parent
e6d308ca89
commit
07754b6309
7 changed files with 290 additions and 4 deletions
@ -0,0 +1,103 @@ |
||||
.. _feature_description: |
||||
|
||||
Feature Description |
||||
******************* |
||||
|
||||
Goal |
||||
===== |
||||
|
||||
In this tutorial you will learn how to: |
||||
|
||||
.. container:: enumeratevisibleitemswithsquare |
||||
|
||||
* Use the :descriptor_extractor:`DescriptorExtractor<>` interface in order to find the feature vector correspondent to the keypoints. Specifically: |
||||
|
||||
* Use :surf_descriptor_extractor:`SurfDescriptorExtractor<>` and its function :descriptor_extractor:`compute<>` to perform the required calculations. |
||||
* Use the function :draw_matches:`drawMatches<>` to draw the detected matches. |
||||
|
||||
|
||||
Theory |
||||
====== |
||||
|
||||
Code |
||||
==== |
||||
|
||||
This tutorial code's is shown lines below. You can also download it from `here <https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/features2D/SURF_descriptor.cpp>`_ |
||||
|
||||
.. code-block:: cpp |
||||
|
||||
#include <stdio.h> |
||||
#include <iostream> |
||||
#include "opencv2/core/core.hpp" |
||||
#include "opencv2/features2d/features2d.hpp" |
||||
#include "opencv2/highgui/highgui.hpp" |
||||
|
||||
using namespace cv; |
||||
|
||||
void readme(); |
||||
|
||||
/** @function main */ |
||||
int main( int argc, char** argv ) |
||||
{ |
||||
if( argc != 3 ) |
||||
{ return -1; } |
||||
|
||||
Mat img_1 = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE ); |
||||
Mat img_2 = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE ); |
||||
|
||||
if( !img_1.data || !img_2.data ) |
||||
{ return -1; } |
||||
|
||||
//-- Step 1: Detect the keypoints using SURF Detector |
||||
int minHessian = 400; |
||||
|
||||
SurfFeatureDetector detector( minHessian ); |
||||
|
||||
std::vector<KeyPoint> keypoints_1, keypoints_2; |
||||
|
||||
detector.detect( img_1, keypoints_1 ); |
||||
detector.detect( img_2, keypoints_2 ); |
||||
|
||||
//-- Step 2: Calculate descriptors (feature vectors) |
||||
SurfDescriptorExtractor extractor; |
||||
|
||||
Mat descriptors_1, descriptors_2; |
||||
|
||||
extractor.compute( img_1, keypoints_1, descriptors_1 ); |
||||
extractor.compute( img_2, keypoints_2, descriptors_2 ); |
||||
|
||||
//-- Step 3: Matching descriptor vectors with a brute force matcher |
||||
BruteForceMatcher< L2<float> > matcher; |
||||
std::vector< DMatch > matches; |
||||
matcher.match( descriptors_1, descriptors_2, matches ); |
||||
|
||||
//-- Draw matches |
||||
Mat img_matches; |
||||
drawMatches( img_1, keypoints_1, img_2, keypoints_2, matches, img_matches ); |
||||
|
||||
//-- Show detected matches |
||||
imshow("Matches", img_matches ); |
||||
|
||||
waitKey(0); |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
/** @function readme */ |
||||
void readme() |
||||
{ std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; } |
||||
|
||||
Explanation |
||||
============ |
||||
|
||||
Result |
||||
====== |
||||
|
||||
#. Here is the result after applying the BruteForce matcher between the two original images: |
||||
|
||||
.. image:: images/Feature_Description_BruteForce_Result.jpg |
||||
:align: center |
||||
:height: 200pt |
||||
|
||||
|
||||
|
After Width: | Height: | Size: 117 KiB |
@ -0,0 +1,97 @@ |
||||
.. _feature_detection: |
||||
|
||||
Feature Detection |
||||
****************** |
||||
|
||||
Goal |
||||
===== |
||||
|
||||
In this tutorial you will learn how to: |
||||
|
||||
.. container:: enumeratevisibleitemswithsquare |
||||
|
||||
* Use the :feature_detector:`FeatureDetector<>` interface in order to find interest points. Specifically: |
||||
|
||||
* Use the :surf_feature_detector:`SurfFeatureDetector<>` and its function :feature_detector_detect:`detect<>` to perform the detection process |
||||
* Use the function :draw_keypoints:`drawKeypoints<>` to draw the detected keypoints |
||||
|
||||
|
||||
Theory |
||||
====== |
||||
|
||||
Code |
||||
==== |
||||
|
||||
This tutorial code's is shown lines below. You can also download it from `here <https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/features2D/SURF_detector.cpp>`_ |
||||
|
||||
.. code-block:: cpp |
||||
|
||||
#include <stdio.h> |
||||
#include <iostream> |
||||
#include "opencv2/core/core.hpp" |
||||
#include "opencv2/features2d/features2d.hpp" |
||||
#include "opencv2/highgui/highgui.hpp" |
||||
|
||||
using namespace cv; |
||||
|
||||
void readme(); |
||||
|
||||
/** @function main */ |
||||
int main( int argc, char** argv ) |
||||
{ |
||||
if( argc != 3 ) |
||||
{ readme(); return -1; } |
||||
|
||||
Mat img_1 = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE ); |
||||
Mat img_2 = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE ); |
||||
|
||||
if( !img_1.data || !img_2.data ) |
||||
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; } |
||||
|
||||
//-- Step 1: Detect the keypoints using SURF Detector |
||||
int minHessian = 400; |
||||
|
||||
SurfFeatureDetector detector( minHessian ); |
||||
|
||||
std::vector<KeyPoint> keypoints_1, keypoints_2; |
||||
|
||||
detector.detect( img_1, keypoints_1 ); |
||||
detector.detect( img_2, keypoints_2 ); |
||||
|
||||
//-- Draw keypoints |
||||
Mat img_keypoints_1; Mat img_keypoints_2; |
||||
|
||||
drawKeypoints( img_1, keypoints_1, img_keypoints_1, Scalar::all(-1), DrawMatchesFlags::DEFAULT ); |
||||
drawKeypoints( img_2, keypoints_2, img_keypoints_2, Scalar::all(-1), DrawMatchesFlags::DEFAULT ); |
||||
|
||||
//-- Show detected (drawn) keypoints |
||||
imshow("Keypoints 1", img_keypoints_1 ); |
||||
imshow("Keypoints 2", img_keypoints_2 ); |
||||
|
||||
waitKey(0); |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
/** @function readme */ |
||||
void readme() |
||||
{ std::cout << " Usage: ./SURF_detector <img1> <img2>" << std::endl; } |
||||
|
||||
Explanation |
||||
============ |
||||
|
||||
Result |
||||
====== |
||||
|
||||
#. Here is the result of the feature detection applied to the first image: |
||||
|
||||
.. image:: images/Feature_Detection_Result_a.jpg |
||||
:align: center |
||||
:height: 125pt |
||||
|
||||
#. And here is the result for the second image: |
||||
|
||||
.. image:: images/Feature_Detection_Result_b.jpg |
||||
:align: center |
||||
:height: 200pt |
||||
|
After Width: | Height: | Size: 73 KiB |
After Width: | Height: | Size: 34 KiB |
Loading…
Reference in new issue