Merge pull request #23900 from kai-waang:fixing-typo

Fixing typos in usac #23900

Just read and correct some typos in `usac`
### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
pull/23915/head
Wang Kai 2 years ago committed by GitHub
parent 64be9c8bf6
commit 0661aff4a5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 2
      modules/calib3d/src/usac/degeneracy.cpp
  2. 2
      modules/calib3d/src/usac/essential_solver.cpp
  3. 4
      modules/calib3d/src/usac/fundamental_solver.cpp
  4. 4
      modules/calib3d/src/usac/pnp_solver.cpp
  5. 2
      modules/calib3d/src/usac/ransac_solvers.cpp
  6. 8
      modules/calib3d/src/usac/sampler.cpp
  7. 2
      modules/calib3d/src/usac/termination.cpp
  8. 4
      modules/calib3d/src/usac/utils.cpp

@ -112,7 +112,7 @@ public:
return false;
// Checks if points are not collinear
// If area of triangle constructed with 3 points is less then threshold then points are collinear:
// If area of triangle constructed with 3 points is less than threshold then points are collinear:
// |x1 y1 1| |x1 y1 1|
// (1/2) det |x2 y2 1| = (1/2) det |x2-x1 y2-y1 0| = det |x2-x1 y2-y1| < 2 * threshold
// |x3 y3 1| |x3-x1 y3-y1 0| |x3-x1 y3-y1|

@ -142,7 +142,7 @@ public:
}
std::vector<double> c(11), rs;
// filling coefficients of 10-degree polynomial satysfying zero-determinant constraint of essential matrix, ie., det(E) = 0
// filling coefficients of 10-degree polynomial satisfying zero-determinant constraint of essential matrix, ie., det(E) = 0
// based on "An Efficient Solution to the Five-Point Relative Pose Problem" (David Nister)
// same as in five-point.cpp
c[10] = (b[0]*b[17]*b[34]+b[26]*b[4]*b[21]-b[26]*b[17]*b[8]-b[13]*b[4]*b[34]-b[0]*b[21]*b[30]+b[13]*b[30]*b[8]);

@ -438,7 +438,7 @@ public:
explicit CovarianceEpipolarSolverImpl (const Mat &points_, bool is_fundamental_) {
points_size = points_.rows;
is_fundamental = is_fundamental_;
if (is_fundamental) { // normalize image points only for fundmantal matrix
if (is_fundamental) { // normalize image points only for fundamental matrix
std::vector<int> sample(points_size);
for (int i = 0; i < points_size; i++) sample[i] = i;
const Ptr<NormTransform> normTr = NormTransform::create(points_);
@ -558,7 +558,7 @@ public:
const auto * const pts_ = (float *) calib_points.data;
// a few point are enough to test
// actually due to Sampson error minimization, the input R,t do not really matter
// for a correct pair there is a sligthly faster convergence
// for a correct pair there is a slightly faster convergence
for (int i = 0; i < 3; i++) { // could be 1 point
const int rand_inl = 4 * sample[rng.uniform(0, sample_size)];
Vec3d p1 (pts_[rand_inl], pts_[rand_inl+1], 1), p2(pts_[rand_inl+2], pts_[rand_inl+3], 1);

@ -196,7 +196,7 @@ public:
a2[10] = v * Z;
a2[11] = v;
// fill covarinace matrix
// fill covariance matrix
for (int j = 0; j < 12; j++)
for (int z = j; z < 12; z++)
AtA[j * 12 + z] += a1[j] * a1[z] + a2[j] * a2[z];
@ -227,7 +227,7 @@ public:
a2[10] = v * weight_Z;
a2[11] = v * weight;
// fill covarinace matrix
// fill covariance matrix
for (int j = 0; j < 12; j++)
for (int z = j; z < 12; z++)
AtA[j * 12 + z] += a1[j] * a1[z] + a2[j] * a2[z];

@ -294,7 +294,7 @@ public:
params->getUpperIncompleteOfSigmaQuantile()); break;
case ScoreMethod::SCORE_METHOD_LMEDS :
quality = LMedsQuality::create(points_size, threshold, error); break;
default: CV_Error(cv::Error::StsNotImplemented, "Score is not imeplemeted!");
default: CV_Error(cv::Error::StsNotImplemented, "Score is not implemented!");
}
const auto is_ge_solver = params->getRansacSolver() == GEM_SOLVER;

@ -62,8 +62,8 @@ Ptr<UniformSampler> UniformSampler::create(int state, int sample_size_, int poin
/////////////////////////////////// PROSAC (SIMPLE) SAMPLER ///////////////////////////////////////
/*
* PROSAC (simple) sampler does not use array of precalculated T_n (n is subset size) samples, but computes T_n for
* specific n directy in generateSample() function.
* Also, the stopping length (or maximum subset size n*) by default is set to points_size (N) and does not updating
* specific n directly in generateSample() function.
* Also, the stopping length (or maximum subset size n*) by default is set to points_size (N) and does not update
* during computation.
*/
class ProsacSimpleSamplerImpl : public ProsacSimpleSampler {
@ -176,7 +176,7 @@ protected:
// In our experiments, the parameter was set to T_N = 200000
int growth_max_samples;
// how many time PROSAC generateSample() was called
// how many times PROSAC generateSample() was called
int kth_sample_number;
Ptr<UniformRandomGenerator> random_gen;
public:
@ -488,7 +488,7 @@ public:
points_large_neighborhood_size = 0;
// find indicies of points that have sufficient neighborhood (at least sample_size-1)
// find indices of points that have sufficient neighborhood (at least sample_size-1)
for (int pt_idx = 0; pt_idx < points_size; pt_idx++)
if ((int)neighborhood_graph->getNeighbors(pt_idx).size() >= sample_size-1)
points_large_neighborhood[points_large_neighborhood_size++] = pt_idx;

@ -19,7 +19,7 @@ public:
/*
* Get upper bound iterations for any sample number
* n is points size, w is inlier ratio, p is desired probability, k is expceted number of iterations.
* n is points size, w is inlier ratio, p is desired probability, k is expected number of iterations.
* 1 - p = (1 - w^n)^k,
* k = log_(1-w^n) (1-p)
* k = ln (1-p) / ln (1-w^n)

@ -344,10 +344,10 @@ void Utils::decomposeProjection (const Mat &P, Matx33d &K, Matx33d &R, Vec3d &t,
}
double Utils::getPoissonCDF (double lambda, int inliers) {
double exp_lamda = exp(-lambda), cdf = exp_lamda, lambda_i_div_fact_i = 1;
double exp_lambda = exp(-lambda), cdf = exp_lambda, lambda_i_div_fact_i = 1;
for (int i = 1; i <= inliers; i++) {
lambda_i_div_fact_i *= (lambda / i);
cdf += exp_lamda * lambda_i_div_fact_i;
cdf += exp_lambda * lambda_i_div_fact_i;
if (fabs(cdf - 1) < DBL_EPSILON) // cdf is almost 1
break;
}

Loading…
Cancel
Save