|
|
|
@ -11,22 +11,64 @@ using namespace cv; |
|
|
|
|
using namespace std; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void get_svm_detector(const SVM& svm, vector< float > & hog_detector ) |
|
|
|
|
{ |
|
|
|
|
// get the number of variables
|
|
|
|
|
const int var_all = svm.get_var_count(); |
|
|
|
|
// get the number of support vectors
|
|
|
|
|
const int sv_total = svm.get_support_vector_count(); |
|
|
|
|
// get the decision function
|
|
|
|
|
const CvSVMDecisionFunc* decision_func = svm.get_decision_function(); |
|
|
|
|
// get the support vectors
|
|
|
|
|
const float** sv = &(svm.get_support_vector(0));
|
|
|
|
|
|
|
|
|
|
CV_Assert( var_all > 0 && |
|
|
|
|
sv_total > 0 && |
|
|
|
|
decision_func != 0 && |
|
|
|
|
decision_func->alpha != 0 && |
|
|
|
|
decision_func->sv_count == sv_total ); |
|
|
|
|
|
|
|
|
|
float svi = 0.f; |
|
|
|
|
|
|
|
|
|
hog_detector.clear(); //clear stuff in vector.
|
|
|
|
|
hog_detector.reserve( var_all + 1 ); //reserve place for memory efficiency.
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* hog_detector^i = \sum_j support_vector_j^i * \alpha_j |
|
|
|
|
* hog_detector^dim = -\rho |
|
|
|
|
*/ |
|
|
|
|
for( int i = 0 ; i < var_all ; ++i ) |
|
|
|
|
{ |
|
|
|
|
svi = 0.f; |
|
|
|
|
for( int j = 0 ; j < sv_total ; ++j ) |
|
|
|
|
{ |
|
|
|
|
if( decision_func->sv_index != NULL ) // sometime the sv_index isn't store on YML/XML.
|
|
|
|
|
svi += (float)( sv[decision_func->sv_index[j]][i] * decision_func->alpha[ j ] ); |
|
|
|
|
else |
|
|
|
|
svi += (float)( sv[j][i] * decision_func->alpha[ j ] ); |
|
|
|
|
} |
|
|
|
|
hog_detector.push_back( svi ); |
|
|
|
|
} |
|
|
|
|
hog_detector.push_back( (float)-decision_func->rho ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Convert training/testing set to be used by OpenCV Machine Learning algorithms. |
|
|
|
|
* TrainData is a matrix of size (#samples x max(#cols,#rows) per samples), in 32FC1. |
|
|
|
|
* Transposition of samples are made if needed. |
|
|
|
|
*/ |
|
|
|
|
* Convert training/testing set to be used by OpenCV Machine Learning algorithms. |
|
|
|
|
* TrainData is a matrix of size (#samples x max(#cols,#rows) per samples), in 32FC1. |
|
|
|
|
* Transposition of samples are made if needed. |
|
|
|
|
*/ |
|
|
|
|
void convert_to_ml(const std::vector< cv::Mat > & train_samples, cv::Mat& trainData ) |
|
|
|
|
{ |
|
|
|
|
//--Convert data
|
|
|
|
|
//--Convert data
|
|
|
|
|
const int rows = (int)train_samples.size(); |
|
|
|
|
const int cols = (int)std::max( train_samples[0].cols, train_samples[0].rows ); |
|
|
|
|
cv::Mat tmp(1, cols, CV_32FC1); //< used for transposition if needed
|
|
|
|
|
trainData = cv::Mat(rows, cols, CV_32FC1 ); |
|
|
|
|
auto& itr = train_samples.begin(); |
|
|
|
|
auto& end = train_samples.end(); |
|
|
|
|
for( int i = 0 ; itr != end ; ++itr, ++i ) |
|
|
|
|
{ |
|
|
|
|
trainData = cv::Mat(rows, cols, CV_32FC1 ); |
|
|
|
|
auto& itr = train_samples.begin(); |
|
|
|
|
auto& end = train_samples.end(); |
|
|
|
|
for( int i = 0 ; itr != end ; ++itr, ++i ) |
|
|
|
|
{ |
|
|
|
|
CV_Assert( itr->cols == 1 || |
|
|
|
|
itr->rows == 1 ); |
|
|
|
|
if( itr->cols == 1 ) |
|
|
|
@ -38,7 +80,7 @@ void convert_to_ml(const std::vector< cv::Mat > & train_samples, cv::Mat& trainD |
|
|
|
|
{ |
|
|
|
|
itr->copyTo( trainData.row( i ) ); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void load_images( const string & prefix, const string & filename, vector< Mat > & img_lst ) |
|
|
|
@ -52,7 +94,7 @@ void load_images( const string & prefix, const string & filename, vector< Mat > |
|
|
|
|
cerr << "Unable to open the list of images from " << filename << " filename." << endl; |
|
|
|
|
exit( -1 ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
while( 1 ) |
|
|
|
|
{ |
|
|
|
|
getline( file, line ); |
|
|
|
@ -102,12 +144,12 @@ Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues, |
|
|
|
|
float zoomFac = 3; |
|
|
|
|
Mat visu; |
|
|
|
|
resize(color_origImg, visu, Size(color_origImg.cols*zoomFac, color_origImg.rows*zoomFac)); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int blockSize = 16; |
|
|
|
|
int cellSize = 8; |
|
|
|
|
int gradientBinSize = 9; |
|
|
|
|
float radRangeForOneBin = CV_PI/(float)gradientBinSize; // dividing 180° into 9 bins, how large (in rad) is one bin?
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// prepare data structure: 9 orientation / gradient strenghts for each cell
|
|
|
|
|
int cells_in_x_dir = DIMX / cellSize; |
|
|
|
|
int cells_in_y_dir = DIMY / cellSize; |
|
|
|
@ -122,22 +164,22 @@ Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues, |
|
|
|
|
{ |
|
|
|
|
gradientStrengths[y][x] = new float[gradientBinSize]; |
|
|
|
|
cellUpdateCounter[y][x] = 0; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (int bin=0; bin<gradientBinSize; bin++) |
|
|
|
|
gradientStrengths[y][x][bin] = 0.0; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// nr of blocks = nr of cells - 1
|
|
|
|
|
// since there is a new block on each cell (overlapping blocks!) but the last one
|
|
|
|
|
int blocks_in_x_dir = cells_in_x_dir - 1; |
|
|
|
|
int blocks_in_y_dir = cells_in_y_dir - 1; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// compute gradient strengths per cell
|
|
|
|
|
int descriptorDataIdx = 0; |
|
|
|
|
int cellx = 0; |
|
|
|
|
int celly = 0; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (int blockx=0; blockx<blocks_in_x_dir; blockx++) |
|
|
|
|
{ |
|
|
|
|
for (int blocky=0; blocky<blocks_in_y_dir; blocky++)
|
|
|
|
@ -155,37 +197,37 @@ Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues, |
|
|
|
|
cellx++; |
|
|
|
|
celly++; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (int bin=0; bin<gradientBinSize; bin++) |
|
|
|
|
{ |
|
|
|
|
float gradientStrength = descriptorValues[ descriptorDataIdx ]; |
|
|
|
|
descriptorDataIdx++; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gradientStrengths[celly][cellx][bin] += gradientStrength; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} // for (all bins)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// note: overlapping blocks lead to multiple updates of this sum!
|
|
|
|
|
// we therefore keep track how often a cell was updated,
|
|
|
|
|
// to compute average gradient strengths
|
|
|
|
|
cellUpdateCounter[celly][cellx]++; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} // for (all cells)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} // for (all block x pos)
|
|
|
|
|
} // for (all block y pos)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// compute average gradient strengths
|
|
|
|
|
for (int celly=0; celly<cells_in_y_dir; celly++) |
|
|
|
|
{ |
|
|
|
|
for (int cellx=0; cellx<cells_in_x_dir; cellx++) |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float NrUpdatesForThisCell = (float)cellUpdateCounter[celly][cellx]; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// compute average gradient strenghts for each gradient bin direction
|
|
|
|
|
for (int bin=0; bin<gradientBinSize; bin++) |
|
|
|
|
{ |
|
|
|
@ -193,7 +235,7 @@ Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues, |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// draw cells
|
|
|
|
|
for (int celly=0; celly<cells_in_y_dir; celly++) |
|
|
|
|
{ |
|
|
|
@ -201,58 +243,58 @@ Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues, |
|
|
|
|
{ |
|
|
|
|
int drawX = cellx * cellSize; |
|
|
|
|
int drawY = celly * cellSize; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int mx = drawX + cellSize/2; |
|
|
|
|
int my = drawY + cellSize/2; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rectangle(visu, Point(drawX*zoomFac,drawY*zoomFac), Point((drawX+cellSize)*zoomFac,(drawY+cellSize)*zoomFac), CV_RGB(100,100,100), 1); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// draw in each cell all 9 gradient strengths
|
|
|
|
|
for (int bin=0; bin<gradientBinSize; bin++) |
|
|
|
|
{ |
|
|
|
|
float currentGradStrength = gradientStrengths[celly][cellx][bin]; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// no line to draw?
|
|
|
|
|
if (currentGradStrength==0) |
|
|
|
|
continue; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float currRad = bin * radRangeForOneBin + radRangeForOneBin/2; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float dirVecX = cos( currRad ); |
|
|
|
|
float dirVecY = sin( currRad ); |
|
|
|
|
float maxVecLen = cellSize/2; |
|
|
|
|
float scale = 2.5; // just a visualization scale, to see the lines better
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// compute line coordinates
|
|
|
|
|
float x1 = mx - dirVecX * currentGradStrength * maxVecLen * scale; |
|
|
|
|
float y1 = my - dirVecY * currentGradStrength * maxVecLen * scale; |
|
|
|
|
float x2 = mx + dirVecX * currentGradStrength * maxVecLen * scale; |
|
|
|
|
float y2 = my + dirVecY * currentGradStrength * maxVecLen * scale; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// draw gradient visualization
|
|
|
|
|
line(visu, Point(x1*zoomFac,y1*zoomFac), Point(x2*zoomFac,y2*zoomFac), CV_RGB(0,255,0), 1); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} // for (all bins)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} // for (cellx)
|
|
|
|
|
} // for (celly)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// don't forget to free memory allocated by helper data structures!
|
|
|
|
|
for (int y=0; y<cells_in_y_dir; y++) |
|
|
|
|
{ |
|
|
|
|
for (int x=0; x<cells_in_x_dir; x++) |
|
|
|
|
{ |
|
|
|
|
delete[] gradientStrengths[y][x];
|
|
|
|
|
} |
|
|
|
|
delete[] gradientStrengths[y]; |
|
|
|
|
delete[] cellUpdateCounter[y]; |
|
|
|
|
for (int x=0; x<cells_in_x_dir; x++) |
|
|
|
|
{ |
|
|
|
|
delete[] gradientStrengths[y][x];
|
|
|
|
|
} |
|
|
|
|
delete[] gradientStrengths[y]; |
|
|
|
|
delete[] cellUpdateCounter[y]; |
|
|
|
|
} |
|
|
|
|
delete[] gradientStrengths; |
|
|
|
|
delete[] cellUpdateCounter; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return visu; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} // get_hogdescriptor_visu
|
|
|
|
|
|
|
|
|
|
void compute_hog( const vector< Mat > & img_lst, vector< Mat > & gradient_lst, const Size & size ) |
|
|
|
@ -322,7 +364,7 @@ void test_it( const Size & size ) |
|
|
|
|
Scalar reference( 0, 255, 0 ); |
|
|
|
|
Scalar trained( 0, 0, 255 ); |
|
|
|
|
Mat img, draw; |
|
|
|
|
SVM svm; |
|
|
|
|
MySVM svm; |
|
|
|
|
HOGDescriptor hog; |
|
|
|
|
HOGDescriptor my_hog; |
|
|
|
|
my_hog.winSize = size; |
|
|
|
@ -333,7 +375,7 @@ void test_it( const Size & size ) |
|
|
|
|
svm.load( "my_people_detector.yml" ); |
|
|
|
|
// Set the trained svm to my_hog
|
|
|
|
|
vector< float > hog_detector; |
|
|
|
|
svm.get_svm_detector( hog_detector ); |
|
|
|
|
get_svm_detector( svm, hog_detector ); |
|
|
|
|
my_hog.setSVMDetector( hog_detector ); |
|
|
|
|
// Set the people detector.
|
|
|
|
|
hog.setSVMDetector( hog.getDefaultPeopleDetector() ); |
|
|
|
@ -344,7 +386,7 @@ void test_it( const Size & size ) |
|
|
|
|
cerr << "Unable to open the device 0" << endl; |
|
|
|
|
exit( -1 ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
while( true ) |
|
|
|
|
{ |
|
|
|
|
video >> img; |
|
|
|
@ -352,7 +394,7 @@ void test_it( const Size & size ) |
|
|
|
|
break; |
|
|
|
|
|
|
|
|
|
draw = img.clone(); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
locations.clear(); |
|
|
|
|
hog.detectMultiScale( img, locations ); |
|
|
|
|
draw_locations( draw, locations, reference ); |
|
|
|
@ -373,8 +415,8 @@ int main( int argc, char** argv ) |
|
|
|
|
if( argc != 4 ) |
|
|
|
|
{ |
|
|
|
|
cout << "Wrong number of parameters." << endl |
|
|
|
|
<< "Usage: " << argv[0] << " pos_dir pos.lst neg_dir neg.lst" << endl |
|
|
|
|
<< "example: " << argv[0] << " /INRIA_dataset/ Train/pos.lst /INRIA_dataset/ Train/neg.lst" << endl; |
|
|
|
|
<< "Usage: " << argv[0] << " pos_dir pos.lst neg_dir neg.lst" << endl |
|
|
|
|
<< "example: " << argv[0] << " /INRIA_dataset/ Train/pos.lst /INRIA_dataset/ Train/neg.lst" << endl; |
|
|
|
|
exit( -1 ); |
|
|
|
|
} |
|
|
|
|
vector< Mat > pos_lst; |
|
|
|
|