|
|
|
@ -41,7 +41,7 @@ |
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
|
|
#include "precomp.hpp" |
|
|
|
|
|
|
|
|
|
#include "mcwutil.hpp" |
|
|
|
|
using namespace std; |
|
|
|
|
using namespace cv; |
|
|
|
|
using namespace cv::ocl; |
|
|
|
@ -59,7 +59,10 @@ namespace cv |
|
|
|
|
{ |
|
|
|
|
///////////////////////////OpenCL kernel strings///////////////////////////
|
|
|
|
|
extern const char *pyrlk; |
|
|
|
|
|
|
|
|
|
extern const char *operator_setTo; |
|
|
|
|
extern const char *operator_convertTo; |
|
|
|
|
extern const char *arithm_mul; |
|
|
|
|
extern const char *pyr_down; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -78,103 +81,6 @@ struct int2 |
|
|
|
|
int x, y; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
void calcSharrDeriv_run(const oclMat& src, oclMat& dx_buf, oclMat& dy_buf, oclMat& dIdx, oclMat& dIdy, int cn) |
|
|
|
|
{ |
|
|
|
|
Context *clCxt = src.clCxt; |
|
|
|
|
|
|
|
|
|
string kernelName = "calcSharrDeriv_vertical"; |
|
|
|
|
|
|
|
|
|
size_t localThreads[3] = { 32, 8, 1 }; |
|
|
|
|
size_t globalThreads[3] = { src.cols, src.rows, 1}; |
|
|
|
|
|
|
|
|
|
vector<pair<size_t , const void *> > args; |
|
|
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src.step )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src.cols )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&cn )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dx_buf.data )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dx_buf.step )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dy_buf.data )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dy_buf.step )); |
|
|
|
|
|
|
|
|
|
openCLExecuteKernel(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, src.channels(), src.depth()); |
|
|
|
|
|
|
|
|
|
kernelName = "calcSharrDeriv_horizontal"; |
|
|
|
|
|
|
|
|
|
vector<pair<size_t , const void *> > args2; |
|
|
|
|
args2.push_back( make_pair( sizeof(cl_int), (void *)&src.rows )); |
|
|
|
|
args2.push_back( make_pair( sizeof(cl_int), (void *)&src.cols )); |
|
|
|
|
args2.push_back( make_pair( sizeof(cl_int), (void *)&cn )); |
|
|
|
|
args2.push_back( make_pair( sizeof(cl_mem), (void *)&dx_buf.data )); |
|
|
|
|
args2.push_back( make_pair( sizeof(cl_int), (void *)&dx_buf.step )); |
|
|
|
|
args2.push_back( make_pair( sizeof(cl_mem), (void *)&dy_buf.data )); |
|
|
|
|
args2.push_back( make_pair( sizeof(cl_int), (void *)&dy_buf.step )); |
|
|
|
|
args2.push_back( make_pair( sizeof(cl_mem), (void *)&dIdx.data )); |
|
|
|
|
args2.push_back( make_pair( sizeof(cl_int), (void *)&dIdx.step )); |
|
|
|
|
args2.push_back( make_pair( sizeof(cl_mem), (void *)&dIdy.data )); |
|
|
|
|
args2.push_back( make_pair( sizeof(cl_int), (void *)&dIdy.step )); |
|
|
|
|
|
|
|
|
|
openCLExecuteKernel(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args2, src.channels(), src.depth()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void cv::ocl::PyrLKOpticalFlow::calcSharrDeriv(const oclMat& src, oclMat& dIdx, oclMat& dIdy) |
|
|
|
|
{ |
|
|
|
|
CV_Assert(src.rows > 1 && src.cols > 1); |
|
|
|
|
CV_Assert(src.depth() == CV_8U); |
|
|
|
|
|
|
|
|
|
const int cn = src.channels(); |
|
|
|
|
|
|
|
|
|
ensureSizeIsEnough(src.size(), CV_MAKETYPE(CV_16S, cn), dx_calcBuf_); |
|
|
|
|
ensureSizeIsEnough(src.size(), CV_MAKETYPE(CV_16S, cn), dy_calcBuf_); |
|
|
|
|
|
|
|
|
|
calcSharrDeriv_run(src, dx_calcBuf_, dy_calcBuf_, dIdx, dIdy, cn); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::ocl::PyrLKOpticalFlow::buildImagePyramid(const oclMat& img0, vector<oclMat>& pyr, bool withBorder) |
|
|
|
|
{ |
|
|
|
|
pyr.resize(maxLevel + 1); |
|
|
|
|
|
|
|
|
|
Size sz = img0.size(); |
|
|
|
|
|
|
|
|
|
Mat img0Temp; |
|
|
|
|
img0.download(img0Temp); |
|
|
|
|
|
|
|
|
|
Mat pyrTemp; |
|
|
|
|
oclMat o; |
|
|
|
|
|
|
|
|
|
for (int level = 0; level <= maxLevel; ++level) |
|
|
|
|
{ |
|
|
|
|
oclMat temp; |
|
|
|
|
|
|
|
|
|
if (withBorder) |
|
|
|
|
{ |
|
|
|
|
temp.create(sz.height + winSize.height * 2, sz.width + winSize.width * 2, img0.type()); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
ensureSizeIsEnough(sz, img0.type(), pyr[level]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (level == 0) |
|
|
|
|
pyr[level] = img0Temp; |
|
|
|
|
else |
|
|
|
|
pyrDown(pyr[level - 1], pyr[level]); |
|
|
|
|
|
|
|
|
|
if (withBorder) |
|
|
|
|
copyMakeBorder(pyr[level], temp, winSize.height, winSize.height, winSize.width, winSize.width, BORDER_REFLECT_101); |
|
|
|
|
|
|
|
|
|
sz = Size((sz.width + 1) / 2, (sz.height + 1) / 2); |
|
|
|
|
|
|
|
|
|
if (sz.width <= winSize.width || sz.height <= winSize.height) |
|
|
|
|
{ |
|
|
|
|
maxLevel = level; |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
namespace |
|
|
|
|
{ |
|
|
|
|
void calcPatchSize(cv::Size winSize, int cn, dim3& block, dim3& patch, bool isDeviceArch11) |
|
|
|
@ -199,110 +105,507 @@ namespace |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
struct MultiplyScalar |
|
|
|
|
inline int divUp(int total, int grain) |
|
|
|
|
{ |
|
|
|
|
return (total + grain - 1) / grain; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
|
//////////////////////////////// ConvertTo ////////////////////////////////
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
|
void convert_run_cus(const oclMat &src, oclMat &dst, double alpha, double beta) |
|
|
|
|
{ |
|
|
|
|
MultiplyScalar(double val_, double scale_) : val(val_), scale(scale_) {} |
|
|
|
|
double operator ()(double a) const |
|
|
|
|
string kernelName = "convert_to_S"; |
|
|
|
|
stringstream idxStr; |
|
|
|
|
idxStr << src.depth(); |
|
|
|
|
kernelName += idxStr.str(); |
|
|
|
|
float alpha_f = (float)alpha, beta_f = (float)beta; |
|
|
|
|
CV_DbgAssert(src.rows == dst.rows && src.cols == dst.cols); |
|
|
|
|
vector<pair<size_t , const void *> > args; |
|
|
|
|
size_t localThreads[3] = {16, 16, 1}; |
|
|
|
|
size_t globalThreads[3]; |
|
|
|
|
globalThreads[0] = (dst.cols + localThreads[0] - 1) / localThreads[0] * localThreads[0]; |
|
|
|
|
globalThreads[1] = (dst.rows + localThreads[1] - 1) / localThreads[1] * localThreads[1]; |
|
|
|
|
globalThreads[2] = 1; |
|
|
|
|
int dststep_in_pixel = dst.step / dst.elemSize(), dstoffset_in_pixel = dst.offset / dst.elemSize(); |
|
|
|
|
int srcstep_in_pixel = src.step / src.elemSize(), srcoffset_in_pixel = src.offset / src.elemSize(); |
|
|
|
|
if(dst.type() == CV_8UC1) |
|
|
|
|
{ |
|
|
|
|
return (scale * a * val); |
|
|
|
|
globalThreads[0] = ((dst.cols + 4) / 4 + localThreads[0]) / localThreads[0] * localThreads[0]; |
|
|
|
|
} |
|
|
|
|
const double val; |
|
|
|
|
const double scale; |
|
|
|
|
}; |
|
|
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.cols )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.rows )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&srcstep_in_pixel )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&srcoffset_in_pixel )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dststep_in_pixel )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dstoffset_in_pixel )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_float) , (void *)&alpha_f )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_float) , (void *)&beta_f )); |
|
|
|
|
openCLExecuteKernel2(dst.clCxt , &operator_convertTo, kernelName, globalThreads, |
|
|
|
|
localThreads, args, dst.channels(), dst.depth(), CLFLUSH); |
|
|
|
|
} |
|
|
|
|
void convertTo( const oclMat &src, oclMat &m, int rtype, double alpha = 1, double beta = 0 ); |
|
|
|
|
void convertTo( const oclMat &src, oclMat &dst, int rtype, double alpha, double beta ) |
|
|
|
|
{ |
|
|
|
|
//cout << "cv::ocl::oclMat::convertTo()" << endl;
|
|
|
|
|
|
|
|
|
|
void callF(const oclMat& src, oclMat& dst, MultiplyScalar op, int mask) |
|
|
|
|
bool noScale = fabs(alpha - 1) < std::numeric_limits<double>::epsilon() |
|
|
|
|
&& fabs(beta) < std::numeric_limits<double>::epsilon(); |
|
|
|
|
|
|
|
|
|
if( rtype < 0 ) |
|
|
|
|
rtype = src.type(); |
|
|
|
|
else |
|
|
|
|
rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), src.channels()); |
|
|
|
|
|
|
|
|
|
int sdepth = src.depth(), ddepth = CV_MAT_DEPTH(rtype); |
|
|
|
|
if( sdepth == ddepth && noScale ) |
|
|
|
|
{ |
|
|
|
|
src.copyTo(dst); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
oclMat temp; |
|
|
|
|
const oclMat *psrc = &src; |
|
|
|
|
if( sdepth != ddepth && psrc == &dst ) |
|
|
|
|
psrc = &(temp = src); |
|
|
|
|
|
|
|
|
|
dst.create( src.size(), rtype ); |
|
|
|
|
convert_run_cus(*psrc, dst, alpha, beta); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
|
//////////////////////////////// setTo ////////////////////////////////////
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
|
//oclMat &operator = (const Scalar &s)
|
|
|
|
|
//{
|
|
|
|
|
// //cout << "cv::ocl::oclMat::=" << endl;
|
|
|
|
|
// setTo(s);
|
|
|
|
|
// return *this;
|
|
|
|
|
//}
|
|
|
|
|
void set_to_withoutmask_run_cus(const oclMat &dst, const Scalar &scalar, string kernelName) |
|
|
|
|
{ |
|
|
|
|
Mat srcTemp; |
|
|
|
|
Mat dstTemp; |
|
|
|
|
src.download(srcTemp); |
|
|
|
|
dst.download(dstTemp); |
|
|
|
|
|
|
|
|
|
int i; |
|
|
|
|
int j; |
|
|
|
|
int k; |
|
|
|
|
for(i = 0; i < srcTemp.rows; i++) |
|
|
|
|
vector<pair<size_t , const void *> > args; |
|
|
|
|
|
|
|
|
|
size_t localThreads[3] = {16, 16, 1}; |
|
|
|
|
size_t globalThreads[3]; |
|
|
|
|
globalThreads[0] = (dst.cols + localThreads[0] - 1) / localThreads[0] * localThreads[0]; |
|
|
|
|
globalThreads[1] = (dst.rows + localThreads[1] - 1) / localThreads[1] * localThreads[1]; |
|
|
|
|
globalThreads[2] = 1; |
|
|
|
|
int step_in_pixel = dst.step / dst.elemSize(), offset_in_pixel = dst.offset / dst.elemSize(); |
|
|
|
|
if(dst.type() == CV_8UC1) |
|
|
|
|
{ |
|
|
|
|
globalThreads[0] = ((dst.cols + 4) / 4 + localThreads[0] - 1) / localThreads[0] * localThreads[0]; |
|
|
|
|
} |
|
|
|
|
char compile_option[32]; |
|
|
|
|
union sc |
|
|
|
|
{ |
|
|
|
|
for(j = 0; j < srcTemp.cols; j++) |
|
|
|
|
cl_uchar4 uval; |
|
|
|
|
cl_char4 cval; |
|
|
|
|
cl_ushort4 usval; |
|
|
|
|
cl_short4 shval; |
|
|
|
|
cl_int4 ival; |
|
|
|
|
cl_float4 fval; |
|
|
|
|
cl_double4 dval; |
|
|
|
|
}val; |
|
|
|
|
switch(dst.depth()) |
|
|
|
|
{ |
|
|
|
|
case 0: |
|
|
|
|
val.uval.s[0] = saturate_cast<uchar>(scalar.val[0]); |
|
|
|
|
val.uval.s[1] = saturate_cast<uchar>(scalar.val[1]); |
|
|
|
|
val.uval.s[2] = saturate_cast<uchar>(scalar.val[2]); |
|
|
|
|
val.uval.s[3] = saturate_cast<uchar>(scalar.val[3]); |
|
|
|
|
switch(dst.channels()) |
|
|
|
|
{ |
|
|
|
|
case 1: |
|
|
|
|
sprintf(compile_option, "-D GENTYPE=uchar"); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_uchar) , (void *)&val.uval.s[0] )); |
|
|
|
|
break; |
|
|
|
|
case 4: |
|
|
|
|
sprintf(compile_option, "-D GENTYPE=uchar4"); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_uchar4) , (void *)&val.uval )); |
|
|
|
|
break; |
|
|
|
|
default: |
|
|
|
|
CV_Error(CV_StsUnsupportedFormat,"unsupported channels"); |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case 1: |
|
|
|
|
val.cval.s[0] = saturate_cast<char>(scalar.val[0]); |
|
|
|
|
val.cval.s[1] = saturate_cast<char>(scalar.val[1]); |
|
|
|
|
val.cval.s[2] = saturate_cast<char>(scalar.val[2]); |
|
|
|
|
val.cval.s[3] = saturate_cast<char>(scalar.val[3]); |
|
|
|
|
switch(dst.channels()) |
|
|
|
|
{ |
|
|
|
|
case 1: |
|
|
|
|
sprintf(compile_option, "-D GENTYPE=char"); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_char) , (void *)&val.cval.s[0] )); |
|
|
|
|
break; |
|
|
|
|
case 4: |
|
|
|
|
sprintf(compile_option, "-D GENTYPE=char4"); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_char4) , (void *)&val.cval )); |
|
|
|
|
break; |
|
|
|
|
default: |
|
|
|
|
CV_Error(CV_StsUnsupportedFormat,"unsupported channels"); |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case 2: |
|
|
|
|
val.usval.s[0] = saturate_cast<ushort>(scalar.val[0]); |
|
|
|
|
val.usval.s[1] = saturate_cast<ushort>(scalar.val[1]); |
|
|
|
|
val.usval.s[2] = saturate_cast<ushort>(scalar.val[2]); |
|
|
|
|
val.usval.s[3] = saturate_cast<ushort>(scalar.val[3]); |
|
|
|
|
switch(dst.channels()) |
|
|
|
|
{ |
|
|
|
|
case 1: |
|
|
|
|
sprintf(compile_option, "-D GENTYPE=ushort"); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_ushort) , (void *)&val.usval.s[0] )); |
|
|
|
|
break; |
|
|
|
|
case 4: |
|
|
|
|
sprintf(compile_option, "-D GENTYPE=ushort4"); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_ushort4) , (void *)&val.usval )); |
|
|
|
|
break; |
|
|
|
|
default: |
|
|
|
|
CV_Error(CV_StsUnsupportedFormat,"unsupported channels"); |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case 3: |
|
|
|
|
val.shval.s[0] = saturate_cast<short>(scalar.val[0]); |
|
|
|
|
val.shval.s[1] = saturate_cast<short>(scalar.val[1]); |
|
|
|
|
val.shval.s[2] = saturate_cast<short>(scalar.val[2]); |
|
|
|
|
val.shval.s[3] = saturate_cast<short>(scalar.val[3]); |
|
|
|
|
switch(dst.channels()) |
|
|
|
|
{ |
|
|
|
|
for(k = 0; k < srcTemp.channels(); k++) |
|
|
|
|
{ |
|
|
|
|
((float*)dstTemp.data)[srcTemp.channels() * (i * srcTemp.rows + j) + k] = (float)op(((float*)srcTemp.data)[srcTemp.channels() * (i * srcTemp.rows + j) + k]); |
|
|
|
|
} |
|
|
|
|
case 1: |
|
|
|
|
sprintf(compile_option, "-D GENTYPE=short"); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_short) , (void *)&val.shval.s[0] )); |
|
|
|
|
break; |
|
|
|
|
case 4: |
|
|
|
|
sprintf(compile_option, "-D GENTYPE=short4"); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_short4) , (void *)&val.shval )); |
|
|
|
|
break; |
|
|
|
|
default: |
|
|
|
|
CV_Error(CV_StsUnsupportedFormat,"unsupported channels"); |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case 4: |
|
|
|
|
val.ival.s[0] = saturate_cast<int>(scalar.val[0]); |
|
|
|
|
val.ival.s[1] = saturate_cast<int>(scalar.val[1]); |
|
|
|
|
val.ival.s[2] = saturate_cast<int>(scalar.val[2]); |
|
|
|
|
val.ival.s[3] = saturate_cast<int>(scalar.val[3]); |
|
|
|
|
switch(dst.channels()) |
|
|
|
|
{ |
|
|
|
|
case 1: |
|
|
|
|
sprintf(compile_option, "-D GENTYPE=int"); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&val.ival.s[0] )); |
|
|
|
|
break; |
|
|
|
|
case 2: |
|
|
|
|
sprintf(compile_option, "-D GENTYPE=int2"); |
|
|
|
|
cl_int2 i2val; |
|
|
|
|
i2val.s[0] = val.ival.s[0]; |
|
|
|
|
i2val.s[1] = val.ival.s[1]; |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int2) , (void *)&i2val )); |
|
|
|
|
break; |
|
|
|
|
case 4: |
|
|
|
|
sprintf(compile_option, "-D GENTYPE=int4"); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int4) , (void *)&val.ival )); |
|
|
|
|
break; |
|
|
|
|
default: |
|
|
|
|
CV_Error(CV_StsUnsupportedFormat,"unsupported channels"); |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case 5: |
|
|
|
|
val.fval.s[0] = (float)scalar.val[0]; |
|
|
|
|
val.fval.s[1] = (float)scalar.val[1]; |
|
|
|
|
val.fval.s[2] = (float)scalar.val[2]; |
|
|
|
|
val.fval.s[3] = (float)scalar.val[3];
|
|
|
|
|
switch(dst.channels()) |
|
|
|
|
{ |
|
|
|
|
case 1: |
|
|
|
|
sprintf(compile_option, "-D GENTYPE=float"); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_float) , (void *)&val.fval.s[0] )); |
|
|
|
|
break; |
|
|
|
|
case 4: |
|
|
|
|
sprintf(compile_option, "-D GENTYPE=float4"); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_float4) , (void *)&val.fval )); |
|
|
|
|
break; |
|
|
|
|
default: |
|
|
|
|
CV_Error(CV_StsUnsupportedFormat,"unsupported channels"); |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
case 6: |
|
|
|
|
val.dval.s[0] = scalar.val[0]; |
|
|
|
|
val.dval.s[1] = scalar.val[1]; |
|
|
|
|
val.dval.s[2] = scalar.val[2]; |
|
|
|
|
val.dval.s[3] = scalar.val[3]; |
|
|
|
|
switch(dst.channels()) |
|
|
|
|
{ |
|
|
|
|
case 1: |
|
|
|
|
sprintf(compile_option, "-D GENTYPE=double"); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_double) , (void *)&val.dval.s[0] )); |
|
|
|
|
break; |
|
|
|
|
case 4: |
|
|
|
|
sprintf(compile_option, "-D GENTYPE=double4"); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_double4) , (void *)&val.dval )); |
|
|
|
|
break; |
|
|
|
|
default: |
|
|
|
|
CV_Error(CV_StsUnsupportedFormat,"unsupported channels"); |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
default: |
|
|
|
|
CV_Error(CV_StsUnsupportedFormat,"unknown depth"); |
|
|
|
|
} |
|
|
|
|
#if CL_VERSION_1_2 |
|
|
|
|
if(dst.offset==0 && dst.cols==dst.wholecols) |
|
|
|
|
{ |
|
|
|
|
clEnqueueFillBuffer(dst.clCxt->impl->clCmdQueue,(cl_mem)dst.data,args[0].second,args[0].first,0,dst.step*dst.rows,0,NULL,NULL); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
dst = dstTemp; |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.cols )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.rows )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&step_in_pixel )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&offset_in_pixel)); |
|
|
|
|
openCLExecuteKernel2(dst.clCxt , &operator_setTo, kernelName, globalThreads, |
|
|
|
|
localThreads, args, -1, -1,compile_option, CLFLUSH); |
|
|
|
|
} |
|
|
|
|
#else |
|
|
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.cols )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.rows )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&step_in_pixel )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&offset_in_pixel)); |
|
|
|
|
openCLExecuteKernel2(dst.clCxt , &operator_setTo, kernelName, globalThreads, |
|
|
|
|
localThreads, args, -1, -1,compile_option, CLFLUSH); |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static inline bool isAligned(const unsigned char* ptr, size_t size) |
|
|
|
|
oclMat &setTo(oclMat &src, const Scalar &scalar) |
|
|
|
|
{ |
|
|
|
|
return reinterpret_cast<size_t>(ptr) % size == 0; |
|
|
|
|
} |
|
|
|
|
CV_Assert( src.depth() >= 0 && src.depth() <= 6 ); |
|
|
|
|
CV_DbgAssert( !src.empty()); |
|
|
|
|
|
|
|
|
|
static inline bool isAligned(size_t step, size_t size) |
|
|
|
|
{ |
|
|
|
|
return step % size == 0; |
|
|
|
|
if(src.type()==CV_8UC1) |
|
|
|
|
{ |
|
|
|
|
set_to_withoutmask_run_cus(src, scalar, "set_to_without_mask_C1_D0"); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
set_to_withoutmask_run_cus(src, scalar, "set_to_without_mask"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return src; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void callT(const oclMat& src, oclMat& dst, MultiplyScalar op, int mask) |
|
|
|
|
void arithmetic_run(const oclMat &src1, oclMat &dst, string kernelName, const char **kernelString, void *_scalar) |
|
|
|
|
{ |
|
|
|
|
if (!isAligned(src.data, 4 * sizeof(double)) || !isAligned(src.step, 4 * sizeof(double)) ||
|
|
|
|
|
!isAligned(dst.data, 4 * sizeof(double)) || !isAligned(dst.step, 4 * sizeof(double))) |
|
|
|
|
if(src1.clCxt -> impl -> double_support ==0 && src1.type() == CV_64F) |
|
|
|
|
{ |
|
|
|
|
callF(src, dst, op, mask); |
|
|
|
|
CV_Error(CV_GpuNotSupported,"Selected device don't support double\r\n"); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Mat srcTemp; |
|
|
|
|
Mat dstTemp; |
|
|
|
|
src.download(srcTemp); |
|
|
|
|
dst.download(dstTemp); |
|
|
|
|
//dst.create(src1.size(), src1.type());
|
|
|
|
|
//CV_Assert(src1.cols == src2.cols && src2.cols == dst.cols &&
|
|
|
|
|
// src1.rows == src2.rows && src2.rows == dst.rows);
|
|
|
|
|
CV_Assert(src1.cols == dst.cols &&
|
|
|
|
|
src1.rows == dst.rows); |
|
|
|
|
|
|
|
|
|
int x_shifted; |
|
|
|
|
CV_Assert(src1.type() == dst.type()); |
|
|
|
|
CV_Assert(src1.depth() != CV_8S); |
|
|
|
|
|
|
|
|
|
int i; |
|
|
|
|
int j; |
|
|
|
|
for(i = 0; i < srcTemp.rows; i++) |
|
|
|
|
{ |
|
|
|
|
const double* srcRow = (const double*)srcTemp.data + i * srcTemp.rows; |
|
|
|
|
double* dstRow = (double*)dstTemp.data + i * dstTemp.rows;; |
|
|
|
|
Context *clCxt = src1.clCxt; |
|
|
|
|
//int channels = dst.channels();
|
|
|
|
|
//int depth = dst.depth();
|
|
|
|
|
|
|
|
|
|
for(j = 0; j < srcTemp.cols; j++) |
|
|
|
|
{ |
|
|
|
|
x_shifted = j * 4; |
|
|
|
|
|
|
|
|
|
if(x_shifted + 4 - 1 < srcTemp.cols) |
|
|
|
|
{ |
|
|
|
|
dstRow[x_shifted ] = op(srcRow[x_shifted ]); |
|
|
|
|
dstRow[x_shifted + 1] = op(srcRow[x_shifted + 1]); |
|
|
|
|
dstRow[x_shifted + 2] = op(srcRow[x_shifted + 2]); |
|
|
|
|
dstRow[x_shifted + 3] = op(srcRow[x_shifted + 3]); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
for (int real_x = x_shifted; real_x < srcTemp.cols; ++real_x) |
|
|
|
|
{ |
|
|
|
|
((float*)dstTemp.data)[i * srcTemp.rows + real_x] = op(((float*)srcTemp.data)[i * srcTemp.rows + real_x]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
//int vector_lengths[4][7] = {{4, 0, 4, 4, 1, 1, 1},
|
|
|
|
|
// {4, 0, 4, 4, 1, 1, 1},
|
|
|
|
|
// {4, 0, 4, 4, 1, 1, 1},
|
|
|
|
|
// {4, 0, 4, 4, 1, 1, 1}
|
|
|
|
|
//};
|
|
|
|
|
|
|
|
|
|
//size_t vector_length = vector_lengths[channels-1][depth];
|
|
|
|
|
//int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1);
|
|
|
|
|
//int cols = divUp(dst.cols * channels + offset_cols, vector_length);
|
|
|
|
|
|
|
|
|
|
size_t localThreads[3] = { 16, 16, 1 }; |
|
|
|
|
//size_t globalThreads[3] = { divUp(cols, localThreads[0]) * localThreads[0],
|
|
|
|
|
// divUp(dst.rows, localThreads[1]) * localThreads[1],
|
|
|
|
|
// 1
|
|
|
|
|
// };
|
|
|
|
|
size_t globalThreads[3] = { src1.cols, |
|
|
|
|
src1.rows, |
|
|
|
|
1 |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
int dst_step1 = dst.cols * dst.elemSize(); |
|
|
|
|
vector<pair<size_t , const void *> > args; |
|
|
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset )); |
|
|
|
|
//args.push_back( make_pair( sizeof(cl_mem), (void *)&src2.data ));
|
|
|
|
|
//args.push_back( make_pair( sizeof(cl_int), (void *)&src2.step ));
|
|
|
|
|
//args.push_back( make_pair( sizeof(cl_int), (void *)&src2.offset ));
|
|
|
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.rows )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.cols )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 )); |
|
|
|
|
|
|
|
|
|
//if(_scalar != NULL)
|
|
|
|
|
//{
|
|
|
|
|
float scalar1 = *((float *)_scalar); |
|
|
|
|
args.push_back( make_pair( sizeof(float), (float *)&scalar1 )); |
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
openCLExecuteKernel2(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, src1.depth(), CLFLUSH); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void multiply_cus(const oclMat &src1, oclMat &dst, float scalar) |
|
|
|
|
{ |
|
|
|
|
arithmetic_run(src1, dst, "arithm_muls", &pyrlk, (void *)(&scalar)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void pyrdown_run_cus(const oclMat &src, const oclMat &dst) |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
CV_Assert(src.type() == dst.type()); |
|
|
|
|
CV_Assert(src.depth() != CV_8S); |
|
|
|
|
|
|
|
|
|
Context *clCxt = src.clCxt; |
|
|
|
|
|
|
|
|
|
string kernelName = "pyrDown"; |
|
|
|
|
|
|
|
|
|
size_t localThreads[3] = { 256, 1, 1 }; |
|
|
|
|
size_t globalThreads[3] = { src.cols, dst.rows, 1}; |
|
|
|
|
|
|
|
|
|
vector<pair<size_t , const void *> > args; |
|
|
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src.step )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows)); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src.cols)); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.cols)); |
|
|
|
|
|
|
|
|
|
openCLExecuteKernel2(clCxt, &pyr_down, kernelName, globalThreads, localThreads, args, src.channels(), src.depth(), CLFLUSH); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void multiply(const oclMat& src1, double val, oclMat& dst, double scale = 1.0f); |
|
|
|
|
void multiply(const oclMat& src1, double val, oclMat& dst, double scale) |
|
|
|
|
void pyrDown_cus(const oclMat& src, oclMat& dst) |
|
|
|
|
{ |
|
|
|
|
MultiplyScalar op(val, scale); |
|
|
|
|
//if(src1.channels() == 1 && dst.channels() == 1)
|
|
|
|
|
//{
|
|
|
|
|
// callT(src1, dst, op, 0);
|
|
|
|
|
//}
|
|
|
|
|
//else
|
|
|
|
|
//{
|
|
|
|
|
callF(src1, dst, op, 0); |
|
|
|
|
//}
|
|
|
|
|
CV_Assert(src.depth() <= CV_32F && src.channels() <= 4); |
|
|
|
|
|
|
|
|
|
dst.create((src.rows + 1) / 2, (src.cols + 1) / 2, src.type()); |
|
|
|
|
|
|
|
|
|
pyrdown_run_cus(src, dst); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//struct MultiplyScalar
|
|
|
|
|
//{
|
|
|
|
|
// MultiplyScalar(double val_, double scale_) : val(val_), scale(scale_) {}
|
|
|
|
|
// double operator ()(double a) const
|
|
|
|
|
// {
|
|
|
|
|
// return (scale * a * val);
|
|
|
|
|
// }
|
|
|
|
|
// const double val;
|
|
|
|
|
// const double scale;
|
|
|
|
|
//};
|
|
|
|
|
//
|
|
|
|
|
//void callF(const oclMat& src, oclMat& dst, MultiplyScalar op, int mask)
|
|
|
|
|
//{
|
|
|
|
|
// Mat srcTemp;
|
|
|
|
|
// Mat dstTemp;
|
|
|
|
|
// src.download(srcTemp);
|
|
|
|
|
// dst.download(dstTemp);
|
|
|
|
|
//
|
|
|
|
|
// int i;
|
|
|
|
|
// int j;
|
|
|
|
|
// int k;
|
|
|
|
|
// for(i = 0; i < srcTemp.rows; i++)
|
|
|
|
|
// {
|
|
|
|
|
// for(j = 0; j < srcTemp.cols; j++)
|
|
|
|
|
// {
|
|
|
|
|
// for(k = 0; k < srcTemp.channels(); k++)
|
|
|
|
|
// {
|
|
|
|
|
// ((float*)dstTemp.data)[srcTemp.channels() * (i * srcTemp.rows + j) + k] = (float)op(((float*)srcTemp.data)[srcTemp.channels() * (i * srcTemp.rows + j) + k]);
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// dst = dstTemp;
|
|
|
|
|
//}
|
|
|
|
|
//
|
|
|
|
|
//static inline bool isAligned(const unsigned char* ptr, size_t size)
|
|
|
|
|
//{
|
|
|
|
|
// return reinterpret_cast<size_t>(ptr) % size == 0;
|
|
|
|
|
//}
|
|
|
|
|
//
|
|
|
|
|
//static inline bool isAligned(size_t step, size_t size)
|
|
|
|
|
//{
|
|
|
|
|
// return step % size == 0;
|
|
|
|
|
//}
|
|
|
|
|
//
|
|
|
|
|
//void callT(const oclMat& src, oclMat& dst, MultiplyScalar op, int mask)
|
|
|
|
|
//{
|
|
|
|
|
// if (!isAligned(src.data, 4 * sizeof(double)) || !isAligned(src.step, 4 * sizeof(double)) ||
|
|
|
|
|
// !isAligned(dst.data, 4 * sizeof(double)) || !isAligned(dst.step, 4 * sizeof(double)))
|
|
|
|
|
// {
|
|
|
|
|
// callF(src, dst, op, mask);
|
|
|
|
|
// return;
|
|
|
|
|
// }
|
|
|
|
|
//
|
|
|
|
|
// Mat srcTemp;
|
|
|
|
|
// Mat dstTemp;
|
|
|
|
|
// src.download(srcTemp);
|
|
|
|
|
// dst.download(dstTemp);
|
|
|
|
|
//
|
|
|
|
|
// int x_shifted;
|
|
|
|
|
//
|
|
|
|
|
// int i;
|
|
|
|
|
// int j;
|
|
|
|
|
// for(i = 0; i < srcTemp.rows; i++)
|
|
|
|
|
// {
|
|
|
|
|
// const double* srcRow = (const double*)srcTemp.data + i * srcTemp.rows;
|
|
|
|
|
// double* dstRow = (double*)dstTemp.data + i * dstTemp.rows;;
|
|
|
|
|
//
|
|
|
|
|
// for(j = 0; j < srcTemp.cols; j++)
|
|
|
|
|
// {
|
|
|
|
|
// x_shifted = j * 4;
|
|
|
|
|
//
|
|
|
|
|
// if(x_shifted + 4 - 1 < srcTemp.cols)
|
|
|
|
|
// {
|
|
|
|
|
// dstRow[x_shifted ] = op(srcRow[x_shifted ]);
|
|
|
|
|
// dstRow[x_shifted + 1] = op(srcRow[x_shifted + 1]);
|
|
|
|
|
// dstRow[x_shifted + 2] = op(srcRow[x_shifted + 2]);
|
|
|
|
|
// dstRow[x_shifted + 3] = op(srcRow[x_shifted + 3]);
|
|
|
|
|
// }
|
|
|
|
|
// else
|
|
|
|
|
// {
|
|
|
|
|
// for (int real_x = x_shifted; real_x < srcTemp.cols; ++real_x)
|
|
|
|
|
// {
|
|
|
|
|
// ((float*)dstTemp.data)[i * srcTemp.rows + real_x] = op(((float*)srcTemp.data)[i * srcTemp.rows + real_x]);
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
//}
|
|
|
|
|
//
|
|
|
|
|
//void multiply(const oclMat& src1, double val, oclMat& dst, double scale = 1.0f);
|
|
|
|
|
//void multiply(const oclMat& src1, double val, oclMat& dst, double scale)
|
|
|
|
|
//{
|
|
|
|
|
// MultiplyScalar op(val, scale);
|
|
|
|
|
// //if(src1.channels() == 1 && dst.channels() == 1)
|
|
|
|
|
// //{
|
|
|
|
|
// // callT(src1, dst, op, 0);
|
|
|
|
|
// //}
|
|
|
|
|
// //else
|
|
|
|
|
// //{
|
|
|
|
|
// callF(src1, dst, op, 0);
|
|
|
|
|
// //}
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
cl_mem bindTexture(const oclMat& mat, int depth, int channels) |
|
|
|
|
{ |
|
|
|
|
cl_mem texture; |
|
|
|
@ -331,7 +634,7 @@ cl_mem bindTexture(const oclMat& mat, int depth, int channels) |
|
|
|
|
#if CL_VERSION_1_2 |
|
|
|
|
cl_image_desc desc; |
|
|
|
|
desc.image_type = CL_MEM_OBJECT_IMAGE2D; |
|
|
|
|
desc.image_width = mat.cols; |
|
|
|
|
desc.image_width = mat.step / mat.elemSize(); |
|
|
|
|
desc.image_height = mat.rows; |
|
|
|
|
desc.image_depth = NULL; |
|
|
|
|
desc.image_array_size = 1; |
|
|
|
@ -346,30 +649,35 @@ cl_mem bindTexture(const oclMat& mat, int depth, int channels) |
|
|
|
|
mat.clCxt->impl->clContext,
|
|
|
|
|
CL_MEM_READ_WRITE,
|
|
|
|
|
&format,
|
|
|
|
|
mat.cols,
|
|
|
|
|
mat.step / mat.elemSize(),
|
|
|
|
|
mat.rows,
|
|
|
|
|
0,
|
|
|
|
|
NULL,
|
|
|
|
|
&err); |
|
|
|
|
#endif |
|
|
|
|
size_t origin[] = { 0, 0, 0 };
|
|
|
|
|
size_t region[] = { mat.cols, mat.rows, 1 };
|
|
|
|
|
size_t region[] = { mat.step / mat.elemSize(), mat.rows, 1 };
|
|
|
|
|
clEnqueueCopyBufferToImage(mat.clCxt->impl->clCmdQueue, (cl_mem)mat.data, texture, 0, origin, region, 0, NULL, 0); |
|
|
|
|
openCLSafeCall(err); |
|
|
|
|
|
|
|
|
|
return texture; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void releaseTexture(cl_mem texture) |
|
|
|
|
{ |
|
|
|
|
openCLFree(texture); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void lkSparse_run(oclMat& I, oclMat& J, |
|
|
|
|
const oclMat& prevPts, oclMat& nextPts, oclMat& status, oclMat* err, bool GET_MIN_EIGENVALS, int ptcount,
|
|
|
|
|
int level, dim3 block, dim3 patch, Size winSize, int iters) |
|
|
|
|
int level, /*dim3 block, */dim3 patch, Size winSize, int iters) |
|
|
|
|
{ |
|
|
|
|
Context *clCxt = I.clCxt; |
|
|
|
|
|
|
|
|
|
string kernelName = "lkSparse"; |
|
|
|
|
|
|
|
|
|
size_t localThreads[3] = { 16, 16, 1 }; |
|
|
|
|
size_t globalThreads[3] = { 16 * ptcount, 16, 1}; |
|
|
|
|
size_t localThreads[3] = { 8, 32, 1 }; |
|
|
|
|
size_t globalThreads[3] = { 8 * ptcount, 32, 1}; |
|
|
|
|
|
|
|
|
|
int cn = I.channels(); |
|
|
|
|
|
|
|
|
@ -410,7 +718,10 @@ void lkSparse_run(oclMat& I, oclMat& J, |
|
|
|
|
args.push_back( make_pair( sizeof(cl_char), (void *)&calcErr )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_char), (void *)&GET_MIN_EIGENVALS )); |
|
|
|
|
|
|
|
|
|
openCLExecuteKernel(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.channels(), I.depth()); |
|
|
|
|
openCLExecuteKernel2(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.channels(), I.depth(), CLFLUSH); |
|
|
|
|
|
|
|
|
|
releaseTexture(ITex); |
|
|
|
|
releaseTexture(JTex); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat& prevImg, const oclMat& nextImg, const oclMat& prevPts, oclMat& nextPts, oclMat& status, oclMat* err) |
|
|
|
@ -446,14 +757,15 @@ void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat& prevImg, const oclMat& next |
|
|
|
|
oclMat temp1 = (useInitialFlow ? nextPts : prevPts).reshape(1); |
|
|
|
|
oclMat temp2 = nextPts.reshape(1); |
|
|
|
|
//oclMat scalar(temp1.rows, temp1.cols, temp1.type(), Scalar(1.0f / (1 << maxLevel) / 2.0f));
|
|
|
|
|
//ocl::multiply(temp1, scalar, temp2);
|
|
|
|
|
::multiply(temp1, 1.0f / (1 << maxLevel) / 2.0f, temp2); |
|
|
|
|
multiply_cus(temp1, temp2, 1.0f / (1 << maxLevel) / 2.0f); |
|
|
|
|
//::multiply(temp1, 1.0f / (1 << maxLevel) / 2.0f, temp2);
|
|
|
|
|
|
|
|
|
|
ensureSizeIsEnough(1, prevPts.cols, CV_8UC1, status); |
|
|
|
|
status.setTo(Scalar::all(1)); |
|
|
|
|
//status.setTo(Scalar::all(1));
|
|
|
|
|
setTo(status, Scalar::all(1)); |
|
|
|
|
|
|
|
|
|
if (err) |
|
|
|
|
ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err); |
|
|
|
|
//if (err)
|
|
|
|
|
// ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err);
|
|
|
|
|
|
|
|
|
|
// build the image pyramids.
|
|
|
|
|
|
|
|
|
@ -462,23 +774,25 @@ void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat& prevImg, const oclMat& next |
|
|
|
|
|
|
|
|
|
if (cn == 1 || cn == 4) |
|
|
|
|
{ |
|
|
|
|
prevImg.convertTo(prevPyr_[0], CV_32F); |
|
|
|
|
nextImg.convertTo(nextPyr_[0], CV_32F); |
|
|
|
|
//prevImg.convertTo(prevPyr_[0], CV_32F);
|
|
|
|
|
//nextImg.convertTo(nextPyr_[0], CV_32F);
|
|
|
|
|
convertTo(prevImg, prevPyr_[0], CV_32F); |
|
|
|
|
convertTo(nextImg, nextPyr_[0], CV_32F); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
oclMat buf_; |
|
|
|
|
cvtColor(prevImg, buf_, COLOR_BGR2BGRA); |
|
|
|
|
buf_.convertTo(prevPyr_[0], CV_32F); |
|
|
|
|
//oclMat buf_;
|
|
|
|
|
// cvtColor(prevImg, buf_, COLOR_BGR2BGRA);
|
|
|
|
|
// buf_.convertTo(prevPyr_[0], CV_32F);
|
|
|
|
|
|
|
|
|
|
cvtColor(nextImg, buf_, COLOR_BGR2BGRA); |
|
|
|
|
buf_.convertTo(nextPyr_[0], CV_32F); |
|
|
|
|
// cvtColor(nextImg, buf_, COLOR_BGR2BGRA);
|
|
|
|
|
// buf_.convertTo(nextPyr_[0], CV_32F);
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (int level = 1; level <= maxLevel; ++level) |
|
|
|
|
{ |
|
|
|
|
pyrDown(prevPyr_[level - 1], prevPyr_[level]); |
|
|
|
|
pyrDown(nextPyr_[level - 1], nextPyr_[level]); |
|
|
|
|
pyrDown_cus(prevPyr_[level - 1], prevPyr_[level]); |
|
|
|
|
pyrDown_cus(nextPyr_[level - 1], nextPyr_[level]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// dI/dx ~ Ix, dI/dy ~ Iy
|
|
|
|
@ -487,8 +801,10 @@ void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat& prevImg, const oclMat& next |
|
|
|
|
{ |
|
|
|
|
lkSparse_run(prevPyr_[level], nextPyr_[level],
|
|
|
|
|
prevPts, nextPts, status, level == 0 && err ? err : 0, getMinEigenVals, prevPts.cols, |
|
|
|
|
level, block, patch, winSize, iters); |
|
|
|
|
level, /*block, */patch, winSize, iters); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
clFinish(prevImg.clCxt->impl->clCmdQueue); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void lkDense_run(oclMat& I, oclMat& J, oclMat& u, oclMat& v,
|
|
|
|
@ -516,10 +832,10 @@ void lkDense_run(oclMat& I, oclMat& J, oclMat& u, oclMat& v, |
|
|
|
|
cl_mem ITex = bindTexture(I, I.depth(), cn); |
|
|
|
|
cl_mem JTex = bindTexture(J, J.depth(), cn); |
|
|
|
|
|
|
|
|
|
int2 halfWin = {(winSize.width - 1) / 2, (winSize.height - 1) / 2}; |
|
|
|
|
const int patchWidth = 16 + 2 * halfWin.x; |
|
|
|
|
const int patchHeight = 16 + 2 * halfWin.y; |
|
|
|
|
size_t smem_size = 3 * patchWidth * patchHeight * sizeof(int); |
|
|
|
|
//int2 halfWin = {(winSize.width - 1) / 2, (winSize.height - 1) / 2};
|
|
|
|
|
//const int patchWidth = 16 + 2 * halfWin.x;
|
|
|
|
|
//const int patchHeight = 16 + 2 * halfWin.y;
|
|
|
|
|
//size_t smem_size = 3 * patchWidth * patchHeight * sizeof(int);
|
|
|
|
|
|
|
|
|
|
vector<pair<size_t , const void *> > args; |
|
|
|
|
|
|
|
|
@ -543,7 +859,10 @@ void lkDense_run(oclMat& I, oclMat& J, oclMat& u, oclMat& v, |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&iters )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_char), (void *)&calcErr )); |
|
|
|
|
|
|
|
|
|
openCLExecuteKernel(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.channels(), I.depth()); |
|
|
|
|
openCLExecuteKernel2(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.channels(), I.depth(), CLFLUSH); |
|
|
|
|
|
|
|
|
|
releaseTexture(ITex); |
|
|
|
|
releaseTexture(JTex); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void cv::ocl::PyrLKOpticalFlow::dense(const oclMat& prevImg, const oclMat& nextImg, oclMat& u, oclMat& v, oclMat* err) |
|
|
|
|