mirror of https://github.com/opencv/opencv.git
parent
cdda5ec491
commit
07f28d3309
1 changed files with 136 additions and 0 deletions
@ -0,0 +1,136 @@ |
||||
import numpy as np |
||||
import cv2 |
||||
|
||||
def load_base(fn): |
||||
a = np.loadtxt(fn, np.float32, delimiter=',', converters={ 0 : lambda ch : ord(ch)-ord('A') }) |
||||
samples, responses = a[:,1:], a[:,0] |
||||
return samples, responses |
||||
|
||||
# TODO move these to cv2 |
||||
CV_ROW_SAMPLE = 1 |
||||
CV_VAR_NUMERICAL = 0 |
||||
CV_VAR_ORDERED = 0 |
||||
CV_VAR_CATEGORICAL = 1 |
||||
|
||||
|
||||
class LetterStatModel(object): |
||||
train_ratio = 0.5 |
||||
def load(self, fn): |
||||
self.model.load(fn) |
||||
def save(self, fn): |
||||
self.model.save(fn) |
||||
|
||||
class RTrees(LetterStatModel): |
||||
def __init__(self): |
||||
self.model = cv2.RTrees() |
||||
|
||||
def train(self, samples, responses): |
||||
sample_n, var_n = samples.shape |
||||
var_types = np.array([CV_VAR_NUMERICAL] * var_n + [CV_VAR_CATEGORICAL], np.uint8) |
||||
#CvRTParams(10,10,0,false,15,0,true,4,100,0.01f,CV_TERMCRIT_ITER)); |
||||
params = dict(max_depth=10 ) |
||||
self.model.train(samples, CV_ROW_SAMPLE, responses, varType = var_types, params = params) |
||||
|
||||
def predict(self, samples): |
||||
return np.float32( [self.model.predict(s) for s in samples] ) |
||||
|
||||
|
||||
class KNearest(LetterStatModel): |
||||
def __init__(self): |
||||
self.model = cv2.KNearest() |
||||
|
||||
def train(self, samples, responses): |
||||
self.model.train(samples, responses) |
||||
|
||||
def predict(self, samples): |
||||
retval, results, neigh_resp, dists = self.model.find_nearest(samples, k = 10) |
||||
return results.ravel() |
||||
|
||||
|
||||
class Boost(LetterStatModel): |
||||
def __init__(self): |
||||
self.model = cv2.Boost() |
||||
self.class_n = 26 |
||||
|
||||
def train(self, samples, responses): |
||||
sample_n, var_n = samples.shape |
||||
new_samples = self.unroll_samples(samples) |
||||
new_responses = self.unroll_responses(responses) |
||||
var_types = np.array([CV_VAR_NUMERICAL] * var_n + [CV_VAR_CATEGORICAL, CV_VAR_CATEGORICAL], np.uint8) |
||||
#CvBoostParams(CvBoost::REAL, 100, 0.95, 5, false, 0 ) |
||||
params = dict(max_depth=5) #, use_surrogates=False) |
||||
self.model.train(new_samples, CV_ROW_SAMPLE, new_responses, varType = var_types, params=params) |
||||
|
||||
def predict(self, samples): |
||||
new_samples = self.unroll_samples(samples) |
||||
pred = np.array( [self.model.predict(s, returnSum = True) for s in new_samples] ) |
||||
pred = pred.reshape(-1, self.class_n).argmax(1) |
||||
return pred |
||||
|
||||
def unroll_samples(self, samples): |
||||
sample_n, var_n = samples.shape |
||||
new_samples = np.zeros((sample_n * self.class_n, var_n+1), np.float32) |
||||
new_samples[:,:-1] = np.repeat(samples, self.class_n, axis=0) |
||||
new_samples[:,-1] = np.tile(np.arange(self.class_n), sample_n) |
||||
return new_samples |
||||
|
||||
def unroll_responses(self, responses): |
||||
sample_n = len(responses) |
||||
new_responses = np.zeros(sample_n*self.class_n, np.int32) |
||||
resp_idx = np.int32( responses + np.arange(sample_n)*self.class_n ) |
||||
new_responses[resp_idx] = 1 |
||||
return new_responses |
||||
|
||||
|
||||
class SVM(LetterStatModel): |
||||
train_ratio = 0.1 |
||||
def __init__(self): |
||||
self.model = cv2.SVM() |
||||
|
||||
def train(self, samples, responses): |
||||
params = dict( kernel_type = cv2.SVM_LINEAR, |
||||
svm_type = cv2.SVM_C_SVC, |
||||
C = 1 ) |
||||
self.model.train(samples, responses, params = params) |
||||
|
||||
def predict(self, samples): |
||||
return np.float32( [self.model.predict(s) for s in samples] ) |
||||
|
||||
|
||||
if __name__ == '__main__': |
||||
import argparse |
||||
|
||||
models = [RTrees, KNearest, Boost, SVM] # MLP, NBayes |
||||
models = dict( [(cls.__name__.lower(), cls) for cls in models] ) |
||||
|
||||
parser = argparse.ArgumentParser() |
||||
parser.add_argument('-model', default='rtrees', choices=models.keys()) |
||||
parser.add_argument('-data', nargs=1, default='letter-recognition.data') |
||||
parser.add_argument('-load', nargs=1) |
||||
parser.add_argument('-save', nargs=1) |
||||
args = parser.parse_args() |
||||
|
||||
print 'loading data %s ...' % args.data |
||||
samples, responses = load_base(args.data) |
||||
Model = models[args.model] |
||||
model = Model() |
||||
|
||||
train_n = int(len(samples)*model.train_ratio) |
||||
if args.load is None: |
||||
print 'training %s ...' % Model.__name__ |
||||
model.train(samples[:train_n], responses[:train_n]) |
||||
else: |
||||
fn = args.load[0] |
||||
print 'loading model from %s ...' % fn |
||||
model.load(fn) |
||||
|
||||
print 'testing...' |
||||
train_rate = np.mean(model.predict(samples[:train_n]) == responses[:train_n]) |
||||
test_rate = np.mean(model.predict(samples[train_n:]) == responses[train_n:]) |
||||
|
||||
print 'train rate: %f test rate: %f' % (train_rate*100, test_rate*100) |
||||
|
||||
if args.save is not None: |
||||
fn = args.save[0] |
||||
print 'saving model to %s ...' % fn |
||||
model.save(fn) |
Loading…
Reference in new issue