Merge pull request #25412 from ZelboK:update-cudnn-to-9

Refactor DNN module to build with cudnn 9 #25412

A lot of APIs that are currently being used in the dnn module have been removed in cudnn 9. They were deprecated in 8. 
This PR updates said code accordingly to the newer API.

Some key notes:
1) This is my first PR. I am new to openCV. 
2) `opencv_test_core` tests pass
3) On a 3080, cuda 12.4(should be irrelevant since I didn't build the `opencv_modules`, gcc 11.4, WSL 2. 
4) For brevity I will avoid including macro code that will allow for older versions of cudnn to build.

I was unable to get the tests working for `opencv_test_dnn` and `opencv_perf_dnn`. The errors I get are of the following: 
```
 OpenCV tests: Can't find required data file: dnn/onnx/conformance/node/test_reduce_prod_default_axes_keepdims_example/model.onnx in function 'findData'
" thrown in the test body.
```
So before I spend more time investigating I was hoping to get a maintainer to point me in the right direction here. I would like to run these tests and confirm things are working as intended. I may have missed some details.


### Pull Request Readiness Checklist

relevant issue
(https://github.com/opencv/opencv/issues/24983

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
pull/25658/head
Danial Javady 8 months ago committed by GitHub
parent b6593517c4
commit 05e48605a0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 70
      modules/dnn/src/cuda4dnn/csl/cudnn/recurrent.hpp
  2. 81
      modules/dnn/src/cuda4dnn/csl/tensor_ops.hpp
  3. 8
      modules/dnn/src/cuda4dnn/primitives/recurrent_cells.hpp

@ -97,7 +97,7 @@ public:
/**
*/
RNNDescriptor(const Handle &handle, RNNMode mode, int hidden_size, int num_layers,
RNNDescriptor(const Handle &handle, RNNMode mode, int input_size, int hidden_size, int num_layers,
bool bidirectional, const DropoutDescriptor &dropoutDesc)
{
CUDA4DNN_CHECK_CUDNN(cudnnCreateRNNDescriptor(&descriptor));
@ -119,12 +119,35 @@ public:
try
{
#if CUDNN_MAJOR >= 9
CUDA4DNN_CHECK_CUDNN(cudnnSetRNNDescriptor_v8(
descriptor,
algo,
rnn_mode,
CUDNN_RNN_DOUBLE_BIAS,
bidirectional ? CUDNN_BIDIRECTIONAL : CUDNN_UNIDIRECTIONAL,
CUDNN_LINEAR_INPUT, detail::get_data_type<T>(),
detail::get_data_type<T>(),
detail::get_data_type<T>() == CUDNN_DATA_HALF ? CUDNN_TENSOR_OP_MATH : CUDNN_DEFAULT_MATH,
input_size,
hidden_size,
hidden_size,
num_layers,
dropoutDesc.get(),
0)); // What other flags do we might want here?
#else
CUDA4DNN_CHECK_CUDNN(cudnnSetRNNDescriptor_v6(
handle.get(), descriptor, hidden_size, num_layers, dropoutDesc.get(),
CUDNN_LINEAR_INPUT, bidirectional ? CUDNN_BIDIRECTIONAL : CUDNN_UNIDIRECTIONAL,
rnn_mode,
algo, //CUDNN_RNN_ALGO_STANDARD,
detail::get_data_type<T>()));
handle.get(),
descriptor,
hidden_size,
num_layers,
dropoutDesc.get(),
CUDNN_LINEAR_INPUT,
bidirectional ? CUDNN_BIDIRECTIONAL : CUDNN_UNIDIRECTIONAL,
rnn_mode,
algo,
detail::get_data_type<T>()));
#endif
}
catch (...)
{
@ -158,16 +181,34 @@ private:
cudnnRNNAlgo_t algo{CUDNN_RNN_ALGO_STANDARD};
};
template<class T>
size_t getRNNWorkspaceSize(const Handle &handle, const RNNDescriptor<T> &rnnDesc,
const int seqLength, const TensorDescriptorsArray<T> &inputDesc)
#if CUDNN_MAJOR >= 9
template <class T>
void LSTMForward(const Handle &handle, const RNNDescriptor<T> &rnnDesc,
cudnnRNNDataDescriptor_t xDesc, DevicePtr<const T> x,
cudnnRNNDataDescriptor_t yDesc, DevicePtr<T> y,
cudnnTensorDescriptor_t hDesc, DevicePtr<const T> hx, DevicePtr<T> hy,
cudnnTensorDescriptor_t cDesc, DevicePtr<const T> cx, DevicePtr<T> cy,
size_t weightSpaceSize, DevicePtr<const T> weightSpace,
size_t cudnn_WorkspaceSize, DevicePtr<T> cudnn_Workspace,
size_t reserveSpaceSize, DevicePtr<T> reserveSpace)
{
size_t workSize;
CUDA4DNN_CHECK_CUDNN(cudnnGetRNNWorkspaceSize(handle.get(), rnnDesc.get(), seqLength,
inputDesc.get().data(), &workSize));
return workSize;
CV_Assert(handle);
std::cout << "cudnn_WorkspaceSize: " << cudnn_WorkspaceSize << std::endl;
std::cout << "reserveSpaceSize: " << reserveSpaceSize << std::endl;
CUDA4DNN_CHECK_CUDNN(cudnnRNNForward(
handle.get(), rnnDesc.get(), CUDNN_FWD_MODE_INFERENCE,
nullptr, // docs say use this as null on >= 8.9.1
xDesc, x.get(), yDesc, y.get(),
hDesc, hx.get(), hy.get(),
cDesc, cx.get(), cy.get(),
weightSpaceSize, weightSpace.get(),
cudnn_WorkspaceSize, cudnn_Workspace.get(),
reserveSpaceSize, reserveSpace.get()));
}
#else
template<class T>
void LSTMForward(const Handle &handle, const RNNDescriptor<T> &rnnDesc,
const FilterDescriptor<T> &filterDesc, DevicePtr<const T> filterPtr,
@ -189,7 +230,8 @@ void LSTMForward(const Handle &handle, const RNNDescriptor<T> &rnnDesc,
initialCDesc.get(), ycOutputPtr.get(),
static_cast<void*>(workspace.get()), workspace.size_in_bytes()));
}
#endif
}}}}} /* namespace cv::dnn::cuda4dnn::csl::cudnn */
#endif //OPENCV_DNN_CUDA4DNN_CSL_CUDNN_RECURRENT_HPP
#endif //OPENCV_DNN_CUDA4DNN_CSL_CUDNN_RECURRENT_HPP

@ -528,6 +528,46 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace csl {
LSTM() = default;
LSTM(const LSTM&) = delete;
LSTM(LSTM&&) = default;
#if CUDNN_MAJOR >= 9
LSTM(cudnn::Handle handle, const params_type &params)
: cudnnHandle(std::move(handle)), seqLength(params.seqLength)
{
std::vector<int> seqLenArr(params.miniBatch, seqLength);
cudnnCreateRNNDataDescriptor(&xDesc);
cudnnSetRNNDataDescriptor(xDesc, cudnn::detail::get_data_type<T>(),
CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_PACKED, seqLength,
params.miniBatch, params.inputSize, seqLenArr.data(),
nullptr);
cudnnCreateRNNDataDescriptor(&cyDesc);
cudnnSetRNNDataDescriptor(
cyDesc, cudnn::detail::get_data_type<T>(),
CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_PACKED,
seqLength, params.miniBatch,
params.bidirectional ? params.hiddenSize * 2 : params.hiddenSize,
seqLenArr.data(),
nullptr);
dropoutDesc = DropoutDescriptor(cudnnHandle, params.dropout);
rnnDesc = RNNDescriptor(cudnnHandle, params.type, params.inputSize, params.hiddenSize,
params.numLayers, params.bidirectional, dropoutDesc);
int num_direction = params.bidirectional ? 2 : 1;
h0TensorDesc = TensorDescriptor(num_direction, params.miniBatch, params.hiddenSize);
c0TensorDesc = TensorDescriptor(num_direction, params.miniBatch, params.hiddenSize);
// Get amount of work space required to execute the RNN described by rnnDesc
// with input dimensions defined by inputDesc
CUDA4DNN_CHECK_CUDNN(cudnnGetRNNTempSpaceSizes(
cudnnHandle.get(), rnnDesc.get(), CUDNN_FWD_MODE_INFERENCE,
xDesc, &workSpaceSize, &reserveSpaceSize));
csl::WorkspaceBuilder builder;
builder.require<T>(workSpaceSize);
builder.require<T>(reserveSpaceSize);
scratch_mem_in_bytes = builder.required_workspace_size();
}
#else
LSTM(cudnn::Handle handle, const params_type& params)
: cudnnHandle(std::move(handle)), seqLength{params.seqLength},
inputDesc(seqLength, {params.miniBatch, params.inputSize, 1}),
@ -538,7 +578,7 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace csl {
{
dropoutDesc = DropoutDescriptor(cudnnHandle, params.dropout);
filterDesc = FilterDescriptor(params.weights_shape);
rnnDesc = RNNDescriptor(cudnnHandle, params.type, params.hiddenSize,
rnnDesc = RNNDescriptor(cudnnHandle, params.type, params.inputSize, params.hiddenSize,
params.numLayers, params.bidirectional, dropoutDesc);
int num_direction = params.bidirectional ? 2 : 1;
@ -550,19 +590,44 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace csl {
// Get amount of work space required to execute the RNN described by rnnDesc
// with input dimensions defined by inputDesc
csl::WorkspaceBuilder builder;
builder.require(cudnn::getRNNWorkspaceSize<T>(cudnnHandle, rnnDesc, seqLength, inputDesc));
size_t workSize;
CUDA4DNN_CHECK_CUDNN(cudnnGetRNNWorkspaceSize(cudnnHandle.get(), rnnDesc.get(), seqLength,
inputDesc.get().data(), &workSize));
builder.require(workSize);
scratch_mem_in_bytes = builder.required_workspace_size();
}
#endif
LSTM& operator=(const LSTM&) = delete;
LSTM& operator=(LSTM&&) = default;
void inference(TensorView<T> input, TensorSpan<T> y_output, TensorSpan<T> yc_output, TensorView<T> filters,
TensorView<T> h0, TensorView<T> c0, WorkspaceInstance workspace)
TensorView<T> h0, TensorView<T> c0, csl::Workspace& workspace)
{
auto ws_allocator = csl::WorkspaceAllocator(workspace);
#if CUDNN_MAJOR >= 9
size_t weightSpaceSize = sizeof(typename TensorView<T>::value_type) * filters.size();
auto workspaceData = ws_allocator.get_span<T>(workSpaceSize);
auto reserveSpaceData = ws_allocator.get_span<T>(reserveSpaceSize);
cudnn::LSTMForward<T>(cudnnHandle, rnnDesc, xDesc, input.get(), cyDesc,
y_output.get(), h0TensorDesc.get(), h0.get(),
DevicePtr<T>(nullptr), // hy, final state
c0TensorDesc.get(), // maps to cxDesc
c0.get(), // maps to cx
yc_output.get(), // maps to cy
weightSpaceSize,
filters.get(), // maps to weightSpace
workSpaceSize,
workspaceData.data(), // workSpaceSize and workSpace
reserveSpaceSize, // reserveSpaceSize
reserveSpaceData.data()
);
#else
cudnn::LSTMForward<T>(cudnnHandle, rnnDesc, filterDesc, filters.get(), inputDesc,
input.get(), h0TensorDesc, h0.get(), c0TensorDesc, c0.get(),
seqLength, outputDesc, y_output.get(), yc_output.get(), workspace);
seqLength, outputDesc, y_output.get(), yc_output.get(), ws_allocator.get_instance());
#endif
}
std::size_t get_workspace_memory_in_bytes() const noexcept { return scratch_mem_in_bytes; }
@ -575,11 +640,17 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace csl {
RNNDescriptor rnnDesc;
DropoutDescriptor dropoutDesc;
FilterDescriptor filterDesc;
TensorDescriptor h0TensorDesc, c0TensorDesc;
#if CUDNN_MAJOR >= 9
size_t weightSpaceSize, workSpaceSize, reserveSpaceSize;
cudnnRNNDataDescriptor_t xDesc;
cudnnRNNDataDescriptor_t cyDesc; // represents cyDesc or cDesc(now reps both final and beginning)
#else
FilterDescriptor filterDesc;
TensorDescriptorsArray inputDesc;
TensorDescriptorsArray outputDesc;
#endif
};
}}}} /* namespace cv::dnn::cuda4dnn::csl */

@ -55,9 +55,6 @@ public:
c0Tensor = csl::makeTensorHeader<T>(c0);
csl::copyMatToTensor<T>(c0, c0Tensor, stream);
csl::WorkspaceBuilder builder;
builder.require<T>(lstm.get_workspace_memory_in_bytes());
}
void forward(const std::vector<cv::Ptr<BackendWrapper>>& inputs,
@ -75,8 +72,7 @@ public:
Ptr<wrapper_type> yc_output_wrapper = outputs.size() == 2 ? outputs[1].dynamicCast<wrapper_type>() : Ptr<wrapper_type>();
csl::TensorSpan<T> yc_output = yc_output_wrapper.empty() ? csl::TensorSpan<T>() : yc_output_wrapper->getSpan();
csl::WorkspaceAllocator allocator(workspace);
lstm.inference(input, y_output, yc_output, filtersTensor, h0Tensor, c0Tensor, allocator.get_instance());
lstm.inference(input, y_output, yc_output, filtersTensor, h0Tensor, c0Tensor, workspace);
}
std::size_t get_workspace_memory_in_bytes() const noexcept override
@ -94,4 +90,4 @@ private:
}}} /* namespace cv::dnn::cuda4dnn */
#endif //OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_RECURRENT_CELLS_HPP
#endif //OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_RECURRENT_CELLS_HPP

Loading…
Cancel
Save