added python cv2 port of letter_recog sample

pull/13383/head
Alexander Mordvintsev 14 years ago
parent cdda5ec491
commit 07f28d3309
  1. 136
      samples/python2/letter_recog.py

@ -0,0 +1,136 @@
import numpy as np
import cv2
def load_base(fn):
a = np.loadtxt(fn, np.float32, delimiter=',', converters={ 0 : lambda ch : ord(ch)-ord('A') })
samples, responses = a[:,1:], a[:,0]
return samples, responses
# TODO move these to cv2
CV_ROW_SAMPLE = 1
CV_VAR_NUMERICAL = 0
CV_VAR_ORDERED = 0
CV_VAR_CATEGORICAL = 1
class LetterStatModel(object):
train_ratio = 0.5
def load(self, fn):
self.model.load(fn)
def save(self, fn):
self.model.save(fn)
class RTrees(LetterStatModel):
def __init__(self):
self.model = cv2.RTrees()
def train(self, samples, responses):
sample_n, var_n = samples.shape
var_types = np.array([CV_VAR_NUMERICAL] * var_n + [CV_VAR_CATEGORICAL], np.uint8)
#CvRTParams(10,10,0,false,15,0,true,4,100,0.01f,CV_TERMCRIT_ITER));
params = dict(max_depth=10 )
self.model.train(samples, CV_ROW_SAMPLE, responses, varType = var_types, params = params)
def predict(self, samples):
return np.float32( [self.model.predict(s) for s in samples] )
class KNearest(LetterStatModel):
def __init__(self):
self.model = cv2.KNearest()
def train(self, samples, responses):
self.model.train(samples, responses)
def predict(self, samples):
retval, results, neigh_resp, dists = self.model.find_nearest(samples, k = 10)
return results.ravel()
class Boost(LetterStatModel):
def __init__(self):
self.model = cv2.Boost()
self.class_n = 26
def train(self, samples, responses):
sample_n, var_n = samples.shape
new_samples = self.unroll_samples(samples)
new_responses = self.unroll_responses(responses)
var_types = np.array([CV_VAR_NUMERICAL] * var_n + [CV_VAR_CATEGORICAL, CV_VAR_CATEGORICAL], np.uint8)
#CvBoostParams(CvBoost::REAL, 100, 0.95, 5, false, 0 )
params = dict(max_depth=5) #, use_surrogates=False)
self.model.train(new_samples, CV_ROW_SAMPLE, new_responses, varType = var_types, params=params)
def predict(self, samples):
new_samples = self.unroll_samples(samples)
pred = np.array( [self.model.predict(s, returnSum = True) for s in new_samples] )
pred = pred.reshape(-1, self.class_n).argmax(1)
return pred
def unroll_samples(self, samples):
sample_n, var_n = samples.shape
new_samples = np.zeros((sample_n * self.class_n, var_n+1), np.float32)
new_samples[:,:-1] = np.repeat(samples, self.class_n, axis=0)
new_samples[:,-1] = np.tile(np.arange(self.class_n), sample_n)
return new_samples
def unroll_responses(self, responses):
sample_n = len(responses)
new_responses = np.zeros(sample_n*self.class_n, np.int32)
resp_idx = np.int32( responses + np.arange(sample_n)*self.class_n )
new_responses[resp_idx] = 1
return new_responses
class SVM(LetterStatModel):
train_ratio = 0.1
def __init__(self):
self.model = cv2.SVM()
def train(self, samples, responses):
params = dict( kernel_type = cv2.SVM_LINEAR,
svm_type = cv2.SVM_C_SVC,
C = 1 )
self.model.train(samples, responses, params = params)
def predict(self, samples):
return np.float32( [self.model.predict(s) for s in samples] )
if __name__ == '__main__':
import argparse
models = [RTrees, KNearest, Boost, SVM] # MLP, NBayes
models = dict( [(cls.__name__.lower(), cls) for cls in models] )
parser = argparse.ArgumentParser()
parser.add_argument('-model', default='rtrees', choices=models.keys())
parser.add_argument('-data', nargs=1, default='letter-recognition.data')
parser.add_argument('-load', nargs=1)
parser.add_argument('-save', nargs=1)
args = parser.parse_args()
print 'loading data %s ...' % args.data
samples, responses = load_base(args.data)
Model = models[args.model]
model = Model()
train_n = int(len(samples)*model.train_ratio)
if args.load is None:
print 'training %s ...' % Model.__name__
model.train(samples[:train_n], responses[:train_n])
else:
fn = args.load[0]
print 'loading model from %s ...' % fn
model.load(fn)
print 'testing...'
train_rate = np.mean(model.predict(samples[:train_n]) == responses[:train_n])
test_rate = np.mean(model.predict(samples[train_n:]) == responses[train_n:])
print 'train rate: %f test rate: %f' % (train_rate*100, test_rate*100)
if args.save is not None:
fn = args.save[0]
print 'saving model to %s ...' % fn
model.save(fn)
Loading…
Cancel
Save