multithreading facedetector

pull/1872/head
Konstantin Matskevich 11 years ago
parent e38ba1999b
commit 0a1ff0d42d
  1. 242
      samples/ocl/facedetect.cpp

@ -5,121 +5,15 @@
#include <iostream>
#include <stdio.h>
using namespace std;
using namespace cv;
#define LOOP_NUM 10
///////////////////////////////////////detectfaces with multithreading////////////////////////////////////////////
#define MAX_THREADS 8
#if defined _WIN32|| defined _WIN64
#include <process.h>
#include <windows.h>
HANDLE handleThreads[MAX_THREADS];
#endif
#if defined __linux__ || defined __APPLE__
#include <pthread.h>
#include <vector>
#if defined(_MSC_VER) && (_MSC_VER >= 1700)
# include <thread>
#endif
using namespace std;
using namespace cv;
#define LOOP_NUM 10
#if defined _WIN32|| defined _WIN64
void detectFaces(void* str)
#elif defined __linux__ || defined __APPLE__
void* detectFaces(void* str)
#endif
{
std::string fileName = *(std::string*)str;
ocl::OclCascadeClassifier cascade;
cascade.load("cv/cascadeandhog/cascades/haarcascade_frontalface_alt.xml" );//path to haarcascade_frontalface_alt.xml
Mat img = imread(fileName, CV_LOAD_IMAGE_COLOR);
if (img.empty())
{
std::cout << "cann't open file " + fileName <<std::endl;
return;
}
ocl::oclMat d_img;
d_img.upload(img);
std::vector<Rect> oclfaces;
cascade.detectMultiScale(d_img, oclfaces, 1.1, 3, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30), Size(0, 0));
for(int i = 0; i<oclfaces.size(); i++)
rectangle(img, Point(oclfaces[i].x, oclfaces[i].y), Point(oclfaces[i].x + oclfaces[i].width, oclfaces[i].y + oclfaces[i].height), Scalar( 0, 255, 255 ), 3);
imwrite("path to result-images location/filename", img);
}
class Thread
{
private:
Thread* thread;
public:
Thread(int _idx, std::string _fileName);
virtual ~Thread()
{
delete(thread);
}
virtual void run()
{
thread->run();
}
int idx;
std::string fileName;
protected:
Thread():thread(NULL){}
};
class Thread_Win : public Thread
{
private:
friend class Thread;
Thread_Win(){}
public:
~Thread_Win(){};
void run()
{
#if defined _WIN32|| defined _WIN64
handleThreads[idx] = (HANDLE)_beginthread(detectFaces, 0, (void*)&fileName);
WaitForMultipleObjects(MAX_THREADS, handleThreads, TRUE, INFINITE);
#endif
}
};
class Thread_Lin : public Thread
{
private:
friend class Thread;
Thread_Lin(){}
public:
~Thread_Lin(){};
void run()
{
#if defined __linux__ || defined __APPLE__
pthread_t thread;
pthread_create(&thread, NULL, detectFaces, (void*)&fileName);
pthread_join (thread, NULL);
#endif
}
};
Thread::Thread(int _idx, std::string _fileName)
{
#if defined _WIN32|| defined _WIN64
thread = new Thread_Win();
#endif
#if defined __linux__ || defined __APPLE__
thread = new Thread_Lin();
#endif
thread->idx = _idx;
thread->fileName = _fileName;
}
///////////////////////////simple-threading faces detecting///////////////////////////////
///////////////////////////single-threading faces detecting///////////////////////////////
const static Scalar colors[] = { CV_RGB(0,0,255),
CV_RGB(0,128,255),
@ -134,7 +28,7 @@ const static Scalar colors[] = { CV_RGB(0,0,255),
int64 work_begin = 0;
int64 work_end = 0;
string outputName;
string inputName, outputName, cascadeName;
static void workBegin()
{
@ -170,35 +64,11 @@ static void Draw(Mat& img, vector<Rect>& faces, double scale);
// Else if will return (total diff of each cpu and gpu rects covered pixels)/(total cpu rects covered pixels)
double checkRectSimilarity(Size sz, vector<Rect>& cpu_rst, vector<Rect>& gpu_rst);
int facedetect_one_thread(int argc, const char** argv )
static int facedetect_one_thread(bool useCPU, double scale )
{
const char* keys =
"{ h | help | false | print help message }"
"{ i | input | | specify input image }"
"{ t | template | haarcascade_frontalface_alt.xml |"
" specify template file path }"
"{ c | scale | 1.0 | scale image }"
"{ s | use_cpu | false | use cpu or gpu to process the image }"
"{ o | output | facedetect_output.jpg |"
" specify output image save path(only works when input is images) }";
CommandLineParser cmd(argc, argv, keys);
if (cmd.get<bool>("help"))
{
cout << "Usage : facedetect [options]" << endl;
cout << "Available options:" << endl;
cmd.printParams();
return EXIT_SUCCESS;
}
CvCapture* capture = 0;
Mat frame, frameCopy, image;
bool useCPU = cmd.get<bool>("s");
string inputName = cmd.get<string>("i");
outputName = cmd.get<string>("o");
string cascadeName = cmd.get<string>("t");
double scale = cmd.get<double>("c");
ocl::OclCascadeClassifier cascade;
CascadeClassifier cpu_cascade;
@ -288,32 +158,98 @@ int facedetect_one_thread(int argc, const char** argv )
}
cvDestroyWindow("result");
std::cout<< "simple-threading sample was finished" <<std::endl;
std::cout<< "single-threaded sample has finished" <<std::endl;
return 0;
}
void facedetect_multithreading()
///////////////////////////////////////detectfaces with multithreading////////////////////////////////////////////
#if defined(_MSC_VER) && (_MSC_VER >= 1700)
#define MAX_THREADS 10
static void detectFaces(std::string fileName)
{
std::vector<Thread*> threads;
for(int i = 0; i<MAX_THREADS; i++)
threads.push_back(new Thread(i, "cv/cascadeandhog/images/audrybt1.png") );//path to source picture
for(int i = 0; i<MAX_THREADS; i++)
{
threads[i]->run();
}
for(int i = 0; i<MAX_THREADS; i++)
ocl::OclCascadeClassifier cascade;
cascade.load(cascadeName);
Mat img = imread(fileName, CV_LOAD_IMAGE_COLOR);
if (img.empty())
{
delete(threads[i]);
std::cout << "cann't open file " + fileName <<std::endl;
return;
}
ocl::oclMat d_img;
d_img.upload(img);
std::vector<Rect> oclfaces;
cascade.detectMultiScale(d_img, oclfaces, 1.1, 3, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30), Size(0, 0));
for(unsigned int i = 0; i<oclfaces.size(); i++)
rectangle(img, Point(oclfaces[i].x, oclfaces[i].y), Point(oclfaces[i].x + oclfaces[i].width, oclfaces[i].y + oclfaces[i].height), Scalar( 0, 255, 255 ), 3);
imwrite(std::to_string(_threadid) + outputName, img);
}
static void facedetect_multithreading(int nthreads)
{
int thread_number = MAX_THREADS < nthreads ? MAX_THREADS : nthreads;
std::vector<std::thread> threads;
for(int i = 0; i<thread_number; i++)
threads.push_back(std::thread(detectFaces, inputName));
for(int i = 0; i<thread_number; i++)
threads[i].join();
for(int i = 0; i<thread_number; i++)
threads[i].~thread();
}
#endif
int main( int argc, const char** argv )
{
std::cout<<"multi-threading sample was running" <<std::endl;
facedetect_multithreading();
std::cout<<"multi-threading sample was finished" <<std::endl;
std::cout<<"simple-threading sample was running" <<std::endl;
return facedetect_one_thread(argc,argv);
const char* keys =
"{ h | help | false | print help message }"
"{ i | input | | specify input image }"
"{ t | template | haarcascade_frontalface_alt.xml |"
" specify template file path }"
"{ c | scale | 1.0 | scale image }"
"{ s | use_cpu | false | use cpu or gpu to process the image }"
"{ o | output | facedetect_output.jpg |"
" specify output image save path(only works when input is images) }"
"{ n | thread_num | 1 | set number of threads >= 1 }";
CommandLineParser cmd(argc, argv, keys);
if (cmd.get<bool>("help"))
{
cout << "Usage : facedetect [options]" << endl;
cout << "Available options:" << endl;
cmd.printParams();
return EXIT_SUCCESS;
}
bool useCPU = cmd.get<bool>("s");
inputName = cmd.get<string>("i");
outputName = cmd.get<string>("o");
cascadeName = cmd.get<string>("t");
double scale = cmd.get<double>("c");
int n = cmd.get<int>("n");
if(n > 1)
{
#if defined(_MSC_VER) && (_MSC_VER >= 1700)
std::cout<<"multi-threaded sample is running" <<std::endl;
facedetect_multithreading(n);
std::cout<<"multi-threaded sample has finished" <<std::endl;
return 0;
#else
std::cout << "std::thread is not supported, running a single-threaded version" << std::endl;
#endif
}
if (n<0)
std::cout<<"incorrect number of threads:" << n << ", running a single-threaded version" <<std::endl;
else
std::cout<<"single-threaded sample is running" <<std::endl;
return facedetect_one_thread(useCPU, scale);
}
void detect( Mat& img, vector<Rect>& faces,

Loading…
Cancel
Save