change js_face_recognition sample with yunet

pull/25468/head
Wanli 10 months ago
parent 3f8b56ec49
commit 096ccd410b
  1. 78
      samples/dnn/js_face_recognition.html

@ -12,27 +12,40 @@ var persons = {};
//! [Run face detection model] //! [Run face detection model]
function detectFaces(img) { function detectFaces(img) {
var blob = cv.blobFromImage(img, 1, {width: 192, height: 144}, [104, 117, 123, 0], false, false); netDet.setInputSize(new cv.Size(img.cols, img.rows));
netDet.setInput(blob); var out = new cv.Mat();
var out = netDet.forward(); netDet.detect(img, out);
var faces = []; var faces = [];
for (var i = 0, n = out.data32F.length; i < n; i += 7) { for (var i = 0, n = out.data32F.length; i < n; i += 15) {
var confidence = out.data32F[i + 2]; var left = out.data32F[i];
var left = out.data32F[i + 3] * img.cols; var top = out.data32F[i + 1];
var top = out.data32F[i + 4] * img.rows; var right = (out.data32F[i] + out.data32F[i + 2]);
var right = out.data32F[i + 5] * img.cols; var bottom = (out.data32F[i + 1] + out.data32F[i + 3]);
var bottom = out.data32F[i + 6] * img.rows;
left = Math.min(Math.max(0, left), img.cols - 1); left = Math.min(Math.max(0, left), img.cols - 1);
top = Math.min(Math.max(0, top), img.rows - 1);
right = Math.min(Math.max(0, right), img.cols - 1); right = Math.min(Math.max(0, right), img.cols - 1);
bottom = Math.min(Math.max(0, bottom), img.rows - 1); bottom = Math.min(Math.max(0, bottom), img.rows - 1);
top = Math.min(Math.max(0, top), img.rows - 1);
if (confidence > 0.5 && left < right && top < bottom) { if (left < right && top < bottom) {
faces.push({x: left, y: top, width: right - left, height: bottom - top}) faces.push({
x: left,
y: top,
width: right - left,
height: bottom - top,
x1: out.data32F[i + 4] < 0 || out.data32F[i + 4] > img.cols - 1 ? -1 : out.data32F[i + 4],
y1: out.data32F[i + 5] < 0 || out.data32F[i + 5] > img.rows - 1 ? -1 : out.data32F[i + 5],
x2: out.data32F[i + 6] < 0 || out.data32F[i + 6] > img.cols - 1 ? -1 : out.data32F[i + 6],
y2: out.data32F[i + 7] < 0 || out.data32F[i + 7] > img.rows - 1 ? -1 : out.data32F[i + 7],
x3: out.data32F[i + 8] < 0 || out.data32F[i + 8] > img.cols - 1 ? -1 : out.data32F[i + 8],
y3: out.data32F[i + 9] < 0 || out.data32F[i + 9] > img.rows - 1 ? -1 : out.data32F[i + 9],
x4: out.data32F[i + 10] < 0 || out.data32F[i + 10] > img.cols - 1 ? -1 : out.data32F[i + 10],
y4: out.data32F[i + 11] < 0 || out.data32F[i + 11] > img.rows - 1 ? -1 : out.data32F[i + 11],
x5: out.data32F[i + 12] < 0 || out.data32F[i + 12] > img.cols - 1 ? -1 : out.data32F[i + 12],
y5: out.data32F[i + 13] < 0 || out.data32F[i + 13] > img.rows - 1 ? -1 : out.data32F[i + 13],
confidence: out.data32F[i + 14]
})
} }
} }
blob.delete();
out.delete(); out.delete();
return faces; return faces;
}; };
@ -53,7 +66,7 @@ function recognize(face) {
var vec = face2vec(face); var vec = face2vec(face);
var bestMatchName = 'unknown'; var bestMatchName = 'unknown';
var bestMatchScore = 0.5; // Actually, the minimum is -1 but we use it as a threshold. var bestMatchScore = 30; // Threshold for face recognition.
for (name in persons) { for (name in persons) {
var personVec = persons[name]; var personVec = persons[name];
var score = vec.dot(personVec); var score = vec.dot(personVec);
@ -69,24 +82,25 @@ function recognize(face) {
function loadModels(callback) { function loadModels(callback) {
var utils = new Utils(''); var utils = new Utils('');
var proto = 'https://raw.githubusercontent.com/opencv/opencv/4.x/samples/dnn/face_detector/deploy_lowres.prototxt'; var detectModel = 'https://media.githubusercontent.com/media/opencv/opencv_zoo/main/models/face_detection_yunet/face_detection_yunet_2023mar.onnx';
var weights = 'https://raw.githubusercontent.com/opencv/opencv_3rdparty/dnn_samples_face_detector_20180205_fp16/res10_300x300_ssd_iter_140000_fp16.caffemodel';
var recognModel = 'https://media.githubusercontent.com/media/opencv/opencv_zoo/main/models/face_recognition_sface/face_recognition_sface_2021dec.onnx'; var recognModel = 'https://media.githubusercontent.com/media/opencv/opencv_zoo/main/models/face_recognition_sface/face_recognition_sface_2021dec.onnx';
utils.createFileFromUrl('face_detector.prototxt', proto, () => { document.getElementById('status').innerHTML = 'Downloading YuNet model';
document.getElementById('status').innerHTML = 'Downloading face_detector.caffemodel'; utils.createFileFromUrl('face_detection_yunet_2023mar.onnx', detectModel, () => {
utils.createFileFromUrl('face_detector.caffemodel', weights, () => { document.getElementById('status').innerHTML = 'Downloading OpenFace model';
document.getElementById('status').innerHTML = 'Downloading OpenFace model'; utils.createFileFromUrl('face_recognition_sface_2021dec.onnx', recognModel, () => {
utils.createFileFromUrl('face_recognition_sface_2021dec.onnx', recognModel, () => { document.getElementById('status').innerHTML = '';
document.getElementById('status').innerHTML = ''; netDet = new cv.FaceDetectorYN("face_detection_yunet_2023mar.onnx", "", new cv.Size(320, 320), 0.9, 0.3, 5000);
netDet = cv.readNetFromCaffe('face_detector.prototxt', 'face_detector.caffemodel'); netRecogn = cv.readNet('face_recognition_sface_2021dec.onnx');
netRecogn = cv.readNet('face_recognition_sface_2021dec.onnx'); callback();
callback();
});
}); });
}); });
}; };
function main() { function main() {
if(!cv.FaceDetectorYN){
alert(`Error: This sample require OpenCV.js built with FaceDetectorYN. Please rebuild it with FaceDetectorYN or use the latest version of OpenCV.js.`);
return;
}
// Create a camera object. // Create a camera object.
var output = document.getElementById('output'); var output = document.getElementById('output');
var camera = document.createElement("video"); var camera = document.createElement("video");
@ -146,6 +160,16 @@ function main() {
var faces = detectFaces(frameBGR); var faces = detectFaces(frameBGR);
faces.forEach(function(rect) { faces.forEach(function(rect) {
cv.rectangle(frame, {x: rect.x, y: rect.y}, {x: rect.x + rect.width, y: rect.y + rect.height}, [0, 255, 0, 255]); cv.rectangle(frame, {x: rect.x, y: rect.y}, {x: rect.x + rect.width, y: rect.y + rect.height}, [0, 255, 0, 255]);
if(rect.x1>0 && rect.y1>0)
cv.circle(frame, {x: rect.x1, y: rect.y1}, 2, [255, 0, 0, 255], 2)
if(rect.x2>0 && rect.y2>0)
cv.circle(frame, {x: rect.x2, y: rect.y2}, 2, [0, 0, 255, 255], 2)
if(rect.x3>0 && rect.y3>0)
cv.circle(frame, {x: rect.x3, y: rect.y3}, 2, [0, 255, 0, 255], 2)
if(rect.x4>0 && rect.y4>0)
cv.circle(frame, {x: rect.x4, y: rect.y4}, 2, [255, 0, 255, 255], 2)
if(rect.x5>0 && rect.y5>0)
cv.circle(frame, {x: rect.x5, y: rect.y5}, 2, [0, 255, 255, 255], 2)
var face = frameBGR.roi(rect); var face = frameBGR.roi(rect);
var name = recognize(face); var name = recognize(face);

Loading…
Cancel
Save