mirror of https://github.com/opencv/opencv.git
Merge pull request #11607 from dkurt:dnn_scale_shift_layer
commit
06c1890639
4 changed files with 95 additions and 173 deletions
@ -1,145 +0,0 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
// Copyright (C) 2016, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
/*
|
||||
Implementation of shift layer, which adds up const values to blob. |
||||
*/ |
||||
|
||||
#include "../precomp.hpp" |
||||
#include "../op_inf_engine.hpp" |
||||
#include <opencv2/dnn/shape_utils.hpp> |
||||
|
||||
namespace cv |
||||
{ |
||||
namespace dnn |
||||
{ |
||||
|
||||
class ShiftLayerImpl CV_FINAL : public ShiftLayer |
||||
{ |
||||
public: |
||||
ShiftLayerImpl(const LayerParams ¶ms) |
||||
{ |
||||
setParamsFrom(params); |
||||
CV_Assert(blobs.size() == 1); |
||||
} |
||||
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE |
||||
{ |
||||
return backendId == DNN_BACKEND_DEFAULT || |
||||
backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine(); |
||||
} |
||||
|
||||
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
||||
const int requiredOutputs, |
||||
std::vector<MatShape> &outputs, |
||||
std::vector<MatShape> &internals) const CV_OVERRIDE |
||||
{ |
||||
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals); |
||||
internals.assign(1, shape(1, total(inputs[0], 2))); |
||||
return true; |
||||
} |
||||
|
||||
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
||||
|
||||
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr); |
||||
} |
||||
|
||||
virtual void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
||||
|
||||
CV_Assert(inputs.size() > 0); |
||||
CV_Assert(blobs.size() > 0); |
||||
|
||||
if(inputs[0]->dims == blobs[0].dims) |
||||
{ |
||||
for (size_t ii = 0; ii < outputs.size(); ii++) |
||||
{ |
||||
Mat &inpBlob = *inputs[ii]; |
||||
Mat &outBlob = outputs[ii]; |
||||
|
||||
outBlob = inpBlob + blobs[0]; |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
Mat biasOnesMat = internals[0]; |
||||
biasOnesMat.setTo(1); |
||||
for (size_t ii = 0; ii < outputs.size(); ii++) |
||||
{ |
||||
Mat &inpBlob = *inputs[ii]; |
||||
Mat &outBlob = outputs[ii]; |
||||
|
||||
inpBlob.copyTo(outBlob); |
||||
|
||||
for (int n = 0; n < inpBlob.size[0]; n++) |
||||
{ |
||||
Mat dstMat(inpBlob.size[1], inpBlob.size[2] * inpBlob.size[3], |
||||
outBlob.type(), outBlob.ptr(n)); |
||||
gemm(blobs[0], biasOnesMat, 1, dstMat, 1, dstMat); //TODO: gemv
|
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE |
||||
{ |
||||
#ifdef HAVE_INF_ENGINE |
||||
// Inference Engine has no layer just for biases. Create a linear
|
||||
// transformation layer with ones weights.
|
||||
InferenceEngine::LayerParams lp; |
||||
lp.name = name; |
||||
lp.type = "ScaleShift"; |
||||
lp.precision = InferenceEngine::Precision::FP32; |
||||
std::shared_ptr<InferenceEngine::ScaleShiftLayer> ieLayer(new InferenceEngine::ScaleShiftLayer(lp)); |
||||
|
||||
auto weights = InferenceEngine::make_shared_blob<float>(InferenceEngine::Precision::FP32, |
||||
{blobs[0].total()}); |
||||
weights->allocate(); |
||||
|
||||
std::vector<float> ones(blobs[0].total(), 1); |
||||
weights->set(ones); |
||||
ieLayer->_weights = weights; |
||||
|
||||
ieLayer->_biases = wrapToInfEngineBlob(blobs[0]); |
||||
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer)); |
||||
#endif // HAVE_INF_ENGINE
|
||||
return Ptr<BackendNode>(); |
||||
} |
||||
|
||||
void getScaleShift(Mat& scale, Mat& shift) const CV_OVERRIDE |
||||
{ |
||||
scale = Mat(); |
||||
shift = blobs[0]; |
||||
} |
||||
|
||||
virtual int64 getFLOPS(const std::vector<MatShape> &inputs, |
||||
const std::vector<MatShape> &outputs) const CV_OVERRIDE |
||||
{ |
||||
(void)outputs; // suppress unused variable warning
|
||||
long flops = 0; |
||||
|
||||
for(int i= 0; i < inputs.size(); i++) |
||||
{ |
||||
flops += total(inputs[i]); |
||||
} |
||||
|
||||
return flops; |
||||
} |
||||
}; |
||||
|
||||
Ptr<ShiftLayer> ShiftLayer::create(const LayerParams& params) |
||||
{ |
||||
return Ptr<ShiftLayer>(new ShiftLayerImpl(params)); |
||||
} |
||||
|
||||
} |
||||
} |
Loading…
Reference in new issue