mirror of https://github.com/opencv/opencv.git
commit
06bff34a6b
34 changed files with 970 additions and 478 deletions
@ -0,0 +1,540 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (c) 2006-2010, Rob Hess <hess@eecs.oregonstate.edu>
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2020, Intel Corporation, all rights reserved.
|
||||
|
||||
/**********************************************************************************************\
|
||||
Implementation of SIFT is based on the code from http://blogs.oregonstate.edu/hess/code/sift/
|
||||
Below is the original copyright. |
||||
Patent US6711293 expired in March 2020. |
||||
|
||||
// Copyright (c) 2006-2010, Rob Hess <hess@eecs.oregonstate.edu>
|
||||
// All rights reserved.
|
||||
|
||||
// The following patent has been issued for methods embodied in this
|
||||
// software: "Method and apparatus for identifying scale invariant features
|
||||
// in an image and use of same for locating an object in an image," David
|
||||
// G. Lowe, US Patent 6,711,293 (March 23, 2004). Provisional application
|
||||
// filed March 8, 1999. Asignee: The University of British Columbia. For
|
||||
// further details, contact David Lowe (lowe@cs.ubc.ca) or the
|
||||
// University-Industry Liaison Office of the University of British
|
||||
// Columbia.
|
||||
|
||||
// Note that restrictions imposed by this patent (and possibly others)
|
||||
// exist independently of and may be in conflict with the freedoms granted
|
||||
// in this license, which refers to copyright of the program, not patents
|
||||
// for any methods that it implements. Both copyright and patent law must
|
||||
// be obeyed to legally use and redistribute this program and it is not the
|
||||
// purpose of this license to induce you to infringe any patents or other
|
||||
// property right claims or to contest validity of any such claims. If you
|
||||
// redistribute or use the program, then this license merely protects you
|
||||
// from committing copyright infringement. It does not protect you from
|
||||
// committing patent infringement. So, before you do anything with this
|
||||
// program, make sure that you have permission to do so not merely in terms
|
||||
// of copyright, but also in terms of patent law.
|
||||
|
||||
// Please note that this license is not to be understood as a guarantee
|
||||
// either. If you use the program according to this license, but in
|
||||
// conflict with patent law, it does not mean that the licensor will refund
|
||||
// you for any losses that you incur if you are sued for your patent
|
||||
// infringement.
|
||||
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
// * Redistributions of source code must retain the above copyright and
|
||||
// patent notices, this list of conditions and the following
|
||||
// disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above copyright
|
||||
// notice, this list of conditions and the following disclaimer in
|
||||
// the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Oregon State University nor the names of its
|
||||
// contributors may be used to endorse or promote products derived
|
||||
// from this software without specific prior written permission.
|
||||
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
||||
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
||||
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
\**********************************************************************************************/ |
||||
|
||||
#include "precomp.hpp" |
||||
#include <opencv2/core/hal/hal.hpp> |
||||
#include <opencv2/core/utils/tls.hpp> |
||||
|
||||
#include "sift.simd.hpp" |
||||
#include "sift.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content |
||||
|
||||
namespace cv { |
||||
|
||||
/*!
|
||||
SIFT implementation. |
||||
|
||||
The class implements SIFT algorithm by D. Lowe. |
||||
*/ |
||||
class SIFT_Impl : public SIFT |
||||
{ |
||||
public: |
||||
explicit SIFT_Impl( int nfeatures = 0, int nOctaveLayers = 3, |
||||
double contrastThreshold = 0.04, double edgeThreshold = 10, |
||||
double sigma = 1.6); |
||||
|
||||
//! returns the descriptor size in floats (128)
|
||||
int descriptorSize() const CV_OVERRIDE; |
||||
|
||||
//! returns the descriptor type
|
||||
int descriptorType() const CV_OVERRIDE; |
||||
|
||||
//! returns the default norm type
|
||||
int defaultNorm() const CV_OVERRIDE; |
||||
|
||||
//! finds the keypoints and computes descriptors for them using SIFT algorithm.
|
||||
//! Optionally it can compute descriptors for the user-provided keypoints
|
||||
void detectAndCompute(InputArray img, InputArray mask, |
||||
std::vector<KeyPoint>& keypoints, |
||||
OutputArray descriptors, |
||||
bool useProvidedKeypoints = false) CV_OVERRIDE; |
||||
|
||||
void buildGaussianPyramid( const Mat& base, std::vector<Mat>& pyr, int nOctaves ) const; |
||||
void buildDoGPyramid( const std::vector<Mat>& pyr, std::vector<Mat>& dogpyr ) const; |
||||
void findScaleSpaceExtrema( const std::vector<Mat>& gauss_pyr, const std::vector<Mat>& dog_pyr, |
||||
std::vector<KeyPoint>& keypoints ) const; |
||||
|
||||
protected: |
||||
CV_PROP_RW int nfeatures; |
||||
CV_PROP_RW int nOctaveLayers; |
||||
CV_PROP_RW double contrastThreshold; |
||||
CV_PROP_RW double edgeThreshold; |
||||
CV_PROP_RW double sigma; |
||||
}; |
||||
|
||||
Ptr<SIFT> SIFT::create( int _nfeatures, int _nOctaveLayers, |
||||
double _contrastThreshold, double _edgeThreshold, double _sigma ) |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
return makePtr<SIFT_Impl>(_nfeatures, _nOctaveLayers, _contrastThreshold, _edgeThreshold, _sigma); |
||||
} |
||||
|
||||
static inline void |
||||
unpackOctave(const KeyPoint& kpt, int& octave, int& layer, float& scale) |
||||
{ |
||||
octave = kpt.octave & 255; |
||||
layer = (kpt.octave >> 8) & 255; |
||||
octave = octave < 128 ? octave : (-128 | octave); |
||||
scale = octave >= 0 ? 1.f/(1 << octave) : (float)(1 << -octave); |
||||
} |
||||
|
||||
static Mat createInitialImage( const Mat& img, bool doubleImageSize, float sigma ) |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
|
||||
Mat gray, gray_fpt; |
||||
if( img.channels() == 3 || img.channels() == 4 ) |
||||
{ |
||||
cvtColor(img, gray, COLOR_BGR2GRAY); |
||||
gray.convertTo(gray_fpt, DataType<sift_wt>::type, SIFT_FIXPT_SCALE, 0); |
||||
} |
||||
else |
||||
img.convertTo(gray_fpt, DataType<sift_wt>::type, SIFT_FIXPT_SCALE, 0); |
||||
|
||||
float sig_diff; |
||||
|
||||
if( doubleImageSize ) |
||||
{ |
||||
sig_diff = sqrtf( std::max(sigma * sigma - SIFT_INIT_SIGMA * SIFT_INIT_SIGMA * 4, 0.01f) ); |
||||
Mat dbl; |
||||
#if DoG_TYPE_SHORT |
||||
resize(gray_fpt, dbl, Size(gray_fpt.cols*2, gray_fpt.rows*2), 0, 0, INTER_LINEAR_EXACT); |
||||
#else |
||||
resize(gray_fpt, dbl, Size(gray_fpt.cols*2, gray_fpt.rows*2), 0, 0, INTER_LINEAR); |
||||
#endif |
||||
Mat result; |
||||
GaussianBlur(dbl, result, Size(), sig_diff, sig_diff); |
||||
return result; |
||||
} |
||||
else |
||||
{ |
||||
sig_diff = sqrtf( std::max(sigma * sigma - SIFT_INIT_SIGMA * SIFT_INIT_SIGMA, 0.01f) ); |
||||
Mat result; |
||||
GaussianBlur(gray_fpt, result, Size(), sig_diff, sig_diff); |
||||
return result; |
||||
} |
||||
} |
||||
|
||||
|
||||
void SIFT_Impl::buildGaussianPyramid( const Mat& base, std::vector<Mat>& pyr, int nOctaves ) const |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
|
||||
std::vector<double> sig(nOctaveLayers + 3); |
||||
pyr.resize(nOctaves*(nOctaveLayers + 3)); |
||||
|
||||
// precompute Gaussian sigmas using the following formula:
|
||||
// \sigma_{total}^2 = \sigma_{i}^2 + \sigma_{i-1}^2
|
||||
sig[0] = sigma; |
||||
double k = std::pow( 2., 1. / nOctaveLayers ); |
||||
for( int i = 1; i < nOctaveLayers + 3; i++ ) |
||||
{ |
||||
double sig_prev = std::pow(k, (double)(i-1))*sigma; |
||||
double sig_total = sig_prev*k; |
||||
sig[i] = std::sqrt(sig_total*sig_total - sig_prev*sig_prev); |
||||
} |
||||
|
||||
for( int o = 0; o < nOctaves; o++ ) |
||||
{ |
||||
for( int i = 0; i < nOctaveLayers + 3; i++ ) |
||||
{ |
||||
Mat& dst = pyr[o*(nOctaveLayers + 3) + i]; |
||||
if( o == 0 && i == 0 ) |
||||
dst = base; |
||||
// base of new octave is halved image from end of previous octave
|
||||
else if( i == 0 ) |
||||
{ |
||||
const Mat& src = pyr[(o-1)*(nOctaveLayers + 3) + nOctaveLayers]; |
||||
resize(src, dst, Size(src.cols/2, src.rows/2), |
||||
0, 0, INTER_NEAREST); |
||||
} |
||||
else |
||||
{ |
||||
const Mat& src = pyr[o*(nOctaveLayers + 3) + i-1]; |
||||
GaussianBlur(src, dst, Size(), sig[i], sig[i]); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
class buildDoGPyramidComputer : public ParallelLoopBody |
||||
{ |
||||
public: |
||||
buildDoGPyramidComputer( |
||||
int _nOctaveLayers, |
||||
const std::vector<Mat>& _gpyr, |
||||
std::vector<Mat>& _dogpyr) |
||||
: nOctaveLayers(_nOctaveLayers), |
||||
gpyr(_gpyr), |
||||
dogpyr(_dogpyr) { } |
||||
|
||||
void operator()( const cv::Range& range ) const CV_OVERRIDE |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
|
||||
const int begin = range.start; |
||||
const int end = range.end; |
||||
|
||||
for( int a = begin; a < end; a++ ) |
||||
{ |
||||
const int o = a / (nOctaveLayers + 2); |
||||
const int i = a % (nOctaveLayers + 2); |
||||
|
||||
const Mat& src1 = gpyr[o*(nOctaveLayers + 3) + i]; |
||||
const Mat& src2 = gpyr[o*(nOctaveLayers + 3) + i + 1]; |
||||
Mat& dst = dogpyr[o*(nOctaveLayers + 2) + i]; |
||||
subtract(src2, src1, dst, noArray(), DataType<sift_wt>::type); |
||||
} |
||||
} |
||||
|
||||
private: |
||||
int nOctaveLayers; |
||||
const std::vector<Mat>& gpyr; |
||||
std::vector<Mat>& dogpyr; |
||||
}; |
||||
|
||||
void SIFT_Impl::buildDoGPyramid( const std::vector<Mat>& gpyr, std::vector<Mat>& dogpyr ) const |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
|
||||
int nOctaves = (int)gpyr.size()/(nOctaveLayers + 3); |
||||
dogpyr.resize( nOctaves*(nOctaveLayers + 2) ); |
||||
|
||||
parallel_for_(Range(0, nOctaves * (nOctaveLayers + 2)), buildDoGPyramidComputer(nOctaveLayers, gpyr, dogpyr)); |
||||
} |
||||
|
||||
class findScaleSpaceExtremaComputer : public ParallelLoopBody |
||||
{ |
||||
public: |
||||
findScaleSpaceExtremaComputer( |
||||
int _o, |
||||
int _i, |
||||
int _threshold, |
||||
int _idx, |
||||
int _step, |
||||
int _cols, |
||||
int _nOctaveLayers, |
||||
double _contrastThreshold, |
||||
double _edgeThreshold, |
||||
double _sigma, |
||||
const std::vector<Mat>& _gauss_pyr, |
||||
const std::vector<Mat>& _dog_pyr, |
||||
TLSData<std::vector<KeyPoint> > &_tls_kpts_struct) |
||||
|
||||
: o(_o), |
||||
i(_i), |
||||
threshold(_threshold), |
||||
idx(_idx), |
||||
step(_step), |
||||
cols(_cols), |
||||
nOctaveLayers(_nOctaveLayers), |
||||
contrastThreshold(_contrastThreshold), |
||||
edgeThreshold(_edgeThreshold), |
||||
sigma(_sigma), |
||||
gauss_pyr(_gauss_pyr), |
||||
dog_pyr(_dog_pyr), |
||||
tls_kpts_struct(_tls_kpts_struct) { } |
||||
void operator()( const cv::Range& range ) const CV_OVERRIDE |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
|
||||
std::vector<KeyPoint>& kpts = tls_kpts_struct.getRef(); |
||||
|
||||
CV_CPU_DISPATCH(findScaleSpaceExtrema, (o, i, threshold, idx, step, cols, nOctaveLayers, contrastThreshold, edgeThreshold, sigma, gauss_pyr, dog_pyr, kpts, range), |
||||
CV_CPU_DISPATCH_MODES_ALL); |
||||
} |
||||
private: |
||||
int o, i; |
||||
int threshold; |
||||
int idx, step, cols; |
||||
int nOctaveLayers; |
||||
double contrastThreshold; |
||||
double edgeThreshold; |
||||
double sigma; |
||||
const std::vector<Mat>& gauss_pyr; |
||||
const std::vector<Mat>& dog_pyr; |
||||
TLSData<std::vector<KeyPoint> > &tls_kpts_struct; |
||||
}; |
||||
|
||||
//
|
||||
// Detects features at extrema in DoG scale space. Bad features are discarded
|
||||
// based on contrast and ratio of principal curvatures.
|
||||
void SIFT_Impl::findScaleSpaceExtrema( const std::vector<Mat>& gauss_pyr, const std::vector<Mat>& dog_pyr, |
||||
std::vector<KeyPoint>& keypoints ) const |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
|
||||
const int nOctaves = (int)gauss_pyr.size()/(nOctaveLayers + 3); |
||||
const int threshold = cvFloor(0.5 * contrastThreshold / nOctaveLayers * 255 * SIFT_FIXPT_SCALE); |
||||
|
||||
keypoints.clear(); |
||||
TLSDataAccumulator<std::vector<KeyPoint> > tls_kpts_struct; |
||||
|
||||
for( int o = 0; o < nOctaves; o++ ) |
||||
for( int i = 1; i <= nOctaveLayers; i++ ) |
||||
{ |
||||
const int idx = o*(nOctaveLayers+2)+i; |
||||
const Mat& img = dog_pyr[idx]; |
||||
const int step = (int)img.step1(); |
||||
const int rows = img.rows, cols = img.cols; |
||||
|
||||
parallel_for_(Range(SIFT_IMG_BORDER, rows-SIFT_IMG_BORDER), |
||||
findScaleSpaceExtremaComputer( |
||||
o, i, threshold, idx, step, cols, |
||||
nOctaveLayers, |
||||
contrastThreshold, |
||||
edgeThreshold, |
||||
sigma, |
||||
gauss_pyr, dog_pyr, tls_kpts_struct)); |
||||
} |
||||
|
||||
std::vector<std::vector<KeyPoint>*> kpt_vecs; |
||||
tls_kpts_struct.gather(kpt_vecs); |
||||
for (size_t i = 0; i < kpt_vecs.size(); ++i) { |
||||
keypoints.insert(keypoints.end(), kpt_vecs[i]->begin(), kpt_vecs[i]->end()); |
||||
} |
||||
} |
||||
|
||||
|
||||
static |
||||
void calcSIFTDescriptor( |
||||
const Mat& img, Point2f ptf, float ori, float scl, |
||||
int d, int n, float* dst |
||||
) |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
|
||||
CV_CPU_DISPATCH(calcSIFTDescriptor, (img, ptf, ori, scl, d, n, dst), |
||||
CV_CPU_DISPATCH_MODES_ALL); |
||||
} |
||||
|
||||
class calcDescriptorsComputer : public ParallelLoopBody |
||||
{ |
||||
public: |
||||
calcDescriptorsComputer(const std::vector<Mat>& _gpyr, |
||||
const std::vector<KeyPoint>& _keypoints, |
||||
Mat& _descriptors, |
||||
int _nOctaveLayers, |
||||
int _firstOctave) |
||||
: gpyr(_gpyr), |
||||
keypoints(_keypoints), |
||||
descriptors(_descriptors), |
||||
nOctaveLayers(_nOctaveLayers), |
||||
firstOctave(_firstOctave) { } |
||||
|
||||
void operator()( const cv::Range& range ) const CV_OVERRIDE |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
|
||||
const int begin = range.start; |
||||
const int end = range.end; |
||||
|
||||
static const int d = SIFT_DESCR_WIDTH, n = SIFT_DESCR_HIST_BINS; |
||||
|
||||
for ( int i = begin; i<end; i++ ) |
||||
{ |
||||
KeyPoint kpt = keypoints[i]; |
||||
int octave, layer; |
||||
float scale; |
||||
unpackOctave(kpt, octave, layer, scale); |
||||
CV_Assert(octave >= firstOctave && layer <= nOctaveLayers+2); |
||||
float size=kpt.size*scale; |
||||
Point2f ptf(kpt.pt.x*scale, kpt.pt.y*scale); |
||||
const Mat& img = gpyr[(octave - firstOctave)*(nOctaveLayers + 3) + layer]; |
||||
|
||||
float angle = 360.f - kpt.angle; |
||||
if(std::abs(angle - 360.f) < FLT_EPSILON) |
||||
angle = 0.f; |
||||
calcSIFTDescriptor(img, ptf, angle, size*0.5f, d, n, descriptors.ptr<float>((int)i)); |
||||
} |
||||
} |
||||
private: |
||||
const std::vector<Mat>& gpyr; |
||||
const std::vector<KeyPoint>& keypoints; |
||||
Mat& descriptors; |
||||
int nOctaveLayers; |
||||
int firstOctave; |
||||
}; |
||||
|
||||
static void calcDescriptors(const std::vector<Mat>& gpyr, const std::vector<KeyPoint>& keypoints, |
||||
Mat& descriptors, int nOctaveLayers, int firstOctave ) |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
parallel_for_(Range(0, static_cast<int>(keypoints.size())), calcDescriptorsComputer(gpyr, keypoints, descriptors, nOctaveLayers, firstOctave)); |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
SIFT_Impl::SIFT_Impl( int _nfeatures, int _nOctaveLayers, |
||||
double _contrastThreshold, double _edgeThreshold, double _sigma ) |
||||
: nfeatures(_nfeatures), nOctaveLayers(_nOctaveLayers), |
||||
contrastThreshold(_contrastThreshold), edgeThreshold(_edgeThreshold), sigma(_sigma) |
||||
{ |
||||
} |
||||
|
||||
int SIFT_Impl::descriptorSize() const |
||||
{ |
||||
return SIFT_DESCR_WIDTH*SIFT_DESCR_WIDTH*SIFT_DESCR_HIST_BINS; |
||||
} |
||||
|
||||
int SIFT_Impl::descriptorType() const |
||||
{ |
||||
return CV_32F; |
||||
} |
||||
|
||||
int SIFT_Impl::defaultNorm() const |
||||
{ |
||||
return NORM_L2; |
||||
} |
||||
|
||||
|
||||
void SIFT_Impl::detectAndCompute(InputArray _image, InputArray _mask, |
||||
std::vector<KeyPoint>& keypoints, |
||||
OutputArray _descriptors, |
||||
bool useProvidedKeypoints) |
||||
{ |
||||
CV_TRACE_FUNCTION(); |
||||
|
||||
int firstOctave = -1, actualNOctaves = 0, actualNLayers = 0; |
||||
Mat image = _image.getMat(), mask = _mask.getMat(); |
||||
|
||||
if( image.empty() || image.depth() != CV_8U ) |
||||
CV_Error( Error::StsBadArg, "image is empty or has incorrect depth (!=CV_8U)" ); |
||||
|
||||
if( !mask.empty() && mask.type() != CV_8UC1 ) |
||||
CV_Error( Error::StsBadArg, "mask has incorrect type (!=CV_8UC1)" ); |
||||
|
||||
if( useProvidedKeypoints ) |
||||
{ |
||||
firstOctave = 0; |
||||
int maxOctave = INT_MIN; |
||||
for( size_t i = 0; i < keypoints.size(); i++ ) |
||||
{ |
||||
int octave, layer; |
||||
float scale; |
||||
unpackOctave(keypoints[i], octave, layer, scale); |
||||
firstOctave = std::min(firstOctave, octave); |
||||
maxOctave = std::max(maxOctave, octave); |
||||
actualNLayers = std::max(actualNLayers, layer-2); |
||||
} |
||||
|
||||
firstOctave = std::min(firstOctave, 0); |
||||
CV_Assert( firstOctave >= -1 && actualNLayers <= nOctaveLayers ); |
||||
actualNOctaves = maxOctave - firstOctave + 1; |
||||
} |
||||
|
||||
Mat base = createInitialImage(image, firstOctave < 0, (float)sigma); |
||||
std::vector<Mat> gpyr; |
||||
int nOctaves = actualNOctaves > 0 ? actualNOctaves : cvRound(std::log( (double)std::min( base.cols, base.rows ) ) / std::log(2.) - 2) - firstOctave; |
||||
|
||||
//double t, tf = getTickFrequency();
|
||||
//t = (double)getTickCount();
|
||||
buildGaussianPyramid(base, gpyr, nOctaves); |
||||
|
||||
//t = (double)getTickCount() - t;
|
||||
//printf("pyramid construction time: %g\n", t*1000./tf);
|
||||
|
||||
if( !useProvidedKeypoints ) |
||||
{ |
||||
std::vector<Mat> dogpyr; |
||||
buildDoGPyramid(gpyr, dogpyr); |
||||
//t = (double)getTickCount();
|
||||
findScaleSpaceExtrema(gpyr, dogpyr, keypoints); |
||||
KeyPointsFilter::removeDuplicatedSorted( keypoints ); |
||||
|
||||
if( nfeatures > 0 ) |
||||
KeyPointsFilter::retainBest(keypoints, nfeatures); |
||||
//t = (double)getTickCount() - t;
|
||||
//printf("keypoint detection time: %g\n", t*1000./tf);
|
||||
|
||||
if( firstOctave < 0 ) |
||||
for( size_t i = 0; i < keypoints.size(); i++ ) |
||||
{ |
||||
KeyPoint& kpt = keypoints[i]; |
||||
float scale = 1.f/(float)(1 << -firstOctave); |
||||
kpt.octave = (kpt.octave & ~255) | ((kpt.octave + firstOctave) & 255); |
||||
kpt.pt *= scale; |
||||
kpt.size *= scale; |
||||
} |
||||
|
||||
if( !mask.empty() ) |
||||
KeyPointsFilter::runByPixelsMask( keypoints, mask ); |
||||
} |
||||
else |
||||
{ |
||||
// filter keypoints by mask
|
||||
//KeyPointsFilter::runByPixelsMask( keypoints, mask );
|
||||
} |
||||
|
||||
if( _descriptors.needed() ) |
||||
{ |
||||
//t = (double)getTickCount();
|
||||
int dsize = descriptorSize(); |
||||
_descriptors.create((int)keypoints.size(), dsize, CV_32F); |
||||
Mat descriptors = _descriptors.getMat(); |
||||
|
||||
calcDescriptors(gpyr, keypoints, descriptors, nOctaveLayers, firstOctave); |
||||
//t = (double)getTickCount() - t;
|
||||
//printf("descriptor extraction time: %g\n", t*1000./tf);
|
||||
} |
||||
} |
||||
|
||||
} |
After Width: | Height: | Size: 1.4 KiB |
Loading…
Reference in new issue