|
|
|
@ -588,7 +588,8 @@ struct DataLayer : public Layer |
|
|
|
|
lp.precision = InferenceEngine::Precision::FP32; |
|
|
|
|
std::shared_ptr<InferenceEngine::ScaleShiftLayer> ieLayer(new InferenceEngine::ScaleShiftLayer(lp)); |
|
|
|
|
|
|
|
|
|
CV_Assert(inputsData.size() == 1, inputsData[0].dims == 4); |
|
|
|
|
CV_CheckEQ(inputsData.size(), (size_t)1, ""); |
|
|
|
|
CV_CheckEQ(inputsData[0].dims, 4, ""); |
|
|
|
|
const size_t numChannels = inputsData[0].size[1]; |
|
|
|
|
CV_Assert(numChannels <= 4); |
|
|
|
|
|
|
|
|
@ -1302,7 +1303,7 @@ struct Net::Impl |
|
|
|
|
if (!node.empty()) |
|
|
|
|
{ |
|
|
|
|
Ptr<InfEngineBackendNode> ieNode = node.dynamicCast<InfEngineBackendNode>(); |
|
|
|
|
CV_Assert(!ieNode.empty(), !ieNode->net.empty()); |
|
|
|
|
CV_Assert(!ieNode.empty()); CV_Assert(!ieNode->net.empty()); |
|
|
|
|
layerNet = ieNode->net; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
@ -1316,7 +1317,7 @@ struct Net::Impl |
|
|
|
|
if (!inpNode.empty()) |
|
|
|
|
{ |
|
|
|
|
Ptr<InfEngineBackendNode> ieInpNode = inpNode.dynamicCast<InfEngineBackendNode>(); |
|
|
|
|
CV_Assert(!ieInpNode.empty(), !ieInpNode->net.empty()); |
|
|
|
|
CV_Assert(!ieInpNode.empty()); CV_Assert(!ieInpNode->net.empty()); |
|
|
|
|
if (layerNet != ieInpNode->net) |
|
|
|
|
{ |
|
|
|
|
// layerNet is empty or nodes are from different graphs.
|
|
|
|
@ -1425,7 +1426,7 @@ struct Net::Impl |
|
|
|
|
if (!inpNode.empty()) |
|
|
|
|
{ |
|
|
|
|
Ptr<InfEngineBackendNode> ieInpNode = inpNode.dynamicCast<InfEngineBackendNode>(); |
|
|
|
|
CV_Assert(!ieInpNode.empty(), !ieInpNode->net.empty()); |
|
|
|
|
CV_Assert(!ieInpNode.empty()); CV_Assert(!ieInpNode->net.empty()); |
|
|
|
|
if (ieInpNode->net != net) |
|
|
|
|
{ |
|
|
|
|
net = Ptr<InfEngineBackendNet>(); |
|
|
|
|