Git rid of unsafe raw pointers to Mat object.

pull/23806/head
Alexander Smorkalov 2 years ago
parent 44881592c3
commit 0866a135c6
  1. 30
      modules/calib3d/src/usac/degeneracy.cpp
  2. 13
      modules/calib3d/src/usac/dls_solver.cpp
  3. 11
      modules/calib3d/src/usac/essential_solver.cpp
  4. 71
      modules/calib3d/src/usac/estimator.cpp
  5. 30
      modules/calib3d/src/usac/fundamental_solver.cpp
  6. 41
      modules/calib3d/src/usac/homography_solver.cpp
  7. 36
      modules/calib3d/src/usac/pnp_solver.cpp

@ -8,12 +8,14 @@
namespace cv { namespace usac {
class EpipolarGeometryDegeneracyImpl : public EpipolarGeometryDegeneracy {
private:
const Mat * points_mat;
const float * const points; // i-th row xi1 yi1 xi2 yi2
Mat points_mat;
const int min_sample_size;
public:
explicit EpipolarGeometryDegeneracyImpl (const Mat &points_, int sample_size_) :
points_mat(&points_), points ((float*) points_mat->data), min_sample_size (sample_size_) {}
points_mat(points_), min_sample_size (sample_size_)
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
/*
* Do oriented constraint to verify if epipolar geometry is in front or behind the camera.
* Return: true if all points are in front of the camers w.r.t. tested epipolar geometry - satisfies constraint.
@ -26,6 +28,7 @@ public:
const Vec3d ep = Utils::getRightEpipole(F_);
const auto * const e = ep.val; // of size 3x1
const auto * const F = (double *) F_.data;
const float * points = points_mat.ptr<float>();
// without loss of generality, let the first point in sample be in front of the camera.
int pt = 4*sample[0];
@ -67,16 +70,19 @@ Ptr<EpipolarGeometryDegeneracy> EpipolarGeometryDegeneracy::create (const Mat &p
class HomographyDegeneracyImpl : public HomographyDegeneracy {
private:
const Mat * points_mat;
const float * const points;
Mat points_mat;
const float TOLERANCE = 2 * FLT_EPSILON; // 2 from area of triangle
public:
explicit HomographyDegeneracyImpl (const Mat &points_) :
points_mat(&points_), points ((float *)points_mat->data) {}
points_mat(points_)
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
inline bool isSampleGood (const std::vector<int> &sample) const override {
const int smpl1 = 4*sample[0], smpl2 = 4*sample[1], smpl3 = 4*sample[2], smpl4 = 4*sample[3];
// planar correspondences must lie on the same side of any line from two points in sample
const float * points = points_mat.ptr<float>();
const float x1 = points[smpl1], y1 = points[smpl1+1], X1 = points[smpl1+2], Y1 = points[smpl1+3];
const float x2 = points[smpl2], y2 = points[smpl2+1], X2 = points[smpl2+2], Y2 = points[smpl2+3];
const float x3 = points[smpl3], y3 = points[smpl3+1], X3 = points[smpl3+2], Y3 = points[smpl3+3];
@ -188,8 +194,7 @@ private:
const Ptr<Quality> quality;
const Ptr<Error> f_error;
Ptr<Quality> h_repr_quality;
const float * const points;
const Mat * points_mat;
Mat points_mat;
const Ptr<ReprojectionErrorForward> h_reproj_error;
Ptr<EpipolarNonMinimalSolver> f_non_min_solver;
Ptr<HomographyNonMinimalSolver> h_non_min_solver;
@ -215,7 +220,7 @@ public:
FundamentalDegeneracyImpl (int state, const Ptr<Quality> &quality_, const Mat &points_,
int sample_size_, int plane_and_parallax_iters, double homography_threshold_,
double f_inlier_thr_sqr, const Mat true_K1_, const Mat true_K2_) :
rng (state), quality(quality_), f_error(quality_->getErrorFnc()), points((float *) points_.data), points_mat(&points_),
rng (state), quality(quality_), f_error(quality_->getErrorFnc()), points_mat(points_),
h_reproj_error(ReprojectionErrorForward::create(points_)),
ep_deg (points_, sample_size_), homography_threshold (homography_threshold_),
points_size (quality_->getPointsSize()),
@ -330,7 +335,7 @@ public:
bool recoverIfDegenerate (const std::vector<int> &sample, const Mat &F_best, const Score &F_best_score,
Mat &non_degenerate_model, Score &non_degenerate_model_score) override {
const auto swapF = [&] (const Mat &_F, const Score &_score) {
const auto non_min_solver = EpipolarNonMinimalSolver::create(*points_mat, true);
const auto non_min_solver = EpipolarNonMinimalSolver::create(points_mat, true);
if (! optimizeF(_F, _score, non_degenerate_model, non_degenerate_model_score)) {
_F.copyTo(non_degenerate_model);
non_degenerate_model_score = _score;
@ -401,6 +406,7 @@ public:
return false;
num_models_used_so_far = 0; // reset estimation of lambda for plane-and-parallax
int max_iters = max_iters_pl_par, non_planar_support = 0, iters = 0;
const float * points = points_mat.ptr<float>();
std::vector<Matx33d> F_good;
const double CLOSE_THR = 1.0;
for (; iters < max_iters; iters++) {
@ -454,6 +460,7 @@ public:
return true;
}
bool calibDegensac (const Matx33d &H, Mat &F_new, Score &F_new_score, int non_planar_support_degen_F, const Score &F_degen_score) {
const float * points = points_mat.ptr<float>();
if (! is_principal_pt_set) {
// estimate principal points from coordinates
float px1 = 0, py1 = 0, px2 = 0, py2 = 0;
@ -606,6 +613,7 @@ public:
}
private:
bool getH (const Matx33d &A, const Vec3d &e_prime, int smpl1, int smpl2, int smpl3, Matx33d &H) {
const float * points = points_mat.ptr<float>();
Vec3d p1(points[smpl1 ], points[smpl1+1], 1), p2(points[smpl2 ], points[smpl2+1], 1), p3(points[smpl3 ], points[smpl3+1], 1);
Vec3d P1(points[smpl1+2], points[smpl1+3], 1), P2(points[smpl2+2], points[smpl2+3], 1), P3(points[smpl3+2], points[smpl3+3], 1);
const Matx33d M (p1[0], p1[1], 1, p2[0], p2[1], 1, p3[0], p3[1], 1);
@ -684,4 +692,4 @@ public:
Ptr<EssentialDegeneracy> EssentialDegeneracy::create (const Mat &points_, int sample_size_) {
return makePtr<EssentialDegeneracyImpl>(points_, sample_size_);
}
}}
}}

@ -49,13 +49,15 @@ namespace cv { namespace usac {
class DLSPnPImpl : public DLSPnP {
#if defined(HAVE_LAPACK) || defined(HAVE_EIGEN)
private:
const Mat * points_mat, * calib_norm_points_mat;
Mat points_mat, calib_norm_points_mat;
const Matx33d K;
const float * const calib_norm_points, * const points;
public:
explicit DLSPnPImpl (const Mat &points_, const Mat &calib_norm_points_, const Mat &K_)
: points_mat(&points_), calib_norm_points_mat(&calib_norm_points_), K(K_),
calib_norm_points((float*)calib_norm_points_mat->data), points((float*)points_mat->data) {}
: points_mat(points_), calib_norm_points_mat(calib_norm_points_), K(K_)
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
CV_DbgAssert(!calib_norm_points_mat.empty() && calib_norm_points_mat.isContinuous());
}
#else
public:
explicit DLSPnPImpl (const Mat &, const Mat &, const Mat &) {}
@ -88,7 +90,8 @@ public:
// Compute V*W*b with the rotation parameters factored out. This is the
// translation parameterized by the 9 entries of the rotation matrix.
Matx<double, 3, 9> translation_factor = Matx<double, 3, 9>::zeros();
const float * points = points_mat.ptr<float>();
const float * calib_norm_points = calib_norm_points_mat.ptr<float>();
for (int i = 0; i < sample_number; i++) {
const int idx_world = 5 * sample[i], idx_calib = 3 * sample[i];
Vec3d normalized_feature_pos(calib_norm_points[idx_calib],

@ -23,14 +23,17 @@ namespace cv { namespace usac {
class EssentialMinimalSolver5ptsImpl : public EssentialMinimalSolver5pts {
private:
// Points must be calibrated K^-1 x
const Mat * points_mat;
const float * const pts;
const Mat points_mat;
const bool use_svd, is_nister;
public:
explicit EssentialMinimalSolver5ptsImpl (const Mat &points_, bool use_svd_=false, bool is_nister_=false) :
points_mat(&points_), pts((float*)points_mat->data), use_svd(use_svd_), is_nister(is_nister_) {}
points_mat(points_), use_svd(use_svd_), is_nister(is_nister_)
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
int estimate (const std::vector<int> &sample, std::vector<Mat> &models) const override {
const float * pts = points_mat.ptr<float>();
// (1) Extract 4 null vectors from linear equations of epipolar constraint
std::vector<double> coefficients(45); // 5 pts=rows, 9 columns
auto *coefficients_ = &coefficients[0];
@ -343,4 +346,4 @@ Ptr<EssentialMinimalSolver5pts> EssentialMinimalSolver5pts::create
(const Mat &points_, bool use_svd, bool is_nister) {
return makePtr<EssentialMinimalSolver5ptsImpl>(points_, use_svd, is_nister);
}
}}
}}

@ -216,19 +216,18 @@ Ptr<PnPEstimator> PnPEstimator::create (const Ptr<MinimalSolver> &min_solver_,
// Symmetric Reprojection Error
class ReprojectionErrorSymmetricImpl : public ReprojectionErrorSymmetric {
private:
const Mat * points_mat;
const float * const points;
Mat points_mat;
float m11, m12, m13, m21, m22, m23, m31, m32, m33;
float minv11, minv12, minv13, minv21, minv22, minv23, minv31, minv32, minv33;
std::vector<float> errors;
public:
explicit ReprojectionErrorSymmetricImpl (const Mat &points_)
: points_mat(&points_), points ((float *) points_.data)
: points_mat(points_)
, m11(0), m12(0), m13(0), m21(0), m22(0), m23(0), m31(0), m32(0), m33(0)
, minv11(0), minv12(0), minv13(0), minv21(0), minv22(0), minv23(0), minv31(0), minv32(0), minv33(0)
, errors(points_.rows)
{
CV_DbgAssert(points);
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
inline void setModelParameters(const Mat& model) override
@ -250,6 +249,7 @@ public:
}
inline float getError (int idx) const override {
idx *= 4;
const float * points = points_mat.ptr<float>();
const float x1=points[idx], y1=points[idx+1], x2=points[idx+2], y2=points[idx+3];
const float est_z2 = 1 / (m31 * x1 + m32 * y1 + m33),
dx2 = x2 - (m11 * x1 + m12 * y1 + m13) * est_z2,
@ -261,7 +261,8 @@ public:
}
const std::vector<float> &getErrors (const Mat &model) override {
setModelParameters(model);
for (int point_idx = 0; point_idx < points_mat->rows; point_idx++) {
const float * points = points_mat.ptr<float>();
for (int point_idx = 0; point_idx < points_mat.rows; point_idx++) {
const int smpl = 4*point_idx;
const float x1=points[smpl], y1=points[smpl+1], x2=points[smpl+2], y2=points[smpl+3];
const float est_z2 = 1 / (m31 * x1 + m32 * y1 + m33),
@ -283,17 +284,16 @@ ReprojectionErrorSymmetric::create(const Mat &points) {
// Forward Reprojection Error
class ReprojectionErrorForwardImpl : public ReprojectionErrorForward {
private:
const Mat * points_mat;
const float * const points;
Mat points_mat;
float m11, m12, m13, m21, m22, m23, m31, m32, m33;
std::vector<float> errors;
public:
explicit ReprojectionErrorForwardImpl (const Mat &points_)
: points_mat(&points_), points ((float *)points_.data)
: points_mat(points_)
, m11(0), m12(0), m13(0), m21(0), m22(0), m23(0), m31(0), m32(0), m33(0)
, errors(points_.rows)
{
CV_DbgAssert(points);
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
inline void setModelParameters(const Mat& model) override
@ -308,6 +308,7 @@ public:
}
inline float getError (int idx) const override {
idx *= 4;
const float * points = points_mat.ptr<float>();
const float x1 = points[idx], y1 = points[idx+1], x2 = points[idx+2], y2 = points[idx+3];
const float est_z2 = 1 / (m31 * x1 + m32 * y1 + m33),
dx2 = x2 - (m11 * x1 + m12 * y1 + m13) * est_z2,
@ -316,7 +317,8 @@ public:
}
const std::vector<float> &getErrors (const Mat &model) override {
setModelParameters(model);
for (int point_idx = 0; point_idx < points_mat->rows; point_idx++) {
const float * points = points_mat.ptr<float>();
for (int point_idx = 0; point_idx < points_mat.rows; point_idx++) {
const int smpl = 4*point_idx;
const float x1=points[smpl], y1=points[smpl+1], x2=points[smpl+2], y2=points[smpl+3];
const float est_z2 = 1 / (m31 * x1 + m32 * y1 + m33),
@ -334,17 +336,16 @@ ReprojectionErrorForward::create(const Mat &points) {
class SampsonErrorImpl : public SampsonError {
private:
const Mat * points_mat;
const float * const points;
Mat points_mat;
float m11, m12, m13, m21, m22, m23, m31, m32, m33;
std::vector<float> errors;
public:
explicit SampsonErrorImpl (const Mat &points_)
: points_mat(&points_), points ((float *) points_.data)
: points_mat(points_)
, m11(0), m12(0), m13(0), m21(0), m22(0), m23(0), m31(0), m32(0), m33(0)
, errors(points_.rows)
{
CV_DbgAssert(points);
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
inline void setModelParameters(const Mat& model) override
@ -370,6 +371,7 @@ public:
*/
inline float getError (int idx) const override {
idx *= 4;
const float * points = points_mat.ptr<float>();
const float x1=points[idx], y1=points[idx+1], x2=points[idx+2], y2=points[idx+3];
const float F_pt1_x = m11 * x1 + m12 * y1 + m13,
F_pt1_y = m21 * x1 + m22 * y1 + m23;
@ -381,7 +383,8 @@ public:
}
const std::vector<float> &getErrors (const Mat &model) override {
setModelParameters(model);
for (int point_idx = 0; point_idx < points_mat->rows; point_idx++) {
const float * points = points_mat.ptr<float>();
for (int point_idx = 0; point_idx < points_mat.rows; point_idx++) {
const int smpl = 4*point_idx;
const float x1=points[smpl], y1=points[smpl+1], x2=points[smpl+2], y2=points[smpl+3];
const float F_pt1_x = m11 * x1 + m12 * y1 + m13,
@ -402,17 +405,16 @@ SampsonError::create(const Mat &points) {
class SymmetricGeometricDistanceImpl : public SymmetricGeometricDistance {
private:
const Mat * points_mat;
const float * const points;
Mat points_mat;
float m11, m12, m13, m21, m22, m23, m31, m32, m33;
std::vector<float> errors;
public:
explicit SymmetricGeometricDistanceImpl (const Mat &points_)
: points_mat(&points_), points ((float *) points_.data)
: points_mat(points_)
, m11(0), m12(0), m13(0), m21(0), m22(0), m23(0), m31(0), m32(0), m33(0)
, errors(points_.rows)
{
CV_DbgAssert(points);
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
inline void setModelParameters(const Mat& model) override
@ -428,6 +430,7 @@ public:
inline float getError (int idx) const override {
idx *= 4;
const float * points = points_mat.ptr<float>();
const float x1=points[idx], y1=points[idx+1], x2=points[idx+2], y2=points[idx+3];
// pt2^T * E, line 1 = [l1 l2]
const float l1 = x2 * m11 + y2 * m21 + m31,
@ -443,7 +446,8 @@ public:
}
const std::vector<float> &getErrors (const Mat &model) override {
setModelParameters(model);
for (int point_idx = 0; point_idx < points_mat->rows; point_idx++) {
const float * points = points_mat.ptr<float>();
for (int point_idx = 0; point_idx < points_mat.rows; point_idx++) {
const int smpl = 4*point_idx;
const float x1=points[smpl], y1=points[smpl+1], x2=points[smpl+2], y2=points[smpl+3];
const float l1 = x2 * m11 + y2 * m21 + m31, t1 = m11 * x1 + m12 * y1 + m13,
@ -462,17 +466,16 @@ SymmetricGeometricDistance::create(const Mat &points) {
class ReprojectionErrorPmatrixImpl : public ReprojectionErrorPmatrix {
private:
const Mat * points_mat;
const float * const points;
Mat points_mat;
float p11, p12, p13, p14, p21, p22, p23, p24, p31, p32, p33, p34;
std::vector<float> errors;
public:
explicit ReprojectionErrorPmatrixImpl (const Mat &points_)
: points_mat(&points_), points ((float *) points_.data)
: points_mat(points_)
, p11(0), p12(0), p13(0), p14(0), p21(0), p22(0), p23(0), p24(0), p31(0), p32(0), p33(0), p34(0)
, errors(points_.rows)
{
CV_DbgAssert(points);
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
@ -489,6 +492,7 @@ public:
inline float getError (int idx) const override {
idx *= 5;
const float * points = points_mat.ptr<float>();
const float u = points[idx ], v = points[idx+1],
x = points[idx+2], y = points[idx+3], z = points[idx+4];
const float depth = 1 / (p31 * x + p32 * y + p33 * z + p34);
@ -498,7 +502,8 @@ public:
}
const std::vector<float> &getErrors (const Mat &model) override {
setModelParameters(model);
for (int point_idx = 0; point_idx < points_mat->rows; point_idx++) {
const float * points = points_mat.ptr<float>();
for (int point_idx = 0; point_idx < points_mat.rows; point_idx++) {
const int smpl = 5*point_idx;
const float u = points[smpl ], v = points[smpl+1],
x = points[smpl+2], y = points[smpl+3], z = points[smpl+4];
@ -523,17 +528,16 @@ private:
* m21 m22 m23
* 0 0 1
*/
const Mat * points_mat;
const float * const points;
Mat points_mat;
float m11, m12, m13, m21, m22, m23;
std::vector<float> errors;
public:
explicit ReprojectionDistanceAffineImpl (const Mat &points_)
: points_mat(&points_), points ((float *) points_.data)
: points_mat(points_)
, m11(0), m12(0), m13(0), m21(0), m22(0), m23(0)
, errors(points_.rows)
{
CV_DbgAssert(points);
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
inline void setModelParameters(const Mat& model) override
@ -547,13 +551,15 @@ public:
}
inline float getError (int idx) const override {
idx *= 4;
const float * points = points_mat.ptr<float>();
const float x1=points[idx], y1=points[idx+1], x2=points[idx+2], y2=points[idx+3];
const float dx2 = x2 - (m11 * x1 + m12 * y1 + m13), dy2 = y2 - (m21 * x1 + m22 * y1 + m23);
return dx2 * dx2 + dy2 * dy2;
}
const std::vector<float> &getErrors (const Mat &model) override {
setModelParameters(model);
for (int point_idx = 0; point_idx < points_mat->rows; point_idx++) {
const float * points = points_mat.ptr<float>();
for (int point_idx = 0; point_idx < points_mat.rows; point_idx++) {
const int smpl = 4*point_idx;
const float x1=points[smpl], y1=points[smpl+1], x2=points[smpl+2], y2=points[smpl+3];
const float dx2 = x2 - (m11 * x1 + m12 * y1 + m13), dy2 = y2 - (m21 * x1 + m22 * y1 + m23);
@ -570,13 +576,14 @@ ReprojectionErrorAffine::create(const Mat &points) {
////////////////////////////////////// NORMALIZING TRANSFORMATION /////////////////////////
class NormTransformImpl : public NormTransform {
private:
const float * const points;
Mat points_mat;
public:
explicit NormTransformImpl (const Mat &points_) : points((float*)points_.data) {}
explicit NormTransformImpl (const Mat &points_) : points_mat(points_) {}
// Compute normalized points and transformation matrices.
void getNormTransformation (Mat& norm_points, const std::vector<int> &sample,
int sample_size, Matx33d &T1, Matx33d &T2) const override {
const float * points = points_mat.ptr<float>();
double mean_pts1_x = 0, mean_pts1_y = 0, mean_pts2_x = 0, mean_pts2_y = 0;
// find average of each coordinate of points.

@ -12,17 +12,20 @@
namespace cv { namespace usac {
class FundamentalMinimalSolver7ptsImpl: public FundamentalMinimalSolver7pts {
private:
const Mat * points_mat; // pointer to OpenCV Mat
const float * const points; // pointer to points_mat->data for faster data access
Mat points_mat;
const bool use_ge;
public:
explicit FundamentalMinimalSolver7ptsImpl (const Mat &points_, bool use_ge_) :
points_mat (&points_), points ((float *) points_mat->data), use_ge(use_ge_) {}
points_mat (points_), use_ge(use_ge_)
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
int estimate (const std::vector<int> &sample, std::vector<Mat> &models) const override {
const int m = 7, n = 9; // rows, cols
std::vector<double> a(63); // m*n
auto * a_ = &a[0];
const float * points = points_mat.ptr<float>();
for (int i = 0; i < m; i++ ) {
const int smpl = 4*sample[i];
@ -158,17 +161,19 @@ Ptr<FundamentalMinimalSolver7pts> FundamentalMinimalSolver7pts::create(const Mat
class FundamentalMinimalSolver8ptsImpl : public FundamentalMinimalSolver8pts {
private:
const Mat * points_mat;
const float * const points;
Mat points_mat;
public:
explicit FundamentalMinimalSolver8ptsImpl (const Mat &points_) :
points_mat (&points_), points ((float*) points_mat->data)
{ CV_DbgAssert(points); }
points_mat (points_)
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
int estimate (const std::vector<int> &sample, std::vector<Mat> &models) const override {
const int m = 8, n = 9; // rows, cols
std::vector<double> a(72); // m*n
auto * a_ = &a[0];
const float * points = points_mat.ptr<float>();
for (int i = 0; i < m; i++ ) {
const int smpl = 4*sample[i];
@ -233,18 +238,19 @@ Ptr<FundamentalMinimalSolver8pts> FundamentalMinimalSolver8pts::create(const Mat
class EpipolarNonMinimalSolverImpl : public EpipolarNonMinimalSolver {
private:
const Mat * points_mat;
Mat points_mat;
const bool do_norm;
Matx33d _T1, _T2;
Ptr<NormTransform> normTr = nullptr;
bool enforce_rank = true, is_fundamental, use_ge;
public:
explicit EpipolarNonMinimalSolverImpl (const Mat &points_, const Matx33d &T1, const Matx33d &T2, bool use_ge_)
: points_mat(&points_), do_norm(false), _T1(T1), _T2(T2), use_ge(use_ge_) {
is_fundamental = true;
: points_mat(points_), do_norm(false), _T1(T1), _T2(T2), is_fundamental(true), use_ge(use_ge_) {
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
explicit EpipolarNonMinimalSolverImpl (const Mat &points_, bool is_fundamental_) :
points_mat(&points_), do_norm(is_fundamental_), use_ge(false) {
points_mat(points_), do_norm(is_fundamental_), use_ge(false) {
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
is_fundamental = is_fundamental_;
if (is_fundamental)
normTr = NormTransform::create(points_);
@ -259,7 +265,7 @@ public:
Mat norm_points;
if (do_norm)
normTr->getNormTransformation(norm_points, sample, sample_size, T1, T2);
const auto * const norm_pts = do_norm ? (float *) norm_points.data : (float *) points_mat->data;
const float * const norm_pts = do_norm ? norm_points.ptr<const float>() : points_mat.ptr<float>();
if (use_ge) {
double a[8];

@ -11,14 +11,17 @@
namespace cv { namespace usac {
class HomographyMinimalSolver4ptsImpl : public HomographyMinimalSolver4pts {
private:
const Mat * points_mat;
const float * const points;
Mat points_mat;
const bool use_ge;
public:
explicit HomographyMinimalSolver4ptsImpl (const Mat &points_, bool use_ge_) :
points_mat(&points_), points ((float*) points_mat->data), use_ge(use_ge_) {}
points_mat(points_), use_ge(use_ge_)
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
int estimate (const std::vector<int>& sample, std::vector<Mat> &models) const override {
const float * points = points_mat.ptr<float>();
int m = 8, n = 9;
std::vector<double> A(72, 0);
int cnt = 0;
@ -80,15 +83,21 @@ Ptr<HomographyMinimalSolver4pts> HomographyMinimalSolver4pts::create(const Mat &
class HomographyNonMinimalSolverImpl : public HomographyNonMinimalSolver {
private:
const Mat * points_mat;
Mat points_mat;
const bool do_norm, use_ge;
Ptr<NormTransform> normTr;
Matx33d _T1, _T2;
public:
explicit HomographyNonMinimalSolverImpl (const Mat &norm_points_, const Matx33d &T1, const Matx33d &T2, bool use_ge_) :
points_mat(&norm_points_), do_norm(false), use_ge(use_ge_), _T1(T1), _T2(T2) {}
points_mat(norm_points_), do_norm(false), use_ge(use_ge_), _T1(T1), _T2(T2)
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
explicit HomographyNonMinimalSolverImpl (const Mat &points_, bool use_ge_) :
points_mat(&points_), do_norm(true), use_ge(use_ge_), normTr (NormTransform::create(points_)) {}
points_mat(points_), do_norm(true), use_ge(use_ge_), normTr (NormTransform::create(points_))
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
int estimate (const std::vector<int> &sample, int sample_size, std::vector<Mat> &models,
const std::vector<double> &weights) const override {
@ -99,7 +108,7 @@ public:
Mat norm_points_;
if (do_norm)
normTr->getNormTransformation(norm_points_, sample, sample_size, T1, T2);
const auto * const npts = do_norm ? (float *) norm_points_.data : (float *) points_mat->data;
const float * const npts = do_norm ? norm_points_.ptr<float>() : points_mat.ptr<float>();
Mat H;
if (use_ge) {
@ -388,11 +397,13 @@ Ptr<CovarianceHomographySolver> CovarianceHomographySolver::create (const Mat &p
class AffineMinimalSolverImpl : public AffineMinimalSolver {
private:
const Mat * points_mat;
const float * const points;
Mat points_mat;
public:
explicit AffineMinimalSolverImpl (const Mat &points_) :
points_mat(&points_), points((float *) points_mat->data) {}
points_mat(points_)
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
/*
Affine transformation
x1 y1 1 0 0 0 a u1
@ -404,6 +415,7 @@ public:
*/
int estimate (const std::vector<int> &sample, std::vector<Mat> &models) const override {
const int smpl1 = 4*sample[0], smpl2 = 4*sample[1], smpl3 = 4*sample[2];
const float * points = points_mat.ptr<float>();
const auto
x1 = points[smpl1], y1 = points[smpl1+1], u1 = points[smpl1+2], v1 = points[smpl1+3],
x2 = points[smpl2], y2 = points[smpl2+1], u2 = points[smpl2+2], v2 = points[smpl2+3],
@ -435,13 +447,14 @@ Ptr<AffineMinimalSolver> AffineMinimalSolver::create(const Mat &points_) {
class AffineNonMinimalSolverImpl : public AffineNonMinimalSolver {
private:
const Mat * points_mat;
Mat points_mat;
Ptr<NormTransform> normTr;
Matx33d _T1, _T2;
bool do_norm;
public:
explicit AffineNonMinimalSolverImpl (const Mat &points_, InputArray T1, InputArray T2) :
points_mat(&points_) {
points_mat(points_) {
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
if (!T1.empty() && !T2.empty()) {
do_norm = false;
_T1 = T1.getMat();
@ -460,7 +473,7 @@ public:
Mat norm_points_;
if (do_norm)
normTr->getNormTransformation(norm_points_, sample, sample_size, T1, T2);
const auto * const pts = normTr ? (float *) norm_points_.data : (float *) points_mat->data;
const float * const pts = normTr ? norm_points_.ptr<float>() : points_mat.ptr<float>();
// do Least Squares
// Ax = b -> A^T Ax = A^T b
@ -640,4 +653,4 @@ Ptr<CovarianceAffineSolver> CovarianceAffineSolver::create (const Mat &points, c
Ptr<CovarianceAffineSolver> CovarianceAffineSolver::create (const Mat &points) {
return makePtr<CovarianceAffineSolverImpl>(points);
}
}}
}}

@ -15,15 +15,17 @@
namespace cv { namespace usac {
class PnPMinimalSolver6PtsImpl : public PnPMinimalSolver6Pts {
private:
const Mat * points_mat;
const float * const points;
Mat points_mat;
public:
// linear 6 points required (11 equations)
int getSampleSize() const override { return 6; }
int getMaxNumberOfSolutions () const override { return 1; }
explicit PnPMinimalSolver6PtsImpl (const Mat &points_) :
points_mat(&points_), points ((float*)points_mat->data) {}
points_mat(points_)
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
/*
DLT:
d x = P X, x = (u, v, 1), X = (X, Y, Z, 1), P = K[R t]
@ -72,7 +74,7 @@ public:
int estimate (const std::vector<int> &sample, std::vector<Mat> &models) const override {
std::vector<double> A1 (60, 0), A2(56, 0); // 5x12, 7x8
const float * points = points_mat.ptr<float>();
// std::vector<double> A_all(11*12, 0);
// int cnt3 = 0;
@ -154,14 +156,17 @@ Ptr<PnPMinimalSolver6Pts> PnPMinimalSolver6Pts::create(const Mat &points_) {
class PnPNonMinimalSolverImpl : public PnPNonMinimalSolver {
private:
const Mat * points_mat;
const float * const points;
Mat points_mat;
public:
explicit PnPNonMinimalSolverImpl (const Mat &points_) :
points_mat(&points_), points ((float*)points_mat->data){}
points_mat(points_)
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
}
int estimate (const std::vector<int> &sample, int sample_size,
std::vector<Mat> &models, const std::vector<double> &weights) const override {
std::vector<Mat> &models, const std::vector<double> &weights) const override {
const float * points = points_mat.ptr<float>();
if (sample_size < 6)
return 0;
@ -284,9 +289,8 @@ private:
* calibrated normalized points
* K^-1 [u v 1]^T / ||K^-1 [u v 1]^T||
*/
const Mat * points_mat, * calib_norm_points_mat;
const Mat points_mat, calib_norm_points_mat;
const Matx33d K;
const float * const calib_norm_points, * const points;
const double VAL_THR = 1e-4;
public:
/*
@ -294,8 +298,11 @@ public:
* u v x y z. (u,v) is image point, (x y z) is world point
*/
P3PSolverImpl (const Mat &points_, const Mat &calib_norm_points_, const Mat &K_) :
points_mat(&points_), calib_norm_points_mat(&calib_norm_points_), K(K_),
calib_norm_points((float*)calib_norm_points_mat->data), points((float*)points_mat->data) {}
points_mat(points_), calib_norm_points_mat(calib_norm_points_), K(K_)
{
CV_DbgAssert(!points_mat.empty() && points_mat.isContinuous());
CV_DbgAssert(!calib_norm_points_mat.empty() && calib_norm_points_mat.isContinuous());
}
int estimate (const std::vector<int> &sample, std::vector<Mat> &models) const override {
/*
@ -303,6 +310,9 @@ public:
* http://cmp.felk.cvut.cz/~pajdla/gvg/GVG-2016-Lecture.pdf
* pages: 51-59
*/
const float * points = points_mat.ptr<float>();
const float * calib_norm_points = calib_norm_points_mat.ptr<float>();
const int idx1 = 5*sample[0], idx2 = 5*sample[1], idx3 = 5*sample[2];
const Vec3d X1 (points[idx1+2], points[idx1+3], points[idx1+4]);
const Vec3d X2 (points[idx2+2], points[idx2+3], points[idx2+4]);
@ -396,4 +406,4 @@ public:
Ptr<P3PSolver> P3PSolver::create(const Mat &points_, const Mat &calib_norm_pts, const Mat &K) {
return makePtr<P3PSolverImpl>(points_, calib_norm_pts, K);
}
}}
}}

Loading…
Cancel
Save