; test.safe_run(); } |
|
|
|
|
TEST(Objdetect_HOGDetector, regression) { CV_HOGDetectorTest test; test.safe_run(); } |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//----------------------------------------------- HOG SSE2 compatible test -----------------------------------
|
|
|
|
|
|
|
|
|
|
class HOGDescriptorTester : |
|
|
|
|
public cv::HOGDescriptor |
|
|
|
|
{ |
|
|
|
|
HOGDescriptor* actual_hog; |
|
|
|
|
cvtest::TS* ts; |
|
|
|
|
mutable bool failed; |
|
|
|
|
|
|
|
|
|
public: |
|
|
|
|
HOGDescriptorTester(HOGDescriptor& instance) : |
|
|
|
|
cv::HOGDescriptor(instance), actual_hog(&instance), |
|
|
|
|
ts(cvtest::TS::ptr()), failed(false) |
|
|
|
|
{ } |
|
|
|
|
|
|
|
|
|
virtual void computeGradient(const Mat& img, Mat& grad, Mat& qangle, |
|
|
|
|
Size paddingTL, Size paddingBR) const; |
|
|
|
|
|
|
|
|
|
virtual void detect(const Mat& img, |
|
|
|
|
vector<Point>& hits, vector<double>& weights, double hitThreshold = 0.0, |
|
|
|
|
Size winStride = Size(), Size padding = Size(), |
|
|
|
|
const vector<Point>& locations = vector<Point>()) const; |
|
|
|
|
|
|
|
|
|
virtual void detect(const Mat& img, vector<Point>& hits, double hitThreshold = 0.0, |
|
|
|
|
Size winStride = Size(), Size padding = Size(), |
|
|
|
|
const vector<Point>& locations = vector<Point>()) const; |
|
|
|
|
|
|
|
|
|
virtual void compute(const Mat& img, vector<float>& descriptors, |
|
|
|
|
Size winStride = Size(), Size padding = Size(), |
|
|
|
|
const vector<Point>& locations = vector<Point>()) const; |
|
|
|
|
|
|
|
|
|
bool is_failed() const; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
struct HOGCacheTester |
|
|
|
|
{ |
|
|
|
|
struct BlockData |
|
|
|
|
{ |
|
|
|
|
BlockData() : histOfs(0), imgOffset() {} |
|
|
|
|
int histOfs; |
|
|
|
|
Point imgOffset; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
struct PixData |
|
|
|
|
{ |
|
|
|
|
size_t gradOfs, qangleOfs; |
|
|
|
|
int histOfs[4]; |
|
|
|
|
float histWeights[4]; |
|
|
|
|
float gradWeight; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
HOGCacheTester(); |
|
|
|
|
HOGCacheTester(const HOGDescriptorTester* descriptor, |
|
|
|
|
const Mat& img, Size paddingTL, Size paddingBR, |
|
|
|
|
bool useCache, Size cacheStride); |
|
|
|
|
virtual ~HOGCacheTester() { } |
|
|
|
|
virtual void init(const HOGDescriptorTester* descriptor, |
|
|
|
|
const Mat& img, Size paddingTL, Size paddingBR, |
|
|
|
|
bool useCache, Size cacheStride); |
|
|
|
|
|
|
|
|
|
Size windowsInImage(Size imageSize, Size winStride) const; |
|
|
|
|
Rect getWindow(Size imageSize, Size winStride, int idx) const; |
|
|
|
|
|
|
|
|
|
const float* getBlock(Point pt, float* buf); |
|
|
|
|
virtual void normalizeBlockHistogram(float* histogram) const; |
|
|
|
|
|
|
|
|
|
vector<PixData> pixData; |
|
|
|
|
vector<BlockData> blockData; |
|
|
|
|
|
|
|
|
|
bool useCache; |
|
|
|
|
vector<int> ymaxCached; |
|
|
|
|
Size winSize, cacheStride; |
|
|
|
|
Size nblocks, ncells; |
|
|
|
|
int blockHistogramSize; |
|
|
|
|
int count1, count2, count4; |
|
|
|
|
Point imgoffset; |
|
|
|
|
Mat_<float> blockCache; |
|
|
|
|
Mat_<uchar> blockCacheFlags; |
|
|
|
|
|
|
|
|
|
Mat grad, qangle; |
|
|
|
|
const HOGDescriptorTester* descriptor; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
HOGCacheTester::HOGCacheTester() |
|
|
|
|
{ |
|
|
|
|
useCache = false; |
|
|
|
|
blockHistogramSize = count1 = count2 = count4 = 0; |
|
|
|
|
descriptor = 0; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
HOGCacheTester::HOGCacheTester(const HOGDescriptorTester* _descriptor, |
|
|
|
|
const Mat& _img, Size _paddingTL, Size _paddingBR, |
|
|
|
|
bool _useCache, Size _cacheStride) |
|
|
|
|
{ |
|
|
|
|
init(_descriptor, _img, _paddingTL, _paddingBR, _useCache, _cacheStride); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void HOGCacheTester::init(const HOGDescriptorTester* _descriptor, |
|
|
|
|
const Mat& _img, Size _paddingTL, Size _paddingBR, |
|
|
|
|
bool _useCache, Size _cacheStride) |
|
|
|
|
{ |
|
|
|
|
descriptor = _descriptor; |
|
|
|
|
cacheStride = _cacheStride; |
|
|
|
|
useCache = _useCache; |
|
|
|
|
|
|
|
|
|
descriptor->computeGradient(_img, grad, qangle, _paddingTL, _paddingBR); |
|
|
|
|
imgoffset = _paddingTL; |
|
|
|
|
|
|
|
|
|
winSize = descriptor->winSize; |
|
|
|
|
Size blockSize = descriptor->blockSize; |
|
|
|
|
Size blockStride = descriptor->blockStride; |
|
|
|
|
Size cellSize = descriptor->cellSize; |
|
|
|
|
int i, j, nbins = descriptor->nbins; |
|
|
|
|
int rawBlockSize = blockSize.width*blockSize.height; |
|
|
|
|
|
|
|
|
|
nblocks = Size((winSize.width - blockSize.width)/blockStride.width + 1, |
|
|
|
|
(winSize.height - blockSize.height)/blockStride.height + 1); |
|
|
|
|
ncells = Size(blockSize.width/cellSize.width, blockSize.height/cellSize.height); |
|
|
|
|
blockHistogramSize = ncells.width*ncells.height*nbins; |
|
|
|
|
|
|
|
|
|
if( useCache ) |
|
|
|
|
{ |
|
|
|
|
Size cacheSize((grad.cols - blockSize.width)/cacheStride.width+1, |
|
|
|
|
(winSize.height/cacheStride.height)+1); |
|
|
|
|
blockCache.create(cacheSize.height, cacheSize.width*blockHistogramSize); |
|
|
|
|
blockCacheFlags.create(cacheSize); |
|
|
|
|
size_t cacheRows = blockCache.rows; |
|
|
|
|
ymaxCached.resize(cacheRows); |
|
|
|
|
for(size_t ii = 0; ii < cacheRows; ii++ ) |
|
|
|
|
ymaxCached[ii] = -1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Mat_<float> weights(blockSize); |
|
|
|
|
float sigma = (float)descriptor->getWinSigma(); |
|
|
|
|
float scale = 1.f/(sigma*sigma*2); |
|
|
|
|
|
|
|
|
|
for(i = 0; i < blockSize.height; i++) |
|
|
|
|
for(j = 0; j < blockSize.width; j++) |
|
|
|
|
{ |
|
|
|
|
float di = i - blockSize.height*0.5f; |
|
|
|
|
float dj = j - blockSize.width*0.5f; |
|
|
|
|
weights(i,j) = std::exp(-(di*di + dj*dj)*scale); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
blockData.resize(nblocks.width*nblocks.height); |
|
|
|
|
pixData.resize(rawBlockSize*3); |
|
|
|
|
|
|
|
|
|
// Initialize 2 lookup tables, pixData & blockData.
|
|
|
|
|
// Here is why:
|
|
|
|
|
//
|
|
|
|
|
// The detection algorithm runs in 4 nested loops (at each pyramid layer):
|
|
|
|
|
// loop over the windows within the input image
|
|
|
|
|
// loop over the blocks within each window
|
|
|
|
|
// loop over the cells within each block
|
|
|
|
|
// loop over the pixels in each cell
|
|
|
|
|
//
|
|
|
|
|
// As each of the loops runs over a 2-dimensional array,
|
|
|
|
|
// we could get 8(!) nested loops in total, which is very-very slow.
|
|
|
|
|
//
|
|
|
|
|
// To speed the things up, we do the following:
|
|
|
|
|
// 1. loop over windows is unrolled in the HOGDescriptor::{compute|detect} methods;
|
|
|
|
|
// inside we compute the current search window using getWindow() method.
|
|
|
|
|
// Yes, it involves some overhead (function call + couple of divisions),
|
|
|
|
|
// but it's tiny in fact.
|
|
|
|
|
// 2. loop over the blocks is also unrolled. Inside we use pre-computed blockData[j]
|
|
|
|
|
// to set up gradient and histogram pointers.
|
|
|
|
|
// 3. loops over cells and pixels in each cell are merged
|
|
|
|
|
// (since there is no overlap between cells, each pixel in the block is processed once)
|
|
|
|
|
// and also unrolled. Inside we use PixData[k] to access the gradient values and
|
|
|
|
|
// update the histogram
|
|
|
|
|
//
|
|
|
|
|
count1 = count2 = count4 = 0; |
|
|
|
|
for( j = 0; j < blockSize.width; j++ ) |
|
|
|
|
for( i = 0; i < blockSize.height; i++ ) |
|
|
|
|
{ |
|
|
|
|
PixData* data = 0; |
|
|
|
|
float cellX = (j+0.5f)/cellSize.width - 0.5f; |
|
|
|
|
float cellY = (i+0.5f)/cellSize.height - 0.5f; |
|
|
|
|
int icellX0 = cvFloor(cellX); |
|
|
|
|
int icellY0 = cvFloor(cellY); |
|
|
|
|
int icellX1 = icellX0 + 1, icellY1 = icellY0 + 1; |
|
|
|
|
cellX -= icellX0; |
|
|
|
|
cellY -= icellY0; |
|
|
|
|
|
|
|
|
|
if( (unsigned)icellX0 < (unsigned)ncells.width && |
|
|
|
|
(unsigned)icellX1 < (unsigned)ncells.width ) |
|
|
|
|
{ |
|
|
|
|
if( (unsigned)icellY0 < (unsigned)ncells.height && |
|
|
|
|
(unsigned)icellY1 < (unsigned)ncells.height ) |
|
|
|
|
{ |
|
|
|
|
data = &pixData[rawBlockSize*2 + (count4++)]; |
|
|
|
|
data->histOfs[0] = (icellX0*ncells.height + icellY0)*nbins; |
|
|
|
|
data->histWeights[0] = (1.f - cellX)*(1.f - cellY); |
|
|
|
|
data->histOfs[1] = (icellX1*ncells.height + icellY0)*nbins; |
|
|
|
|
data->histWeights[1] = cellX*(1.f - cellY); |
|
|
|
|
data->histOfs[2] = (icellX0*ncells.height + icellY1)*nbins; |
|
|
|
|
data->histWeights[2] = (1.f - cellX)*cellY; |
|
|
|
|
data->histOfs[3] = (icellX1*ncells.height + icellY1)*nbins; |
|
|
|
|
data->histWeights[3] = cellX*cellY; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
data = &pixData[rawBlockSize + (count2++)]; |
|
|
|
|
if( (unsigned)icellY0 < (unsigned)ncells.height ) |
|
|
|
|
{ |
|
|
|
|
icellY1 = icellY0; |
|
|
|
|
cellY = 1.f - cellY; |
|
|
|
|
} |
|
|
|
|
data->histOfs[0] = (icellX0*ncells.height + icellY1)*nbins; |
|
|
|
|
data->histWeights[0] = (1.f - cellX)*cellY; |
|
|
|
|
data->histOfs[1] = (icellX1*ncells.height + icellY1)*nbins; |
|
|
|
|
data->histWeights[1] = cellX*cellY; |
|
|
|
|
data->histOfs[2] = data->histOfs[3] = 0; |
|
|
|
|
data->histWeights[2] = data->histWeights[3] = 0; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
if( (unsigned)icellX0 < (unsigned)ncells.width ) |
|
|
|
|
{ |
|
|
|
|
icellX1 = icellX0; |
|
|
|
|
cellX = 1.f - cellX; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( (unsigned)icellY0 < (unsigned)ncells.height && |
|
|
|
|
(unsigned)icellY1 < (unsigned)ncells.height ) |
|
|
|
|
{ |
|
|
|
|
data = &pixData[rawBlockSize + (count2++)]; |
|
|
|
|
data->histOfs[0] = (icellX1*ncells.height + icellY0)*nbins; |
|
|
|
|
data->histWeights[0] = cellX*(1.f - cellY); |
|
|
|
|
data->histOfs[1] = (icellX1*ncells.height + icellY1)*nbins; |
|
|
|
|
data->histWeights[1] = cellX*cellY; |
|
|
|
|
data->histOfs[2] = data->histOfs[3] = 0; |
|
|
|
|
data->histWeights[2] = data->histWeights[3] = 0; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
data = &pixData[count1++]; |
|
|
|
|
if( (unsigned)icellY0 < (unsigned)ncells.height ) |
|
|
|
|
{ |
|
|
|
|
icellY1 = icellY0; |
|
|
|
|
cellY = 1.f - cellY; |
|
|
|
|
} |
|
|
|
|
data->histOfs[0] = (icellX1*ncells.height + icellY1)*nbins; |
|
|
|
|
data->histWeights[0] = cellX*cellY; |
|
|
|
|
data->histOfs[1] = data->histOfs[2] = data->histOfs[3] = 0; |
|
|
|
|
data->histWeights[1] = data->histWeights[2] = data->histWeights[3] = 0; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
data->gradOfs = (grad.cols*i + j)*2; |
|
|
|
|
data->qangleOfs = (qangle.cols*i + j)*2; |
|
|
|
|
data->gradWeight = weights(i,j); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
assert( count1 + count2 + count4 == rawBlockSize ); |
|
|
|
|
// defragment pixData
|
|
|
|
|
for( j = 0; j < count2; j++ ) |
|
|
|
|
pixData[j + count1] = pixData[j + rawBlockSize]; |
|
|
|
|
for( j = 0; j < count4; j++ ) |
|
|
|
|
pixData[j + count1 + count2] = pixData[j + rawBlockSize*2]; |
|
|
|
|
count2 += count1; |
|
|
|
|
count4 += count2; |
|
|
|
|
|
|
|
|
|
// initialize blockData
|
|
|
|
|
for( j = 0; j < nblocks.width; j++ ) |
|
|
|
|
for( i = 0; i < nblocks.height; i++ ) |
|
|
|
|
{ |
|
|
|
|
BlockData& data = blockData[j*nblocks.height + i]; |
|
|
|
|
data.histOfs = (j*nblocks.height + i)*blockHistogramSize; |
|
|
|
|
data.imgOffset = Point(j*blockStride.width,i*blockStride.height); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
const float* HOGCacheTester::getBlock(Point pt, float* buf) |
|
|
|
|
{ |
|
|
|
|
float* blockHist = buf; |
|
|
|
|
assert(descriptor != 0); |
|
|
|
|
|
|
|
|
|
Size blockSize = descriptor->blockSize; |
|
|
|
|
pt += imgoffset; |
|
|
|
|
|
|
|
|
|
CV_Assert( (unsigned)pt.x <= (unsigned)(grad.cols - blockSize.width) && |
|
|
|
|
(unsigned)pt.y <= (unsigned)(grad.rows - blockSize.height) ); |
|
|
|
|
|
|
|
|
|
if( useCache ) |
|
|
|
|
{ |
|
|
|
|
CV_Assert( pt.x % cacheStride.width == 0 && |
|
|
|
|
pt.y % cacheStride.height == 0 ); |
|
|
|
|
Point cacheIdx(pt.x/cacheStride.width, |
|
|
|
|
(pt.y/cacheStride.height) % blockCache.rows); |
|
|
|
|
if( pt.y != ymaxCached[cacheIdx.y] ) |
|
|
|
|
{ |
|
|
|
|
Mat_<uchar> cacheRow = blockCacheFlags.row(cacheIdx.y); |
|
|
|
|
cacheRow = (uchar)0; |
|
|
|
|
ymaxCached[cacheIdx.y] = pt.y; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
blockHist = &blockCache[cacheIdx.y][cacheIdx.x*blockHistogramSize]; |
|
|
|
|
uchar& computedFlag = blockCacheFlags(cacheIdx.y, cacheIdx.x); |
|
|
|
|
if( computedFlag != 0 ) |
|
|
|
|
return blockHist; |
|
|
|
|
computedFlag = (uchar)1; // set it at once, before actual computing
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int k, C1 = count1, C2 = count2, C4 = count4; |
|
|
|
|
const float* gradPtr = (const float*)(grad.data + grad.step*pt.y) + pt.x*2; |
|
|
|
|
const uchar* qanglePtr = qangle.data + qangle.step*pt.y + pt.x*2; |
|
|
|
|
|
|
|
|
|
CV_Assert( blockHist != 0 ); |
|
|
|
|
for( k = 0; k < blockHistogramSize; k++ ) |
|
|
|
|
blockHist[k] = 0.f; |
|
|
|
|
|
|
|
|
|
const PixData* _pixData = &pixData[0]; |
|
|
|
|
|
|
|
|
|
for( k = 0; k < C1; k++ ) |
|
|
|
|
{ |
|
|
|
|
const PixData& pk = _pixData[k]; |
|
|
|
|
const float* a = gradPtr + pk.gradOfs; |
|
|
|
|
float w = pk.gradWeight*pk.histWeights[0]; |
|
|
|
|
const uchar* h = qanglePtr + pk.qangleOfs; |
|
|
|
|
int h0 = h[0], h1 = h[1]; |
|
|
|
|
float* hist = blockHist + pk.histOfs[0]; |
|
|
|
|
float t0 = hist[h0] + a[0]*w; |
|
|
|
|
float t1 = hist[h1] + a[1]*w; |
|
|
|
|
hist[h0] = t0; hist[h1] = t1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for( ; k < C2; k++ ) |
|
|
|
|
{ |
|
|
|
|
const PixData& pk = _pixData[k]; |
|
|
|
|
const float* a = gradPtr + pk.gradOfs; |
|
|
|
|
float w, t0, t1, a0 = a[0], a1 = a[1]; |
|
|
|
|
const uchar* h = qanglePtr + pk.qangleOfs; |
|
|
|
|
int h0 = h[0], h1 = h[1]; |
|
|
|
|
|
|
|
|
|
float* hist = blockHist + pk.histOfs[0]; |
|
|
|
|
w = pk.gradWeight*pk.histWeights[0]; |
|
|
|
|
t0 = hist[h0] + a0*w; |
|
|
|
|
t1 = hist[h1] + a1*w; |
|
|
|
|
hist[h0] = t0; hist[h1] = t1; |
|
|
|
|
|
|
|
|
|
hist = blockHist + pk.histOfs[1]; |
|
|
|
|
w = pk.gradWeight*pk.histWeights[1]; |
|
|
|
|
t0 = hist[h0] + a0*w; |
|
|
|
|
t1 = hist[h1] + a1*w; |
|
|
|
|
hist[h0] = t0; hist[h1] = t1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for( ; k < C4; k++ ) |
|
|
|
|
{ |
|
|
|
|
const PixData& pk = _pixData[k]; |
|
|
|
|
const float* a = gradPtr + pk.gradOfs; |
|
|
|
|
float w, t0, t1, a0 = a[0], a1 = a[1]; |
|
|
|
|
const uchar* h = qanglePtr + pk.qangleOfs; |
|
|
|
|
int h0 = h[0], h1 = h[1]; |
|
|
|
|
|
|
|
|
|
float* hist = blockHist + pk.histOfs[0]; |
|
|
|
|
w = pk.gradWeight*pk.histWeights[0]; |
|
|
|
|
t0 = hist[h0] + a0*w; |
|
|
|
|
t1 = hist[h1] + a1*w; |
|
|
|
|
hist[h0] = t0; hist[h1] = t1; |
|
|
|
|
|
|
|
|
|
hist = blockHist + pk.histOfs[1]; |
|
|
|
|
w = pk.gradWeight*pk.histWeights[1]; |
|
|
|
|
t0 = hist[h0] + a0*w; |
|
|
|
|
t1 = hist[h1] + a1*w; |
|
|
|
|
hist[h0] = t0; hist[h1] = t1; |
|
|
|
|
|
|
|
|
|
hist = blockHist + pk.histOfs[2]; |
|
|
|
|
w = pk.gradWeight*pk.histWeights[2]; |
|
|
|
|
t0 = hist[h0] + a0*w; |
|
|
|
|
t1 = hist[h1] + a1*w; |
|
|
|
|
hist[h0] = t0; hist[h1] = t1; |
|
|
|
|
|
|
|
|
|
hist = blockHist + pk.histOfs[3]; |
|
|
|
|
w = pk.gradWeight*pk.histWeights[3]; |
|
|
|
|
t0 = hist[h0] + a0*w; |
|
|
|
|
t1 = hist[h1] + a1*w; |
|
|
|
|
hist[h0] = t0; hist[h1] = t1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
normalizeBlockHistogram(blockHist); |
|
|
|
|
|
|
|
|
|
return blockHist; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void HOGCacheTester::normalizeBlockHistogram(float* _hist) const |
|
|
|
|
{ |
|
|
|
|
float* hist = &_hist[0], partSum[4] = { 0.0f, 0.0f, 0.0f, 0.0f }; |
|
|
|
|
size_t i, sz = blockHistogramSize; |
|
|
|
|
|
|
|
|
|
for (i = 0; i <= sz - 4; i += 4) |
|
|
|
|
{ |
|
|
|
|
partSum[0] += hist[i] * hist[i]; |
|
|
|
|
partSum[1] += hist[i+1] * hist[i+1]; |
|
|
|
|
partSum[2] += hist[i+2] * hist[i+2]; |
|
|
|
|
partSum[3] += hist[i+3] * hist[i+3]; |
|
|
|
|
} |
|
|
|
|
float t0 = partSum[0] + partSum[1]; |
|
|
|
|
float t1 = partSum[2] + partSum[3]; |
|
|
|
|
float sum = t0 + t1; |
|
|
|
|
for( ; i < sz; i++ ) |
|
|
|
|
sum += hist[i]*hist[i]; |
|
|
|
|
|
|
|
|
|
float scale = 1.f/(std::sqrt(sum)+sz*0.1f), thresh = (float)descriptor->L2HysThreshold; |
|
|
|
|
partSum[0] = partSum[1] = partSum[2] = partSum[3] = 0.0f; |
|
|
|
|
for(i = 0; i <= sz - 4; i += 4) |
|
|
|
|
{ |
|
|
|
|
hist[i] = std::min(hist[i]*scale, thresh); |
|
|
|
|
hist[i+1] = std::min(hist[i+1]*scale, thresh); |
|
|
|
|
hist[i+2] = std::min(hist[i+2]*scale, thresh); |
|
|
|
|
hist[i+3] = std::min(hist[i+3]*scale, thresh); |
|
|
|
|
partSum[0] += hist[i]*hist[i]; |
|
|
|
|
partSum[1] += hist[i+1]*hist[i+1]; |
|
|
|
|
partSum[2] += hist[i+2]*hist[i+2]; |
|
|
|
|
partSum[3] += hist[i+3]*hist[i+3]; |
|
|
|
|
} |
|
|
|
|
t0 = partSum[0] + partSum[1]; |
|
|
|
|
t1 = partSum[2] + partSum[3]; |
|
|
|
|
sum = t0 + t1; |
|
|
|
|
for( ; i < sz; i++ ) |
|
|
|
|
{ |
|
|
|
|
hist[i] = std::min(hist[i]*scale, thresh); |
|
|
|
|
sum += hist[i]*hist[i]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
scale = 1.f/(std::sqrt(sum)+1e-3f); |
|
|
|
|
for( i = 0; i < sz; i++ ) |
|
|
|
|
hist[i] *= scale; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Size HOGCacheTester::windowsInImage(Size imageSize, Size winStride) const |
|
|
|
|
{ |
|
|
|
|
return Size((imageSize.width - winSize.width)/winStride.width + 1, |
|
|
|
|
(imageSize.height - winSize.height)/winStride.height + 1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Rect HOGCacheTester::getWindow(Size imageSize, Size winStride, int idx) const |
|
|
|
|
{ |
|
|
|
|
int nwindowsX = (imageSize.width - winSize.width)/winStride.width + 1; |
|
|
|
|
int y = idx / nwindowsX; |
|
|
|
|
int x = idx - nwindowsX*y; |
|
|
|
|
return Rect( x*winStride.width, y*winStride.height, winSize.width, winSize.height ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
inline bool HOGDescriptorTester::is_failed() const |
|
|
|
|
{ |
|
|
|
|
return failed; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void HOGDescriptorTester::detect(const Mat& img, |
|
|
|
|
vector<Point>& hits, vector<double>& weights, double hitThreshold, |
|
|
|
|
Size winStride, Size padding, const vector<Point>& locations) const |
|
|
|
|
{ |
|
|
|
|
if (failed) |
|
|
|
|
return; |
|
|
|
|
|
|
|
|
|
hits.clear(); |
|
|
|
|
if( svmDetector.empty() ) |
|
|
|
|
return; |
|
|
|
|
|
|
|
|
|
if( winStride == Size() ) |
|
|
|
|
winStride = cellSize; |
|
|
|
|
Size cacheStride(gcd(winStride.width, blockStride.width), |
|
|
|
|
gcd(winStride.height, blockStride.height)); |
|
|
|
|
size_t nwindows = locations.size(); |
|
|
|
|
padding.width = (int)alignSize(std::max(padding.width, 0), cacheStride.width); |
|
|
|
|
padding.height = (int)alignSize(std::max(padding.height, 0), cacheStride.height); |
|
|
|
|
Size paddedImgSize(img.cols + padding.width*2, img.rows + padding.height*2); |
|
|
|
|
|
|
|
|
|
HOGCacheTester cache(this, img, padding, padding, nwindows == 0, cacheStride); |
|
|
|
|
|
|
|
|
|
if( !nwindows ) |
|
|
|
|
nwindows = cache.windowsInImage(paddedImgSize, winStride).area(); |
|
|
|
|
|
|
|
|
|
const HOGCacheTester::BlockData* blockData = &cache.blockData[0]; |
|
|
|
|
|
|
|
|
|
int nblocks = cache.nblocks.area(); |
|
|
|
|
int blockHistogramSize = cache.blockHistogramSize; |
|
|
|
|
size_t dsize = getDescriptorSize(); |
|
|
|
|
|
|
|
|
|
double rho = svmDetector.size() > dsize ? svmDetector[dsize] : 0; |
|
|
|
|
vector<float> blockHist(blockHistogramSize); |
|
|
|
|
|
|
|
|
|
for( size_t i = 0; i < nwindows; i++ ) |
|
|
|
|
{ |
|
|
|
|
Point pt0; |
|
|
|
|
if( !locations.empty() ) |
|
|
|
|
{ |
|
|
|
|
pt0 = locations[i]; |
|
|
|
|
if( pt0.x < -padding.width || pt0.x > img.cols + padding.width - winSize.width || |
|
|
|
|
pt0.y < -padding.height || pt0.y > img.rows + padding.height - winSize.height ) |
|
|
|
|
continue; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
pt0 = cache.getWindow(paddedImgSize, winStride, (int)i).tl() - Point(padding); |
|
|
|
|
CV_Assert(pt0.x % cacheStride.width == 0 && pt0.y % cacheStride.height == 0); |
|
|
|
|
} |
|
|
|
|
double s = rho; |
|
|
|
|
const float* svmVec = &svmDetector[0]; |
|
|
|
|
int j, k; |
|
|
|
|
for( j = 0; j < nblocks; j++, svmVec += blockHistogramSize ) |
|
|
|
|
{ |
|
|
|
|
const HOGCacheTester::BlockData& bj = blockData[j]; |
|
|
|
|
Point pt = pt0 + bj.imgOffset; |
|
|
|
|
|
|
|
|
|
const float* vec = cache.getBlock(pt, &blockHist[0]); |
|
|
|
|
for( k = 0; k <= blockHistogramSize - 4; k += 4 ) |
|
|
|
|
s += vec[k]*svmVec[k] + vec[k+1]*svmVec[k+1] + |
|
|
|
|
vec[k+2]*svmVec[k+2] + vec[k+3]*svmVec[k+3]; |
|
|
|
|
for( ; k < blockHistogramSize; k++ ) |
|
|
|
|
s += vec[k]*svmVec[k]; |
|
|
|
|
} |
|
|
|
|
if( s >= hitThreshold ) |
|
|
|
|
{ |
|
|
|
|
hits.push_back(pt0); |
|
|
|
|
weights.push_back(s); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// validation
|
|
|
|
|
std::vector<Point> actual_find_locations; |
|
|
|
|
std::vector<double> actual_weights; |
|
|
|
|
actual_hog->detect(img, actual_find_locations, actual_weights, |
|
|
|
|
hitThreshold, winStride, padding, locations); |
|
|
|
|
|
|
|
|
|
if (!std::equal(hits.begin(), hits.end(), |
|
|
|
|
actual_find_locations.begin())) |
|
|
|
|
{ |
|
|
|
|
ts->printf(cvtest::TS::SUMMARY, "Found locations are not equal (see detect function)\n"); |
|
|
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
|
|
|
ts->set_gtest_status(); |
|
|
|
|
failed = true; |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
const double eps = 0.0; |
|
|
|
|
double diff_norm = norm(Mat(actual_weights) - Mat(weights), CV_L2); |
|
|
|
|
if (diff_norm > eps) |
|
|
|
|
{ |
|
|
|
|
ts->printf(cvtest::TS::SUMMARY, "Weights for found locations aren't equal.\n" |
|
|
|
|
"Norm of the difference is %lf\n", diff_norm); |
|
|
|
|
ts->printf(cvtest::TS::LOG, "Channels: %d\n", img.channels()); |
|
|
|
|
failed = true; |
|
|
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
|
|
|
ts->set_gtest_status(); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void HOGDescriptorTester::detect(const Mat& img, vector<Point>& hits, double hitThreshold, |
|
|
|
|
Size winStride, Size padding, const vector<Point>& locations) const |
|
|
|
|
{ |
|
|
|
|
vector<double> weightsV; |
|
|
|
|
detect(img, hits, weightsV, hitThreshold, winStride, padding, locations); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void HOGDescriptorTester::compute(const Mat& img, vector<float>& descriptors, |
|
|
|
|
Size winStride, Size padding, const vector<Point>& locations) const |
|
|
|
|
{ |
|
|
|
|
if( winStride == Size() ) |
|
|
|
|
winStride = cellSize; |
|
|
|
|
Size cacheStride(gcd(winStride.width, blockStride.width), |
|
|
|
|
gcd(winStride.height, blockStride.height)); |
|
|
|
|
size_t nwindows = locations.size(); |
|
|
|
|
padding.width = (int)alignSize(std::max(padding.width, 0), cacheStride.width); |
|
|
|
|
padding.height = (int)alignSize(std::max(padding.height, 0), cacheStride.height); |
|
|
|
|
Size paddedImgSize(img.cols + padding.width*2, img.rows + padding.height*2); |
|
|
|
|
|
|
|
|
|
HOGCacheTester cache(this, img, padding, padding, nwindows == 0, cacheStride); |
|
|
|
|
|
|
|
|
|
if( !nwindows ) |
|
|
|
|
nwindows = cache.windowsInImage(paddedImgSize, winStride).area(); |
|
|
|
|
|
|
|
|
|
const HOGCacheTester::BlockData* blockData = &cache.blockData[0]; |
|
|
|
|
|
|
|
|
|
int nblocks = cache.nblocks.area(); |
|
|
|
|
int blockHistogramSize = cache.blockHistogramSize; |
|
|
|
|
size_t dsize = getDescriptorSize(); |
|
|
|
|
descriptors.resize(dsize*nwindows); |
|
|
|
|
|
|
|
|
|
for( size_t i = 0; i < nwindows; i++ ) |
|
|
|
|
{ |
|
|
|
|
float* descriptor = &descriptors[i*dsize]; |
|
|
|
|
|
|
|
|
|
Point pt0; |
|
|
|
|
if( !locations.empty() ) |
|
|
|
|
{ |
|
|
|
|
pt0 = locations[i]; |
|
|
|
|
if( pt0.x < -padding.width || pt0.x > img.cols + padding.width - winSize.width || |
|
|
|
|
pt0.y < -padding.height || pt0.y > img.rows + padding.height - winSize.height ) |
|
|
|
|
continue; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
pt0 = cache.getWindow(paddedImgSize, winStride, (int)i).tl() - Point(padding); |
|
|
|
|
CV_Assert(pt0.x % cacheStride.width == 0 && pt0.y % cacheStride.height == 0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for( int j = 0; j < nblocks; j++ ) |
|
|
|
|
{ |
|
|
|
|
const HOGCacheTester::BlockData& bj = blockData[j]; |
|
|
|
|
Point pt = pt0 + bj.imgOffset; |
|
|
|
|
|
|
|
|
|
float* dst = descriptor + bj.histOfs; |
|
|
|
|
const float* src = cache.getBlock(pt, dst); |
|
|
|
|
if( src != dst ) |
|
|
|
|
for( int k = 0; k < blockHistogramSize; k++ ) |
|
|
|
|
dst[k] = src[k]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// validation
|
|
|
|
|
std::vector<float> actual_descriptors; |
|
|
|
|
actual_hog->compute(img, actual_descriptors, winStride, padding, locations); |
|
|
|
|
|
|
|
|
|
double diff_norm = cv::norm(Mat(actual_descriptors) - Mat(descriptors), CV_L2); |
|
|
|
|
const double eps = 0.0; |
|
|
|
|
if (diff_norm > eps) |
|
|
|
|
{ |
|
|
|
|
ts->printf(cvtest::TS::SUMMARY, "Norm of the difference: %lf\n", diff_norm); |
|
|
|
|
ts->printf(cvtest::TS::SUMMARY, "Found descriptors are not equal (see compute function)\n"); |
|
|
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
|
|
|
ts->printf(cvtest::TS::LOG, "Channels: %d\n", img.channels()); |
|
|
|
|
ts->set_gtest_status(); |
|
|
|
|
failed = true; |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void HOGDescriptorTester::computeGradient(const Mat& img, Mat& grad, Mat& qangle, |
|
|
|
|
Size paddingTL, Size paddingBR) const |
|
|
|
|
{ |
|
|
|
|
CV_Assert( img.type() == CV_8U || img.type() == CV_8UC3 ); |
|
|
|
|
|
|
|
|
|
Size gradsize(img.cols + paddingTL.width + paddingBR.width, |
|
|
|
|
img.rows + paddingTL.height + paddingBR.height); |
|
|
|
|
grad.create(gradsize, CV_32FC2); // <magnitude*(1-alpha), magnitude*alpha>
|
|
|
|
|
qangle.create(gradsize, CV_8UC2); // [0..nbins-1] - quantized gradient orientation
|
|
|
|
|
Size wholeSize; |
|
|
|
|
Point roiofs; |
|
|
|
|
img.locateROI(wholeSize, roiofs); |
|
|
|
|
|
|
|
|
|
int i, x, y; |
|
|
|
|
int cn = img.channels(); |
|
|
|
|
|
|
|
|
|
Mat_<float> _lut(1, 256); |
|
|
|
|
const float* lut = &_lut(0,0); |
|
|
|
|
|
|
|
|
|
if( gammaCorrection ) |
|
|
|
|
for( i = 0; i < 256; i++ ) |
|
|
|
|
_lut(0,i) = std::sqrt((float)i); |
|
|
|
|
else |
|
|
|
|
for( i = 0; i < 256; i++ ) |
|
|
|
|
_lut(0,i) = (float)i; |
|
|
|
|
|
|
|
|
|
AutoBuffer<int> mapbuf(gradsize.width + gradsize.height + 4); |
|
|
|
|
int* xmap = (int*)mapbuf + 1; |
|
|
|
|
int* ymap = xmap + gradsize.width + 2; |
|
|
|
|
|
|
|
|
|
const int borderType = (int)BORDER_REFLECT_101; |
|
|
|
|
|
|
|
|
|
for( x = -1; x < gradsize.width + 1; x++ ) |
|
|
|
|
xmap[x] = borderInterpolate(x - paddingTL.width + roiofs.x, |
|
|
|
|
wholeSize.width, borderType) - roiofs.x; |
|
|
|
|
for( y = -1; y < gradsize.height + 1; y++ ) |
|
|
|
|
ymap[y] = borderInterpolate(y - paddingTL.height + roiofs.y, |
|
|
|
|
wholeSize.height, borderType) - roiofs.y; |
|
|
|
|
|
|
|
|
|
// x- & y- derivatives for the whole row
|
|
|
|
|
int width = gradsize.width; |
|
|
|
|
AutoBuffer<float> _dbuf(width*4); |
|
|
|
|
float* dbuf = _dbuf; |
|
|
|
|
Mat Dx(1, width, CV_32F, dbuf); |
|
|
|
|
Mat Dy(1, width, CV_32F, dbuf + width); |
|
|
|
|
Mat Mag(1, width, CV_32F, dbuf + width*2); |
|
|
|
|
Mat Angle(1, width, CV_32F, dbuf + width*3); |
|
|
|
|
|
|
|
|
|
int _nbins = nbins; |
|
|
|
|
float angleScale = (float)(_nbins/CV_PI); |
|
|
|
|
for( y = 0; y < gradsize.height; y++ ) |
|
|
|
|
{ |
|
|
|
|
const uchar* imgPtr = img.data + img.step*ymap[y]; |
|
|
|
|
const uchar* prevPtr = img.data + img.step*ymap[y-1]; |
|
|
|
|
const uchar* nextPtr = img.data + img.step*ymap[y+1]; |
|
|
|
|
float* gradPtr = (float*)grad.ptr(y); |
|
|
|
|
uchar* qanglePtr = (uchar*)qangle.ptr(y); |
|
|
|
|
|
|
|
|
|
if( cn == 1 ) |
|
|
|
|
{ |
|
|
|
|
for( x = 0; x < width; x++ ) |
|
|
|
|
{ |
|
|
|
|
int x1 = xmap[x]; |
|
|
|
|
dbuf[x] = (float)(lut[imgPtr[xmap[x+1]]] - lut[imgPtr[xmap[x-1]]]); |
|
|
|
|
dbuf[width + x] = (float)(lut[nextPtr[x1]] - lut[prevPtr[x1]]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
for( x = 0; x < width; x++ ) |
|
|
|
|
{ |
|
|
|
|
int x1 = xmap[x]*3; |
|
|
|
|
float dx0, dy0, dx, dy, mag0, mag; |
|
|
|
|
const uchar* p2 = imgPtr + xmap[x+1]*3; |
|
|
|
|
const uchar* p0 = imgPtr + xmap[x-1]*3; |
|
|
|
|
|
|
|
|
|
dx0 = lut[p2[2]] - lut[p0[2]]; |
|
|
|
|
dy0 = lut[nextPtr[x1+2]] - lut[prevPtr[x1+2]]; |
|
|
|
|
mag0 = dx0*dx0 + dy0*dy0; |
|
|
|
|
|
|
|
|
|
dx = lut[p2[1]] - lut[p0[1]]; |
|
|
|
|
dy = lut[nextPtr[x1+1]] - lut[prevPtr[x1+1]]; |
|
|
|
|
mag = dx*dx + dy*dy; |
|
|
|
|
|
|
|
|
|
if( mag0 < mag ) |
|
|
|
|
{ |
|
|
|
|
dx0 = dx; |
|
|
|
|
dy0 = dy; |
|
|
|
|
mag0 = mag; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
dx = lut[p2[0]] - lut[p0[0]]; |
|
|
|
|
dy = lut[nextPtr[x1]] - lut[prevPtr[x1]]; |
|
|
|
|
mag = dx*dx + dy*dy; |
|
|
|
|
|
|
|
|
|
if( mag0 < mag ) |
|
|
|
|
{ |
|
|
|
|
dx0 = dx; |
|
|
|
|
dy0 = dy; |
|
|
|
|
mag0 = mag; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
dbuf[x] = dx0; |
|
|
|
|
dbuf[x+width] = dy0; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cartToPolar( Dx, Dy, Mag, Angle, false ); |
|
|
|
|
for( x = 0; x < width; x++ ) |
|
|
|
|
{ |
|
|
|
|
float mag = dbuf[x+width*2], angle = dbuf[x+width*3]*angleScale - 0.5f; |
|
|
|
|
int hidx = cvFloor(angle); |
|
|
|
|
angle -= hidx; |
|
|
|
|
gradPtr[x*2] = mag*(1.f - angle); |
|
|
|
|
gradPtr[x*2+1] = mag*angle; |
|
|
|
|
if( hidx < 0 ) |
|
|
|
|
hidx += _nbins; |
|
|
|
|
else if( hidx >= _nbins ) |
|
|
|
|
hidx -= _nbins; |
|
|
|
|
assert( (unsigned)hidx < (unsigned)_nbins ); |
|
|
|
|
|
|
|
|
|
qanglePtr[x*2] = (uchar)hidx; |
|
|
|
|
hidx++; |
|
|
|
|
hidx &= hidx < _nbins ? -1 : 0; |
|
|
|
|
qanglePtr[x*2+1] = (uchar)hidx; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// validation
|
|
|
|
|
Mat actual_mats[2], reference_mats[2] = { grad, qangle }; |
|
|
|
|
const char* args[] = { "Gradient's", "Qangles's" }; |
|
|
|
|
actual_hog->computeGradient(img, actual_mats[0], actual_mats[1], paddingTL, paddingBR); |
|
|
|
|
|
|
|
|
|
const double eps = 0.0; |
|
|
|
|
for (i = 0; i < 2; ++i) |
|
|
|
|
{ |
|
|
|
|
double diff_norm = norm(reference_mats[i] - actual_mats[i], CV_L2); |
|
|
|
|
if (diff_norm > eps) |
|
|
|
|
{ |
|
|
|
|
ts->printf(cvtest::TS::LOG, "%s matrices are not equal\n" |
|
|
|
|
"Norm of the difference is %lf\n", args[i], diff_norm); |
|
|
|
|
ts->printf(cvtest::TS::LOG, "Channels: %d\n", img.channels()); |
|
|
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
|
|
|
ts->set_gtest_status(); |
|
|
|
|
failed = true; |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST(Objdetect_HOGDetector_Strict, accuracy) |
|
|
|
|
{ |
|
|
|
|
cvtest::TS* ts = cvtest::TS::ptr(); |
|
|
|
|
RNG& rng = ts->get_rng(); |
|
|
|
|
|
|
|
|
|
HOGDescriptor actual_hog; |
|
|
|
|
actual_hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector()); |
|
|
|
|
HOGDescriptorTester reference_hog(actual_hog); |
|
|
|
|
|
|
|
|
|
const unsigned int test_case_count = 5; |
|
|
|
|
for (unsigned int i = 0; i < test_case_count && !reference_hog.is_failed(); ++i) |
|
|
|
|
{ |
|
|
|
|
// creating a matrix
|
|
|
|
|
Size ssize(rng.uniform(1, 10) * actual_hog.winSize.width, |
|
|
|
|
rng.uniform(1, 10) * actual_hog.winSize.height); |
|
|
|
|
int type = rng.uniform(0, 1) > 0 ? CV_8UC1 : CV_8UC3; |
|
|
|
|
Mat image(ssize, type); |
|
|
|
|
rng.fill(image, RNG::UNIFORM, 0, 256, true); |
|
|
|
|
|
|
|
|
|
// checking detect
|
|
|
|
|
std::vector<Point> hits; |
|
|
|
|
std::vector<double> weights; |
|
|
|
|
reference_hog.detect(image, hits, weights); |
|
|
|
|
|
|
|
|
|
// checking compute
|
|
|
|
|
std::vector<float> descriptors; |
|
|
|
|
reference_hog.compute(image, descriptors); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|