Merge pull request #13025 from alalek:move_shape_contrib
@ -1,26 +0,0 @@ |
|||||||
#!/usr/bin/env python |
|
||||||
import cv2 as cv |
|
||||||
|
|
||||||
from tests_common import NewOpenCVTests |
|
||||||
|
|
||||||
class shape_test(NewOpenCVTests): |
|
||||||
|
|
||||||
def test_computeDistance(self): |
|
||||||
|
|
||||||
a = self.get_sample('samples/data/shape_sample/1.png', cv.IMREAD_GRAYSCALE) |
|
||||||
b = self.get_sample('samples/data/shape_sample/2.png', cv.IMREAD_GRAYSCALE) |
|
||||||
|
|
||||||
ca, _ = cv.findContours(a, cv.RETR_CCOMP, cv.CHAIN_APPROX_TC89_KCOS) |
|
||||||
cb, _ = cv.findContours(b, cv.RETR_CCOMP, cv.CHAIN_APPROX_TC89_KCOS) |
|
||||||
|
|
||||||
hd = cv.createHausdorffDistanceExtractor() |
|
||||||
sd = cv.createShapeContextDistanceExtractor() |
|
||||||
|
|
||||||
d1 = hd.computeDistance(ca[0], cb[0]) |
|
||||||
d2 = sd.computeDistance(ca[0], cb[0]) |
|
||||||
|
|
||||||
self.assertAlmostEqual(d1, 26.4196891785, 3, "HausdorffDistanceExtractor") |
|
||||||
self.assertAlmostEqual(d2, 0.25804194808, 3, "ShapeContextDistanceExtractor") |
|
||||||
|
|
||||||
if __name__ == '__main__': |
|
||||||
NewOpenCVTests.bootstrap() |
|
@ -1,2 +0,0 @@ |
|||||||
set(the_description "Shape descriptors and matchers") |
|
||||||
ocv_define_module(shape opencv_core opencv_imgproc opencv_calib3d WRAP python) |
|
@ -1,57 +0,0 @@ |
|||||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
||||||
//
|
|
||||||
// By downloading, copying, installing or using the software you agree to this license.
|
|
||||||
// If you do not agree to this license, do not download, install,
|
|
||||||
// copy or use the software.
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// License Agreement
|
|
||||||
// For Open Source Computer Vision Library
|
|
||||||
//
|
|
||||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
||||||
// Copyright (C) 2009-2012, Willow Garage Inc., all rights reserved.
|
|
||||||
// Third party copyrights are property of their respective owners.
|
|
||||||
//
|
|
||||||
// Redistribution and use in source and binary forms, with or without modification,
|
|
||||||
// are permitted provided that the following conditions are met:
|
|
||||||
//
|
|
||||||
// * Redistribution's of source code must retain the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer.
|
|
||||||
//
|
|
||||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer in the documentation
|
|
||||||
// and/or other materials provided with the distribution.
|
|
||||||
//
|
|
||||||
// * The name of the copyright holders may not be used to endorse or promote products
|
|
||||||
// derived from this software without specific prior written permission.
|
|
||||||
//
|
|
||||||
// This software is provided by the copyright holders and contributors "as is" and
|
|
||||||
// any express or implied warranties, including, but not limited to, the implied
|
|
||||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
||||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
||||||
// indirect, incidental, special, exemplary, or consequential damages
|
|
||||||
// (including, but not limited to, procurement of substitute goods or services;
|
|
||||||
// loss of use, data, or profits; or business interruption) however caused
|
|
||||||
// and on any theory of liability, whether in contract, strict liability,
|
|
||||||
// or tort (including negligence or otherwise) arising in any way out of
|
|
||||||
// the use of this software, even if advised of the possibility of such damage.
|
|
||||||
//
|
|
||||||
//M*/
|
|
||||||
|
|
||||||
#ifndef OPENCV_SHAPE_HPP |
|
||||||
#define OPENCV_SHAPE_HPP |
|
||||||
|
|
||||||
#include "opencv2/shape/emdL1.hpp" |
|
||||||
#include "opencv2/shape/shape_transformer.hpp" |
|
||||||
#include "opencv2/shape/hist_cost.hpp" |
|
||||||
#include "opencv2/shape/shape_distance.hpp" |
|
||||||
|
|
||||||
/**
|
|
||||||
@defgroup shape Shape Distance and Matching |
|
||||||
*/ |
|
||||||
|
|
||||||
#endif |
|
||||||
|
|
||||||
/* End of file. */ |
|
@ -1,72 +0,0 @@ |
|||||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
||||||
//
|
|
||||||
// By downloading, copying, installing or using the software you agree to this license.
|
|
||||||
// If you do not agree to this license, do not download, install,
|
|
||||||
// copy or use the software.
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// License Agreement
|
|
||||||
// For Open Source Computer Vision Library
|
|
||||||
//
|
|
||||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
||||||
// Copyright (C) 2009-2012, Willow Garage Inc., all rights reserved.
|
|
||||||
// Third party copyrights are property of their respective owners.
|
|
||||||
//
|
|
||||||
// Redistribution and use in source and binary forms, with or without modification,
|
|
||||||
// are permitted provided that the following conditions are met:
|
|
||||||
//
|
|
||||||
// * Redistribution's of source code must retain the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer.
|
|
||||||
//
|
|
||||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer in the documentation
|
|
||||||
// and/or other materials provided with the distribution.
|
|
||||||
//
|
|
||||||
// * The name of the copyright holders may not be used to endorse or promote products
|
|
||||||
// derived from this software without specific prior written permission.
|
|
||||||
//
|
|
||||||
// This software is provided by the copyright holders and contributors "as is" and
|
|
||||||
// any express or implied warranties, including, but not limited to, the implied
|
|
||||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
||||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
||||||
// indirect, incidental, special, exemplary, or consequential damages
|
|
||||||
// (including, but not limited to, procurement of substitute goods or services;
|
|
||||||
// loss of use, data, or profits; or business interruption) however caused
|
|
||||||
// and on any theory of liability, whether in contract, strict liability,
|
|
||||||
// or tort (including negligence or otherwise) arising in any way out of
|
|
||||||
// the use of this software, even if advised of the possibility of such damage.
|
|
||||||
//
|
|
||||||
//M*/
|
|
||||||
|
|
||||||
#ifndef OPENCV_EMD_L1_HPP |
|
||||||
#define OPENCV_EMD_L1_HPP |
|
||||||
|
|
||||||
#include "opencv2/core.hpp" |
|
||||||
|
|
||||||
namespace cv |
|
||||||
{ |
|
||||||
/****************************************************************************************\
|
|
||||||
* EMDL1 Function * |
|
||||||
\****************************************************************************************/ |
|
||||||
|
|
||||||
//! @addtogroup shape
|
|
||||||
//! @{
|
|
||||||
|
|
||||||
/** @brief Computes the "minimal work" distance between two weighted point configurations base on the papers
|
|
||||||
"EMD-L1: An efficient and Robust Algorithm for comparing histogram-based descriptors", by Haibin |
|
||||||
Ling and Kazunori Okuda; and "The Earth Mover's Distance is the Mallows Distance: Some Insights from |
|
||||||
Statistics", by Elizaveta Levina and Peter Bickel. |
|
||||||
|
|
||||||
@param signature1 First signature, a single column floating-point matrix. Each row is the value of |
|
||||||
the histogram in each bin. |
|
||||||
@param signature2 Second signature of the same format and size as signature1. |
|
||||||
*/ |
|
||||||
CV_EXPORTS float EMDL1(InputArray signature1, InputArray signature2); |
|
||||||
|
|
||||||
//! @}
|
|
||||||
|
|
||||||
}//namespace cv
|
|
||||||
|
|
||||||
#endif |
|
@ -1,111 +0,0 @@ |
|||||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
||||||
//
|
|
||||||
// By downloading, copying, installing or using the software you agree to this license.
|
|
||||||
// If you do not agree to this license, do not download, install,
|
|
||||||
// copy or use the software.
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// License Agreement
|
|
||||||
// For Open Source Computer Vision Library
|
|
||||||
//
|
|
||||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
||||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
||||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
||||||
// Third party copyrights are property of their respective owners.
|
|
||||||
//
|
|
||||||
// Redistribution and use in source and binary forms, with or without modification,
|
|
||||||
// are permitted provided that the following conditions are met:
|
|
||||||
//
|
|
||||||
// * Redistribution's of source code must retain the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer.
|
|
||||||
//
|
|
||||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer in the documentation
|
|
||||||
// and/or other materials provided with the distribution.
|
|
||||||
//
|
|
||||||
// * The name of the copyright holders may not be used to endorse or promote products
|
|
||||||
// derived from this software without specific prior written permission.
|
|
||||||
//
|
|
||||||
// This software is provided by the copyright holders and contributors "as is" and
|
|
||||||
// any express or implied warranties, including, but not limited to, the implied
|
|
||||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
||||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
||||||
// indirect, incidental, special, exemplary, or consequential damages
|
|
||||||
// (including, but not limited to, procurement of substitute goods or services;
|
|
||||||
// loss of use, data, or profits; or business interruption) however caused
|
|
||||||
// and on any theory of liability, whether in contract, strict liability,
|
|
||||||
// or tort (including negligence or otherwise) arising in any way out of
|
|
||||||
// the use of this software, even if advised of the possibility of such damage.
|
|
||||||
//
|
|
||||||
//M*/
|
|
||||||
|
|
||||||
#ifndef OPENCV_HIST_COST_HPP |
|
||||||
#define OPENCV_HIST_COST_HPP |
|
||||||
|
|
||||||
#include "opencv2/imgproc.hpp" |
|
||||||
|
|
||||||
namespace cv |
|
||||||
{ |
|
||||||
|
|
||||||
//! @addtogroup shape
|
|
||||||
//! @{
|
|
||||||
|
|
||||||
/** @brief Abstract base class for histogram cost algorithms.
|
|
||||||
*/ |
|
||||||
class CV_EXPORTS_W HistogramCostExtractor : public Algorithm |
|
||||||
{ |
|
||||||
public: |
|
||||||
CV_WRAP virtual void buildCostMatrix(InputArray descriptors1, InputArray descriptors2, OutputArray costMatrix) = 0; |
|
||||||
|
|
||||||
CV_WRAP virtual void setNDummies(int nDummies) = 0; |
|
||||||
CV_WRAP virtual int getNDummies() const = 0; |
|
||||||
|
|
||||||
CV_WRAP virtual void setDefaultCost(float defaultCost) = 0; |
|
||||||
CV_WRAP virtual float getDefaultCost() const = 0; |
|
||||||
}; |
|
||||||
|
|
||||||
/** @brief A norm based cost extraction. :
|
|
||||||
*/ |
|
||||||
class CV_EXPORTS_W NormHistogramCostExtractor : public HistogramCostExtractor |
|
||||||
{ |
|
||||||
public: |
|
||||||
CV_WRAP virtual void setNormFlag(int flag) = 0; |
|
||||||
CV_WRAP virtual int getNormFlag() const = 0; |
|
||||||
}; |
|
||||||
|
|
||||||
CV_EXPORTS_W Ptr<HistogramCostExtractor> |
|
||||||
createNormHistogramCostExtractor(int flag=DIST_L2, int nDummies=25, float defaultCost=0.2f); |
|
||||||
|
|
||||||
/** @brief An EMD based cost extraction. :
|
|
||||||
*/ |
|
||||||
class CV_EXPORTS_W EMDHistogramCostExtractor : public HistogramCostExtractor |
|
||||||
{ |
|
||||||
public: |
|
||||||
CV_WRAP virtual void setNormFlag(int flag) = 0; |
|
||||||
CV_WRAP virtual int getNormFlag() const = 0; |
|
||||||
}; |
|
||||||
|
|
||||||
CV_EXPORTS_W Ptr<HistogramCostExtractor> |
|
||||||
createEMDHistogramCostExtractor(int flag=DIST_L2, int nDummies=25, float defaultCost=0.2f); |
|
||||||
|
|
||||||
/** @brief An Chi based cost extraction. :
|
|
||||||
*/ |
|
||||||
class CV_EXPORTS_W ChiHistogramCostExtractor : public HistogramCostExtractor |
|
||||||
{}; |
|
||||||
|
|
||||||
CV_EXPORTS_W Ptr<HistogramCostExtractor> createChiHistogramCostExtractor(int nDummies=25, float defaultCost=0.2f); |
|
||||||
|
|
||||||
/** @brief An EMD-L1 based cost extraction. :
|
|
||||||
*/ |
|
||||||
class CV_EXPORTS_W EMDL1HistogramCostExtractor : public HistogramCostExtractor |
|
||||||
{}; |
|
||||||
|
|
||||||
CV_EXPORTS_W Ptr<HistogramCostExtractor> |
|
||||||
createEMDL1HistogramCostExtractor(int nDummies=25, float defaultCost=0.2f); |
|
||||||
|
|
||||||
//! @}
|
|
||||||
|
|
||||||
} // cv
|
|
||||||
#endif |
|
@ -1,48 +0,0 @@ |
|||||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
||||||
//
|
|
||||||
// By downloading, copying, installing or using the software you agree to this license.
|
|
||||||
// If you do not agree to this license, do not download, install,
|
|
||||||
// copy or use the software.
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// License Agreement
|
|
||||||
// For Open Source Computer Vision Library
|
|
||||||
//
|
|
||||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
||||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
||||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
||||||
// Third party copyrights are property of their respective owners.
|
|
||||||
//
|
|
||||||
// Redistribution and use in source and binary forms, with or without modification,
|
|
||||||
// are permitted provided that the following conditions are met:
|
|
||||||
//
|
|
||||||
// * Redistribution's of source code must retain the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer.
|
|
||||||
//
|
|
||||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer in the documentation
|
|
||||||
// and/or other materials provided with the distribution.
|
|
||||||
//
|
|
||||||
// * The name of the copyright holders may not be used to endorse or promote products
|
|
||||||
// derived from this software without specific prior written permission.
|
|
||||||
//
|
|
||||||
// This software is provided by the copyright holders and contributors "as is" and
|
|
||||||
// any express or implied warranties, including, but not limited to, the implied
|
|
||||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
||||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
||||||
// indirect, incidental, special, exemplary, or consequential damages
|
|
||||||
// (including, but not limited to, procurement of substitute goods or services;
|
|
||||||
// loss of use, data, or profits; or business interruption) however caused
|
|
||||||
// and on any theory of liability, whether in contract, strict liability,
|
|
||||||
// or tort (including negligence or otherwise) arising in any way out of
|
|
||||||
// the use of this software, even if advised of the possibility of such damage.
|
|
||||||
//
|
|
||||||
//M*/
|
|
||||||
|
|
||||||
#ifdef __OPENCV_BUILD |
|
||||||
#error this is a compatibility header which should not be used inside the OpenCV library |
|
||||||
#endif |
|
||||||
|
|
||||||
#include "opencv2/shape.hpp" |
|
@ -1,227 +0,0 @@ |
|||||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
||||||
//
|
|
||||||
// By downloading, copying, installing or using the software you agree to this license.
|
|
||||||
// If you do not agree to this license, do not download, install,
|
|
||||||
// copy or use the software.
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// License Agreement
|
|
||||||
// For Open Source Computer Vision Library
|
|
||||||
//
|
|
||||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
||||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
||||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
||||||
// Third party copyrights are property of their respective owners.
|
|
||||||
//
|
|
||||||
// Redistribution and use in source and binary forms, with or without modification,
|
|
||||||
// are permitted provided that the following conditions are met:
|
|
||||||
//
|
|
||||||
// * Redistribution's of source code must retain the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer.
|
|
||||||
//
|
|
||||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer in the documentation
|
|
||||||
// and/or other materials provided with the distribution.
|
|
||||||
//
|
|
||||||
// * The name of the copyright holders may not be used to endorse or promote products
|
|
||||||
// derived from this software without specific prior written permission.
|
|
||||||
//
|
|
||||||
// This software is provided by the copyright holders and contributors "as is" and
|
|
||||||
// any express or implied warranties, including, but not limited to, the implied
|
|
||||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
||||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
||||||
// indirect, incidental, special, exemplary, or consequential damages
|
|
||||||
// (including, but not limited to, procurement of substitute goods or services;
|
|
||||||
// loss of use, data, or profits; or business interruption) however caused
|
|
||||||
// and on any theory of liability, whether in contract, strict liability,
|
|
||||||
// or tort (including negligence or otherwise) arising in any way out of
|
|
||||||
// the use of this software, even if advised of the possibility of such damage.
|
|
||||||
//
|
|
||||||
//M*/
|
|
||||||
|
|
||||||
#ifndef OPENCV_SHAPE_SHAPE_DISTANCE_HPP |
|
||||||
#define OPENCV_SHAPE_SHAPE_DISTANCE_HPP |
|
||||||
#include "opencv2/core.hpp" |
|
||||||
#include "opencv2/shape/hist_cost.hpp" |
|
||||||
#include "opencv2/shape/shape_transformer.hpp" |
|
||||||
|
|
||||||
namespace cv |
|
||||||
{ |
|
||||||
|
|
||||||
//! @addtogroup shape
|
|
||||||
//! @{
|
|
||||||
|
|
||||||
/** @example samples/cpp/shape_example.cpp
|
|
||||||
An example using shape distance algorithm |
|
||||||
*/ |
|
||||||
/** @brief Abstract base class for shape distance algorithms.
|
|
||||||
*/ |
|
||||||
class CV_EXPORTS_W ShapeDistanceExtractor : public Algorithm |
|
||||||
{ |
|
||||||
public: |
|
||||||
/** @brief Compute the shape distance between two shapes defined by its contours.
|
|
||||||
|
|
||||||
@param contour1 Contour defining first shape. |
|
||||||
@param contour2 Contour defining second shape. |
|
||||||
*/ |
|
||||||
CV_WRAP virtual float computeDistance(InputArray contour1, InputArray contour2) = 0; |
|
||||||
}; |
|
||||||
|
|
||||||
/***********************************************************************************/ |
|
||||||
/***********************************************************************************/ |
|
||||||
/***********************************************************************************/ |
|
||||||
/** @brief Implementation of the Shape Context descriptor and matching algorithm
|
|
||||||
|
|
||||||
proposed by Belongie et al. in "Shape Matching and Object Recognition Using Shape Contexts" (PAMI |
|
||||||
2002). This implementation is packaged in a generic scheme, in order to allow you the |
|
||||||
implementation of the common variations of the original pipeline. |
|
||||||
*/ |
|
||||||
class CV_EXPORTS_W ShapeContextDistanceExtractor : public ShapeDistanceExtractor |
|
||||||
{ |
|
||||||
public: |
|
||||||
/** @brief Establish the number of angular bins for the Shape Context Descriptor used in the shape matching
|
|
||||||
pipeline. |
|
||||||
|
|
||||||
@param nAngularBins The number of angular bins in the shape context descriptor. |
|
||||||
*/ |
|
||||||
CV_WRAP virtual void setAngularBins(int nAngularBins) = 0; |
|
||||||
CV_WRAP virtual int getAngularBins() const = 0; |
|
||||||
|
|
||||||
/** @brief Establish the number of radial bins for the Shape Context Descriptor used in the shape matching
|
|
||||||
pipeline. |
|
||||||
|
|
||||||
@param nRadialBins The number of radial bins in the shape context descriptor. |
|
||||||
*/ |
|
||||||
CV_WRAP virtual void setRadialBins(int nRadialBins) = 0; |
|
||||||
CV_WRAP virtual int getRadialBins() const = 0; |
|
||||||
|
|
||||||
/** @brief Set the inner radius of the shape context descriptor.
|
|
||||||
|
|
||||||
@param innerRadius The value of the inner radius. |
|
||||||
*/ |
|
||||||
CV_WRAP virtual void setInnerRadius(float innerRadius) = 0; |
|
||||||
CV_WRAP virtual float getInnerRadius() const = 0; |
|
||||||
|
|
||||||
/** @brief Set the outer radius of the shape context descriptor.
|
|
||||||
|
|
||||||
@param outerRadius The value of the outer radius. |
|
||||||
*/ |
|
||||||
CV_WRAP virtual void setOuterRadius(float outerRadius) = 0; |
|
||||||
CV_WRAP virtual float getOuterRadius() const = 0; |
|
||||||
|
|
||||||
CV_WRAP virtual void setRotationInvariant(bool rotationInvariant) = 0; |
|
||||||
CV_WRAP virtual bool getRotationInvariant() const = 0; |
|
||||||
|
|
||||||
/** @brief Set the weight of the shape context distance in the final value of the shape distance. The shape
|
|
||||||
context distance between two shapes is defined as the symmetric sum of shape context matching costs |
|
||||||
over best matching points. The final value of the shape distance is a user-defined linear |
|
||||||
combination of the shape context distance, an image appearance distance, and a bending energy. |
|
||||||
|
|
||||||
@param shapeContextWeight The weight of the shape context distance in the final distance value. |
|
||||||
*/ |
|
||||||
CV_WRAP virtual void setShapeContextWeight(float shapeContextWeight) = 0; |
|
||||||
CV_WRAP virtual float getShapeContextWeight() const = 0; |
|
||||||
|
|
||||||
/** @brief Set the weight of the Image Appearance cost in the final value of the shape distance. The image
|
|
||||||
appearance cost is defined as the sum of squared brightness differences in Gaussian windows around |
|
||||||
corresponding image points. The final value of the shape distance is a user-defined linear |
|
||||||
combination of the shape context distance, an image appearance distance, and a bending energy. If |
|
||||||
this value is set to a number different from 0, is mandatory to set the images that correspond to |
|
||||||
each shape. |
|
||||||
|
|
||||||
@param imageAppearanceWeight The weight of the appearance cost in the final distance value. |
|
||||||
*/ |
|
||||||
CV_WRAP virtual void setImageAppearanceWeight(float imageAppearanceWeight) = 0; |
|
||||||
CV_WRAP virtual float getImageAppearanceWeight() const = 0; |
|
||||||
|
|
||||||
/** @brief Set the weight of the Bending Energy in the final value of the shape distance. The bending energy
|
|
||||||
definition depends on what transformation is being used to align the shapes. The final value of the |
|
||||||
shape distance is a user-defined linear combination of the shape context distance, an image |
|
||||||
appearance distance, and a bending energy. |
|
||||||
|
|
||||||
@param bendingEnergyWeight The weight of the Bending Energy in the final distance value. |
|
||||||
*/ |
|
||||||
CV_WRAP virtual void setBendingEnergyWeight(float bendingEnergyWeight) = 0; |
|
||||||
CV_WRAP virtual float getBendingEnergyWeight() const = 0; |
|
||||||
|
|
||||||
/** @brief Set the images that correspond to each shape. This images are used in the calculation of the Image
|
|
||||||
Appearance cost. |
|
||||||
|
|
||||||
@param image1 Image corresponding to the shape defined by contours1. |
|
||||||
@param image2 Image corresponding to the shape defined by contours2. |
|
||||||
*/ |
|
||||||
CV_WRAP virtual void setImages(InputArray image1, InputArray image2) = 0; |
|
||||||
CV_WRAP virtual void getImages(OutputArray image1, OutputArray image2) const = 0; |
|
||||||
|
|
||||||
CV_WRAP virtual void setIterations(int iterations) = 0; |
|
||||||
CV_WRAP virtual int getIterations() const = 0; |
|
||||||
|
|
||||||
/** @brief Set the algorithm used for building the shape context descriptor cost matrix.
|
|
||||||
|
|
||||||
@param comparer Smart pointer to a HistogramCostExtractor, an algorithm that defines the cost |
|
||||||
matrix between descriptors. |
|
||||||
*/ |
|
||||||
CV_WRAP virtual void setCostExtractor(Ptr<HistogramCostExtractor> comparer) = 0; |
|
||||||
CV_WRAP virtual Ptr<HistogramCostExtractor> getCostExtractor() const = 0; |
|
||||||
|
|
||||||
/** @brief Set the value of the standard deviation for the Gaussian window for the image appearance cost.
|
|
||||||
|
|
||||||
@param sigma Standard Deviation. |
|
||||||
*/ |
|
||||||
CV_WRAP virtual void setStdDev(float sigma) = 0; |
|
||||||
CV_WRAP virtual float getStdDev() const = 0; |
|
||||||
|
|
||||||
/** @brief Set the algorithm used for aligning the shapes.
|
|
||||||
|
|
||||||
@param transformer Smart pointer to a ShapeTransformer, an algorithm that defines the aligning |
|
||||||
transformation. |
|
||||||
*/ |
|
||||||
CV_WRAP virtual void setTransformAlgorithm(Ptr<ShapeTransformer> transformer) = 0; |
|
||||||
CV_WRAP virtual Ptr<ShapeTransformer> getTransformAlgorithm() const = 0; |
|
||||||
}; |
|
||||||
|
|
||||||
/* Complete constructor */ |
|
||||||
CV_EXPORTS_W Ptr<ShapeContextDistanceExtractor> |
|
||||||
createShapeContextDistanceExtractor(int nAngularBins=12, int nRadialBins=4, |
|
||||||
float innerRadius=0.2f, float outerRadius=2, int iterations=3, |
|
||||||
const Ptr<HistogramCostExtractor> &comparer = createChiHistogramCostExtractor(), |
|
||||||
const Ptr<ShapeTransformer> &transformer = createThinPlateSplineShapeTransformer()); |
|
||||||
|
|
||||||
/***********************************************************************************/ |
|
||||||
/***********************************************************************************/ |
|
||||||
/***********************************************************************************/ |
|
||||||
/** @brief A simple Hausdorff distance measure between shapes defined by contours
|
|
||||||
|
|
||||||
according to the paper "Comparing Images using the Hausdorff distance." by D.P. Huttenlocher, G.A. |
|
||||||
Klanderman, and W.J. Rucklidge. (PAMI 1993). : |
|
||||||
*/ |
|
||||||
class CV_EXPORTS_W HausdorffDistanceExtractor : public ShapeDistanceExtractor |
|
||||||
{ |
|
||||||
public: |
|
||||||
/** @brief Set the norm used to compute the Hausdorff value between two shapes. It can be L1 or L2 norm.
|
|
||||||
|
|
||||||
@param distanceFlag Flag indicating which norm is used to compute the Hausdorff distance |
|
||||||
(NORM_L1, NORM_L2). |
|
||||||
*/ |
|
||||||
CV_WRAP virtual void setDistanceFlag(int distanceFlag) = 0; |
|
||||||
CV_WRAP virtual int getDistanceFlag() const = 0; |
|
||||||
|
|
||||||
/** @brief This method sets the rank proportion (or fractional value) that establish the Kth ranked value of
|
|
||||||
the partial Hausdorff distance. Experimentally had been shown that 0.6 is a good value to compare |
|
||||||
shapes. |
|
||||||
|
|
||||||
@param rankProportion fractional value (between 0 and 1). |
|
||||||
*/ |
|
||||||
CV_WRAP virtual void setRankProportion(float rankProportion) = 0; |
|
||||||
CV_WRAP virtual float getRankProportion() const = 0; |
|
||||||
}; |
|
||||||
|
|
||||||
/* Constructor */ |
|
||||||
CV_EXPORTS_W Ptr<HausdorffDistanceExtractor> createHausdorffDistanceExtractor(int distanceFlag=cv::NORM_L2, float rankProp=0.6f); |
|
||||||
|
|
||||||
//! @}
|
|
||||||
|
|
||||||
} // cv
|
|
||||||
#endif |
|
@ -1,132 +0,0 @@ |
|||||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
||||||
//
|
|
||||||
// By downloading, copying, installing or using the software you agree to this license.
|
|
||||||
// If you do not agree to this license, do not download, install,
|
|
||||||
// copy or use the software.
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// License Agreement
|
|
||||||
// For Open Source Computer Vision Library
|
|
||||||
//
|
|
||||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
||||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
||||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
||||||
// Third party copyrights are property of their respective owners.
|
|
||||||
//
|
|
||||||
// Redistribution and use in source and binary forms, with or without modification,
|
|
||||||
// are permitted provided that the following conditions are met:
|
|
||||||
//
|
|
||||||
// * Redistribution's of source code must retain the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer.
|
|
||||||
//
|
|
||||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer in the documentation
|
|
||||||
// and/or other materials provided with the distribution.
|
|
||||||
//
|
|
||||||
// * The name of the copyright holders may not be used to endorse or promote products
|
|
||||||
// derived from this software without specific prior written permission.
|
|
||||||
//
|
|
||||||
// This software is provided by the copyright holders and contributors "as is" and
|
|
||||||
// any express or implied warranties, including, but not limited to, the implied
|
|
||||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
||||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
||||||
// indirect, incidental, special, exemplary, or consequential damages
|
|
||||||
// (including, but not limited to, procurement of substitute goods or services;
|
|
||||||
// loss of use, data, or profits; or business interruption) however caused
|
|
||||||
// and on any theory of liability, whether in contract, strict liability,
|
|
||||||
// or tort (including negligence or otherwise) arising in any way out of
|
|
||||||
// the use of this software, even if advised of the possibility of such damage.
|
|
||||||
//
|
|
||||||
//M*/
|
|
||||||
|
|
||||||
#ifndef OPENCV_SHAPE_SHAPE_TRANSFORM_HPP |
|
||||||
#define OPENCV_SHAPE_SHAPE_TRANSFORM_HPP |
|
||||||
#include <vector> |
|
||||||
#include "opencv2/core.hpp" |
|
||||||
#include "opencv2/imgproc.hpp" |
|
||||||
|
|
||||||
namespace cv |
|
||||||
{ |
|
||||||
|
|
||||||
//! @addtogroup shape
|
|
||||||
//! @{
|
|
||||||
|
|
||||||
/** @brief Abstract base class for shape transformation algorithms.
|
|
||||||
*/ |
|
||||||
class CV_EXPORTS_W ShapeTransformer : public Algorithm |
|
||||||
{ |
|
||||||
public: |
|
||||||
/** @brief Estimate the transformation parameters of the current transformer algorithm, based on point matches.
|
|
||||||
|
|
||||||
@param transformingShape Contour defining first shape. |
|
||||||
@param targetShape Contour defining second shape (Target). |
|
||||||
@param matches Standard vector of Matches between points. |
|
||||||
*/ |
|
||||||
CV_WRAP virtual void estimateTransformation(InputArray transformingShape, InputArray targetShape, |
|
||||||
std::vector<DMatch>& matches) = 0; |
|
||||||
|
|
||||||
/** @brief Apply a transformation, given a pre-estimated transformation parameters.
|
|
||||||
|
|
||||||
@param input Contour (set of points) to apply the transformation. |
|
||||||
@param output Output contour. |
|
||||||
*/ |
|
||||||
CV_WRAP virtual float applyTransformation(InputArray input, OutputArray output=noArray()) = 0; |
|
||||||
|
|
||||||
/** @brief Apply a transformation, given a pre-estimated transformation parameters, to an Image.
|
|
||||||
|
|
||||||
@param transformingImage Input image. |
|
||||||
@param output Output image. |
|
||||||
@param flags Image interpolation method. |
|
||||||
@param borderMode border style. |
|
||||||
@param borderValue border value. |
|
||||||
*/ |
|
||||||
CV_WRAP virtual void warpImage(InputArray transformingImage, OutputArray output, |
|
||||||
int flags=INTER_LINEAR, int borderMode=BORDER_CONSTANT, |
|
||||||
const Scalar& borderValue=Scalar()) const = 0; |
|
||||||
}; |
|
||||||
|
|
||||||
/***********************************************************************************/ |
|
||||||
/***********************************************************************************/ |
|
||||||
|
|
||||||
/** @brief Definition of the transformation
|
|
||||||
|
|
||||||
occupied in the paper "Principal Warps: Thin-Plate Splines and Decomposition of Deformations", by |
|
||||||
F.L. Bookstein (PAMI 1989). : |
|
||||||
*/ |
|
||||||
class CV_EXPORTS_W ThinPlateSplineShapeTransformer : public ShapeTransformer |
|
||||||
{ |
|
||||||
public: |
|
||||||
/** @brief Set the regularization parameter for relaxing the exact interpolation requirements of the TPS
|
|
||||||
algorithm. |
|
||||||
|
|
||||||
@param beta value of the regularization parameter. |
|
||||||
*/ |
|
||||||
CV_WRAP virtual void setRegularizationParameter(double beta) = 0; |
|
||||||
CV_WRAP virtual double getRegularizationParameter() const = 0; |
|
||||||
}; |
|
||||||
|
|
||||||
/** Complete constructor */ |
|
||||||
CV_EXPORTS_W Ptr<ThinPlateSplineShapeTransformer> |
|
||||||
createThinPlateSplineShapeTransformer(double regularizationParameter=0); |
|
||||||
|
|
||||||
/***********************************************************************************/ |
|
||||||
/***********************************************************************************/ |
|
||||||
|
|
||||||
/** @brief Wrapper class for the OpenCV Affine Transformation algorithm. :
|
|
||||||
*/ |
|
||||||
class CV_EXPORTS_W AffineTransformer : public ShapeTransformer |
|
||||||
{ |
|
||||||
public: |
|
||||||
CV_WRAP virtual void setFullAffine(bool fullAffine) = 0; |
|
||||||
CV_WRAP virtual bool getFullAffine() const = 0; |
|
||||||
}; |
|
||||||
|
|
||||||
/** Complete constructor */ |
|
||||||
CV_EXPORTS_W Ptr<AffineTransformer> createAffineTransformer(bool fullAffine); |
|
||||||
|
|
||||||
//! @}
|
|
||||||
|
|
||||||
} // cv
|
|
||||||
#endif |
|
@ -1,279 +0,0 @@ |
|||||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
||||||
//
|
|
||||||
// By downloading, copying, installing or using the software you agree to this license.
|
|
||||||
// If you do not agree to this license, do not download, install,
|
|
||||||
// copy or use the software.
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// License Agreement
|
|
||||||
// For Open Source Computer Vision Library
|
|
||||||
//
|
|
||||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
||||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
||||||
// Third party copyrights are property of their respective owners.
|
|
||||||
//
|
|
||||||
// Redistribution and use in source and binary forms, with or without modification,
|
|
||||||
// are permitted provided that the following conditions are met:
|
|
||||||
//
|
|
||||||
// * Redistribution's of source code must retain the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer.
|
|
||||||
//
|
|
||||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer in the documentation
|
|
||||||
// and/or other materials provided with the distribution.
|
|
||||||
//
|
|
||||||
// * The name of the copyright holders may not be used to endorse or promote products
|
|
||||||
// derived from this software without specific prior written permission.
|
|
||||||
//
|
|
||||||
// This software is provided by the copyright holders and contributors "as is" and
|
|
||||||
// any express or implied warranties, including, but not limited to, the implied
|
|
||||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
||||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
||||||
// indirect, incidental, special, exemplary, or consequential damages
|
|
||||||
// (including, but not limited to, procurement of substitute goods or services;
|
|
||||||
// loss of use, data, or profits; or business interruption) however caused
|
|
||||||
// and on any theory of liability, whether in contract, strict liability,
|
|
||||||
// or tort (including negligence or otherwise) arising in any way out of
|
|
||||||
// the use of this software, even if advised of the possibility of such damage.
|
|
||||||
//
|
|
||||||
//M*/
|
|
||||||
|
|
||||||
#include "precomp.hpp" |
|
||||||
|
|
||||||
namespace cv |
|
||||||
{ |
|
||||||
|
|
||||||
class AffineTransformerImpl : public AffineTransformer |
|
||||||
{ |
|
||||||
public: |
|
||||||
/* Constructors */ |
|
||||||
AffineTransformerImpl() |
|
||||||
{ |
|
||||||
fullAffine = true; |
|
||||||
name_ = "ShapeTransformer.AFF"; |
|
||||||
transformCost = 0; |
|
||||||
} |
|
||||||
|
|
||||||
AffineTransformerImpl(bool _fullAffine) |
|
||||||
{ |
|
||||||
fullAffine = _fullAffine; |
|
||||||
name_ = "ShapeTransformer.AFF"; |
|
||||||
transformCost = 0; |
|
||||||
} |
|
||||||
|
|
||||||
/* Destructor */ |
|
||||||
~AffineTransformerImpl() |
|
||||||
{ |
|
||||||
} |
|
||||||
|
|
||||||
//! the main operator
|
|
||||||
virtual void estimateTransformation(InputArray transformingShape, InputArray targetShape, std::vector<DMatch> &matches) CV_OVERRIDE; |
|
||||||
virtual float applyTransformation(InputArray input, OutputArray output=noArray()) CV_OVERRIDE; |
|
||||||
virtual void warpImage(InputArray transformingImage, OutputArray output, |
|
||||||
int flags, int borderMode, const Scalar& borderValue) const CV_OVERRIDE; |
|
||||||
|
|
||||||
//! Setters/Getters
|
|
||||||
virtual void setFullAffine(bool _fullAffine) CV_OVERRIDE {fullAffine=_fullAffine;} |
|
||||||
virtual bool getFullAffine() const CV_OVERRIDE {return fullAffine;} |
|
||||||
|
|
||||||
//! write/read
|
|
||||||
virtual void write(FileStorage& fs) const CV_OVERRIDE |
|
||||||
{ |
|
||||||
writeFormat(fs); |
|
||||||
fs << "name" << name_ |
|
||||||
<< "affine_type" << int(fullAffine); |
|
||||||
} |
|
||||||
|
|
||||||
virtual void read(const FileNode& fn) CV_OVERRIDE |
|
||||||
{ |
|
||||||
CV_Assert( (String)fn["name"] == name_ ); |
|
||||||
fullAffine = int(fn["affine_type"])?true:false; |
|
||||||
} |
|
||||||
|
|
||||||
private: |
|
||||||
bool fullAffine; |
|
||||||
Mat affineMat; |
|
||||||
float transformCost; |
|
||||||
|
|
||||||
protected: |
|
||||||
String name_; |
|
||||||
}; |
|
||||||
|
|
||||||
void AffineTransformerImpl::warpImage(InputArray transformingImage, OutputArray output, |
|
||||||
int flags, int borderMode, const Scalar& borderValue) const |
|
||||||
{ |
|
||||||
CV_INSTRUMENT_REGION(); |
|
||||||
|
|
||||||
CV_Assert(!affineMat.empty()); |
|
||||||
warpAffine(transformingImage, output, affineMat, transformingImage.getMat().size(), flags, borderMode, borderValue); |
|
||||||
} |
|
||||||
|
|
||||||
|
|
||||||
static Mat _localAffineEstimate(const std::vector<Point2f>& shape1, const std::vector<Point2f>& shape2, |
|
||||||
bool fullAfine) |
|
||||||
{ |
|
||||||
Mat out(2,3,CV_32F); |
|
||||||
int siz=2*(int)shape1.size(); |
|
||||||
|
|
||||||
if (fullAfine) |
|
||||||
{ |
|
||||||
Mat matM(siz, 6, CV_32F); |
|
||||||
Mat matP(siz,1,CV_32F); |
|
||||||
int contPt=0; |
|
||||||
for (int ii=0; ii<siz; ii++) |
|
||||||
{ |
|
||||||
Mat therow = Mat::zeros(1,6,CV_32F); |
|
||||||
if (ii%2==0) |
|
||||||
{ |
|
||||||
therow.at<float>(0,0)=shape1[contPt].x; |
|
||||||
therow.at<float>(0,1)=shape1[contPt].y; |
|
||||||
therow.at<float>(0,2)=1; |
|
||||||
therow.row(0).copyTo(matM.row(ii)); |
|
||||||
matP.at<float>(ii,0) = shape2[contPt].x; |
|
||||||
} |
|
||||||
else |
|
||||||
{ |
|
||||||
therow.at<float>(0,3)=shape1[contPt].x; |
|
||||||
therow.at<float>(0,4)=shape1[contPt].y; |
|
||||||
therow.at<float>(0,5)=1; |
|
||||||
therow.row(0).copyTo(matM.row(ii)); |
|
||||||
matP.at<float>(ii,0) = shape2[contPt].y; |
|
||||||
contPt++; |
|
||||||
} |
|
||||||
} |
|
||||||
Mat sol; |
|
||||||
solve(matM, matP, sol, DECOMP_SVD); |
|
||||||
out = sol.reshape(0,2); |
|
||||||
} |
|
||||||
else |
|
||||||
{ |
|
||||||
Mat matM(siz, 4, CV_32F); |
|
||||||
Mat matP(siz,1,CV_32F); |
|
||||||
int contPt=0; |
|
||||||
for (int ii=0; ii<siz; ii++) |
|
||||||
{ |
|
||||||
Mat therow = Mat::zeros(1,4,CV_32F); |
|
||||||
if (ii%2==0) |
|
||||||
{ |
|
||||||
therow.at<float>(0,0)=shape1[contPt].x; |
|
||||||
therow.at<float>(0,1)=shape1[contPt].y; |
|
||||||
therow.at<float>(0,2)=1; |
|
||||||
therow.row(0).copyTo(matM.row(ii)); |
|
||||||
matP.at<float>(ii,0) = shape2[contPt].x; |
|
||||||
} |
|
||||||
else |
|
||||||
{ |
|
||||||
therow.at<float>(0,0)=shape1[contPt].y; |
|
||||||
therow.at<float>(0,1)=-shape1[contPt].x; |
|
||||||
therow.at<float>(0,3)=1; |
|
||||||
therow.row(0).copyTo(matM.row(ii)); |
|
||||||
matP.at<float>(ii,0) = shape2[contPt].y; |
|
||||||
contPt++; |
|
||||||
} |
|
||||||
} |
|
||||||
Mat sol; |
|
||||||
solve(matM, matP, sol, DECOMP_SVD); |
|
||||||
out.at<float>(0,0)=sol.at<float>(0,0); |
|
||||||
out.at<float>(0,1)=sol.at<float>(1,0); |
|
||||||
out.at<float>(0,2)=sol.at<float>(2,0); |
|
||||||
out.at<float>(1,0)=-sol.at<float>(1,0); |
|
||||||
out.at<float>(1,1)=sol.at<float>(0,0); |
|
||||||
out.at<float>(1,2)=sol.at<float>(3,0); |
|
||||||
} |
|
||||||
return out; |
|
||||||
} |
|
||||||
|
|
||||||
void AffineTransformerImpl::estimateTransformation(InputArray _pts1, InputArray _pts2, std::vector<DMatch>& _matches) |
|
||||||
{ |
|
||||||
CV_INSTRUMENT_REGION(); |
|
||||||
|
|
||||||
Mat pts1 = _pts1.getMat(); |
|
||||||
Mat pts2 = _pts2.getMat(); |
|
||||||
CV_Assert((pts1.channels()==2) && (pts1.cols>0) && (pts2.channels()==2) && (pts2.cols>0)); |
|
||||||
CV_Assert(_matches.size()>1); |
|
||||||
|
|
||||||
if (pts1.type() != CV_32F) |
|
||||||
pts1.convertTo(pts1, CV_32F); |
|
||||||
if (pts2.type() != CV_32F) |
|
||||||
pts2.convertTo(pts2, CV_32F); |
|
||||||
|
|
||||||
// Use only valid matchings //
|
|
||||||
std::vector<DMatch> matches; |
|
||||||
for (size_t i=0; i<_matches.size(); i++) |
|
||||||
{ |
|
||||||
if (_matches[i].queryIdx<pts1.cols && |
|
||||||
_matches[i].trainIdx<pts2.cols) |
|
||||||
{ |
|
||||||
matches.push_back(_matches[i]); |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
// Organizing the correspondent points in vector style //
|
|
||||||
std::vector<Point2f> shape1; // transforming shape
|
|
||||||
std::vector<Point2f> shape2; // target shape
|
|
||||||
for (size_t i=0; i<matches.size(); i++) |
|
||||||
{ |
|
||||||
Point2f pt1=pts1.at<Point2f>(0,matches[i].queryIdx); |
|
||||||
shape1.push_back(pt1); |
|
||||||
|
|
||||||
Point2f pt2=pts2.at<Point2f>(0,matches[i].trainIdx); |
|
||||||
shape2.push_back(pt2); |
|
||||||
} |
|
||||||
|
|
||||||
Mat affine; |
|
||||||
if (fullAffine) |
|
||||||
{ |
|
||||||
estimateAffine2D(shape1, shape2).convertTo(affine, CV_32F); |
|
||||||
} else |
|
||||||
{ |
|
||||||
estimateAffinePartial2D(shape1, shape2).convertTo(affine, CV_32F); |
|
||||||
} |
|
||||||
|
|
||||||
if (affine.empty()) |
|
||||||
//In case there is not good solution, just give a LLS based one
|
|
||||||
affine = _localAffineEstimate(shape1, shape2, fullAffine); |
|
||||||
|
|
||||||
affineMat = affine; |
|
||||||
} |
|
||||||
|
|
||||||
float AffineTransformerImpl::applyTransformation(InputArray inPts, OutputArray outPts) |
|
||||||
{ |
|
||||||
CV_INSTRUMENT_REGION(); |
|
||||||
|
|
||||||
Mat pts1 = inPts.getMat(); |
|
||||||
CV_Assert((pts1.channels()==2) && (pts1.cols>0)); |
|
||||||
|
|
||||||
//Apply transformation in the complete set of points
|
|
||||||
Mat fAffine; |
|
||||||
transform(pts1, fAffine, affineMat); |
|
||||||
|
|
||||||
// Ensambling output //
|
|
||||||
if (outPts.needed()) |
|
||||||
{ |
|
||||||
outPts.create(1,fAffine.cols, CV_32FC2); |
|
||||||
Mat outMat = outPts.getMat(); |
|
||||||
for (int i=0; i<fAffine.cols; i++) |
|
||||||
outMat.at<Point2f>(0,i)=fAffine.at<Point2f>(0,i); |
|
||||||
} |
|
||||||
|
|
||||||
// Updating Transform Cost //
|
|
||||||
Mat Af(2, 2, CV_32F); |
|
||||||
Af.at<float>(0,0)=affineMat.at<float>(0,0); |
|
||||||
Af.at<float>(0,1)=affineMat.at<float>(1,0); |
|
||||||
Af.at<float>(1,0)=affineMat.at<float>(0,1); |
|
||||||
Af.at<float>(1,1)=affineMat.at<float>(1,1); |
|
||||||
SVD mysvd(Af, SVD::NO_UV); |
|
||||||
Mat singVals=mysvd.w; |
|
||||||
transformCost=std::log((singVals.at<float>(0,0)+FLT_MIN)/(singVals.at<float>(1,0)+FLT_MIN)); |
|
||||||
|
|
||||||
return transformCost; |
|
||||||
} |
|
||||||
|
|
||||||
Ptr <AffineTransformer> createAffineTransformer(bool fullAffine) |
|
||||||
{ |
|
||||||
return Ptr<AffineTransformer>( new AffineTransformerImpl(fullAffine) ); |
|
||||||
} |
|
||||||
|
|
||||||
} // cv
|
|
@ -1,797 +0,0 @@ |
|||||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
||||||
//
|
|
||||||
// By downloading, copying, installing or using the software you agree to this license.
|
|
||||||
// If you do not agree to this license, do not download, install,
|
|
||||||
// copy or use the software.
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// License Agreement
|
|
||||||
// For Open Source Computer Vision Library
|
|
||||||
//
|
|
||||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
||||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
||||||
// Third party copyrights are property of their respective owners.
|
|
||||||
//
|
|
||||||
// Redistribution and use in source and binary forms, with or without modification,
|
|
||||||
// are permitted provided that the following conditions are met:
|
|
||||||
//
|
|
||||||
// * Redistribution's of source code must retain the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer.
|
|
||||||
//
|
|
||||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer in the documentation
|
|
||||||
// and/or other materials provided with the distribution.
|
|
||||||
//
|
|
||||||
// * The name of the copyright holders may not be used to endorse or promote products
|
|
||||||
// derived from this software without specific prior written permission.
|
|
||||||
//
|
|
||||||
// This software is provided by the copyright holders and contributors "as is" and
|
|
||||||
// any express or implied warranties, including, but not limited to, the implied
|
|
||||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
||||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
||||||
// indirect, incidental, special, exemplary, or consequential damages
|
|
||||||
// (including, but not limited to, procurement of substitute goods or services;
|
|
||||||
// loss of use, data, or profits; or business interruption) however caused
|
|
||||||
// and on any theory of liability, whether in contract, strict liability,
|
|
||||||
// or tort (including negligence or otherwise) arising in any way out of
|
|
||||||
// the use of this software, even if advised of the possibility of such damage.
|
|
||||||
//
|
|
||||||
//M*/
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Implementation of an optimized EMD for histograms based in |
|
||||||
* the papers "EMD-L1: An efficient and Robust Algorithm |
|
||||||
* for comparing histogram-based descriptors", by Haibin Ling and |
|
||||||
* Kazunori Okuda; and "The Earth Mover's Distance is the Mallows |
|
||||||
* Distance: Some Insights from Statistics", by Elizaveta Levina and |
|
||||||
* Peter Bickel, based on HAIBIN LING AND KAZUNORI OKADA implementation. |
|
||||||
*/ |
|
||||||
|
|
||||||
#include "precomp.hpp" |
|
||||||
#include "emdL1_def.hpp" |
|
||||||
#include <limits> |
|
||||||
|
|
||||||
/****************************************************************************************\
|
|
||||||
* EMDL1 Class * |
|
||||||
\****************************************************************************************/ |
|
||||||
|
|
||||||
float EmdL1::getEMDL1(cv::Mat &sig1, cv::Mat &sig2) |
|
||||||
{ |
|
||||||
// Initialization
|
|
||||||
CV_Assert((sig1.rows==sig2.rows) && (sig1.cols==sig2.cols) && (!sig1.empty()) && (!sig2.empty())); |
|
||||||
if(!initBaseTrees(sig1.rows, 1)) |
|
||||||
return -1; |
|
||||||
|
|
||||||
float *H1=new float[sig1.rows], *H2 = new float[sig2.rows]; |
|
||||||
for (int ii=0; ii<sig1.rows; ii++) |
|
||||||
{ |
|
||||||
H1[ii]=sig1.at<float>(ii,0); |
|
||||||
H2[ii]=sig2.at<float>(ii,0); |
|
||||||
} |
|
||||||
|
|
||||||
fillBaseTrees(H1,H2); // Initialize histograms
|
|
||||||
greedySolution(); // Construct an initial Basic Feasible solution
|
|
||||||
initBVTree(); // Initialize BVTree
|
|
||||||
|
|
||||||
// Iteration
|
|
||||||
bool bOptimal = false; |
|
||||||
m_nItr = 0; |
|
||||||
while(!bOptimal && m_nItr<nMaxIt) |
|
||||||
{ |
|
||||||
// Derive U=(u_ij) for row i and column j
|
|
||||||
if(m_nItr==0) updateSubtree(m_pRoot); |
|
||||||
else updateSubtree(m_pEnter->pChild); |
|
||||||
|
|
||||||
// Optimality test
|
|
||||||
bOptimal = isOptimal(); |
|
||||||
|
|
||||||
// Find new solution
|
|
||||||
if(!bOptimal) |
|
||||||
findNewSolution(); |
|
||||||
++m_nItr; |
|
||||||
} |
|
||||||
delete [] H1; |
|
||||||
delete [] H2; |
|
||||||
// Output the total flow
|
|
||||||
return compuTotalFlow(); |
|
||||||
} |
|
||||||
|
|
||||||
void EmdL1::setMaxIteration(int _nMaxIt) |
|
||||||
{ |
|
||||||
nMaxIt=_nMaxIt; |
|
||||||
} |
|
||||||
|
|
||||||
//-- SubFunctions called in the EMD algorithm
|
|
||||||
bool EmdL1::initBaseTrees(int n1, int n2, int n3) |
|
||||||
{ |
|
||||||
if(binsDim1==n1 && binsDim2==n2 && binsDim3==n3) |
|
||||||
return true; |
|
||||||
binsDim1 = n1; |
|
||||||
binsDim2 = n2; |
|
||||||
binsDim3 = n3; |
|
||||||
if(binsDim1==0 || binsDim2==0) dimension = 0; |
|
||||||
else dimension = (binsDim3==0)?2:3; |
|
||||||
|
|
||||||
if(dimension==2) |
|
||||||
{ |
|
||||||
m_Nodes.resize(binsDim1); |
|
||||||
m_EdgesUp.resize(binsDim1); |
|
||||||
m_EdgesRight.resize(binsDim1); |
|
||||||
for(int i1=0; i1<binsDim1; i1++) |
|
||||||
{ |
|
||||||
m_Nodes[i1].resize(binsDim2); |
|
||||||
m_EdgesUp[i1].resize(binsDim2); |
|
||||||
m_EdgesRight[i1].resize(binsDim2); |
|
||||||
} |
|
||||||
m_NBVEdges.resize(binsDim1*binsDim2*4+2); |
|
||||||
m_auxQueue.resize(binsDim1*binsDim2+2); |
|
||||||
m_fromLoop.resize(binsDim1*binsDim2+2); |
|
||||||
m_toLoop.resize(binsDim1*binsDim2+2); |
|
||||||
} |
|
||||||
else if(dimension==3) |
|
||||||
{ |
|
||||||
m_3dNodes.resize(binsDim1); |
|
||||||
m_3dEdgesUp.resize(binsDim1); |
|
||||||
m_3dEdgesRight.resize(binsDim1); |
|
||||||
m_3dEdgesDeep.resize(binsDim1); |
|
||||||
for(int i1=0; i1<binsDim1; i1++) |
|
||||||
{ |
|
||||||
m_3dNodes[i1].resize(binsDim2); |
|
||||||
m_3dEdgesUp[i1].resize(binsDim2); |
|
||||||
m_3dEdgesRight[i1].resize(binsDim2); |
|
||||||
m_3dEdgesDeep[i1].resize(binsDim2); |
|
||||||
for(int i2=0; i2<binsDim2; i2++) |
|
||||||
{ |
|
||||||
m_3dNodes[i1][i2].resize(binsDim3); |
|
||||||
m_3dEdgesUp[i1][i2].resize(binsDim3); |
|
||||||
m_3dEdgesRight[i1][i2].resize(binsDim3); |
|
||||||
m_3dEdgesDeep[i1][i2].resize(binsDim3); |
|
||||||
} |
|
||||||
} |
|
||||||
m_NBVEdges.resize(binsDim1*binsDim2*binsDim3*6+4); |
|
||||||
m_auxQueue.resize(binsDim1*binsDim2*binsDim3+4); |
|
||||||
m_fromLoop.resize(binsDim1*binsDim2*binsDim3+4); |
|
||||||
m_toLoop.resize(binsDim1*binsDim2*binsDim3+2); |
|
||||||
} |
|
||||||
else |
|
||||||
return false; |
|
||||||
|
|
||||||
return true; |
|
||||||
} |
|
||||||
|
|
||||||
bool EmdL1::fillBaseTrees(float *H1, float *H2) |
|
||||||
{ |
|
||||||
//- Set global counters
|
|
||||||
m_pRoot = NULL; |
|
||||||
// Graph initialization
|
|
||||||
float *p1 = H1; |
|
||||||
float *p2 = H2; |
|
||||||
if(dimension==2) |
|
||||||
{ |
|
||||||
for(int c=0; c<binsDim2; c++) |
|
||||||
{ |
|
||||||
for(int r=0; r<binsDim1; r++) |
|
||||||
{ |
|
||||||
//- initialize nodes and links
|
|
||||||
m_Nodes[r][c].pos[0] = r; |
|
||||||
m_Nodes[r][c].pos[1] = c; |
|
||||||
m_Nodes[r][c].d = *(p1++)-*(p2++); |
|
||||||
m_Nodes[r][c].pParent = NULL; |
|
||||||
m_Nodes[r][c].pChild = NULL; |
|
||||||
m_Nodes[r][c].iLevel = -1; |
|
||||||
|
|
||||||
//- initialize edges
|
|
||||||
// to the right
|
|
||||||
m_EdgesRight[r][c].pParent = &(m_Nodes[r][c]); |
|
||||||
m_EdgesRight[r][c].pChild = &(m_Nodes[r][(c+1)%binsDim2]); |
|
||||||
m_EdgesRight[r][c].flow = 0; |
|
||||||
m_EdgesRight[r][c].iDir = 1; |
|
||||||
m_EdgesRight[r][c].pNxt = NULL; |
|
||||||
|
|
||||||
// to the upward
|
|
||||||
m_EdgesUp[r][c].pParent = &(m_Nodes[r][c]); |
|
||||||
m_EdgesUp[r][c].pChild = &(m_Nodes[(r+1)%binsDim1][c]); |
|
||||||
m_EdgesUp[r][c].flow = 0; |
|
||||||
m_EdgesUp[r][c].iDir = 1; |
|
||||||
m_EdgesUp[r][c].pNxt = NULL; |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
else if(dimension==3) |
|
||||||
{ |
|
||||||
for(int z=0; z<binsDim3; z++) |
|
||||||
{ |
|
||||||
for(int c=0; c<binsDim2; c++) |
|
||||||
{ |
|
||||||
for(int r=0; r<binsDim1; r++) |
|
||||||
{ |
|
||||||
//- initialize nodes and edges
|
|
||||||
m_3dNodes[r][c][z].pos[0] = r; |
|
||||||
m_3dNodes[r][c][z].pos[1] = c; |
|
||||||
m_3dNodes[r][c][z].pos[2] = z; |
|
||||||
m_3dNodes[r][c][z].d = *(p1++)-*(p2++); |
|
||||||
m_3dNodes[r][c][z].pParent = NULL; |
|
||||||
m_3dNodes[r][c][z].pChild = NULL; |
|
||||||
m_3dNodes[r][c][z].iLevel = -1; |
|
||||||
|
|
||||||
//- initialize edges
|
|
||||||
// to the upward
|
|
||||||
m_3dEdgesUp[r][c][z].pParent= &(m_3dNodes[r][c][z]); |
|
||||||
m_3dEdgesUp[r][c][z].pChild = &(m_3dNodes[(r+1)%binsDim1][c][z]); |
|
||||||
m_3dEdgesUp[r][c][z].flow = 0; |
|
||||||
m_3dEdgesUp[r][c][z].iDir = 1; |
|
||||||
m_3dEdgesUp[r][c][z].pNxt = NULL; |
|
||||||
|
|
||||||
// to the right
|
|
||||||
m_3dEdgesRight[r][c][z].pParent = &(m_3dNodes[r][c][z]); |
|
||||||
m_3dEdgesRight[r][c][z].pChild = &(m_3dNodes[r][(c+1)%binsDim2][z]); |
|
||||||
m_3dEdgesRight[r][c][z].flow = 0; |
|
||||||
m_3dEdgesRight[r][c][z].iDir = 1; |
|
||||||
m_3dEdgesRight[r][c][z].pNxt = NULL; |
|
||||||
|
|
||||||
// to the deep
|
|
||||||
m_3dEdgesDeep[r][c][z].pParent = &(m_3dNodes[r][c][z]); |
|
||||||
m_3dEdgesDeep[r][c][z].pChild = &(m_3dNodes[r][c])[(z+1)%binsDim3]; |
|
||||||
m_3dEdgesDeep[r][c][z].flow = 0; |
|
||||||
m_3dEdgesDeep[r][c][z].iDir = 1; |
|
||||||
m_3dEdgesDeep[r][c][z].pNxt = NULL; |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
return true; |
|
||||||
} |
|
||||||
|
|
||||||
bool EmdL1::greedySolution() |
|
||||||
{ |
|
||||||
return dimension==2?greedySolution2():greedySolution3(); |
|
||||||
} |
|
||||||
|
|
||||||
bool EmdL1::greedySolution2() |
|
||||||
{ |
|
||||||
//- Prepare auxiliary array, D=H1-H2
|
|
||||||
int c,r; |
|
||||||
floatArray2D D(binsDim1); |
|
||||||
for(r=0; r<binsDim1; r++) |
|
||||||
{ |
|
||||||
D[r].resize(binsDim2); |
|
||||||
for(c=0; c<binsDim2; c++) D[r][c] = m_Nodes[r][c].d; |
|
||||||
} |
|
||||||
// compute integrated values along each dimension
|
|
||||||
std::vector<float> d2s(binsDim2); |
|
||||||
d2s[0] = 0; |
|
||||||
for(c=0; c<binsDim2-1; c++) |
|
||||||
{ |
|
||||||
d2s[c+1] = d2s[c]; |
|
||||||
for(r=0; r<binsDim1; r++) d2s[c+1]-= D[r][c]; |
|
||||||
} |
|
||||||
|
|
||||||
std::vector<float> d1s(binsDim1); |
|
||||||
d1s[0] = 0; |
|
||||||
for(r=0; r<binsDim1-1; r++) |
|
||||||
{ |
|
||||||
d1s[r+1] = d1s[r]; |
|
||||||
for(c=0; c<binsDim2; c++) d1s[r+1]-= D[r][c]; |
|
||||||
} |
|
||||||
|
|
||||||
//- Greedy algorithm for initial solution
|
|
||||||
cvPEmdEdge pBV; |
|
||||||
float dFlow; |
|
||||||
bool bUpward = false; |
|
||||||
nNBV = 0; // number of NON-BV edges
|
|
||||||
|
|
||||||
for(c=0; c<binsDim2-1; c++) |
|
||||||
for(r=0; r<binsDim1; r++) |
|
||||||
{ |
|
||||||
dFlow = D[r][c]; |
|
||||||
bUpward = (r<binsDim1-1) && (fabs(dFlow+d2s[c+1]) > fabs(dFlow+d1s[r+1])); // Move upward or right
|
|
||||||
|
|
||||||
// modify basic variables, record BV and related values
|
|
||||||
if(bUpward) |
|
||||||
{ |
|
||||||
// move to up
|
|
||||||
pBV = &(m_EdgesUp[r][c]); |
|
||||||
m_NBVEdges[nNBV++] = &(m_EdgesRight[r][c]); |
|
||||||
D[r+1][c] += dFlow; // auxiliary matrix maintenance
|
|
||||||
d1s[r+1] += dFlow; // auxiliary matrix maintenance
|
|
||||||
} |
|
||||||
else |
|
||||||
{ |
|
||||||
// move to right, no other choice
|
|
||||||
pBV = &(m_EdgesRight[r][c]); |
|
||||||
if(r<binsDim1-1) |
|
||||||
m_NBVEdges[nNBV++] = &(m_EdgesUp[r][c]); |
|
||||||
|
|
||||||
D[r][c+1] += dFlow; // auxiliary matrix maintenance
|
|
||||||
d2s[c+1] += dFlow; // auxiliary matrix maintenance
|
|
||||||
} |
|
||||||
pBV->pParent->pChild = pBV; |
|
||||||
pBV->flow = fabs(dFlow); |
|
||||||
pBV->iDir = dFlow>0; // 1:outward, 0:inward
|
|
||||||
} |
|
||||||
|
|
||||||
//- rightmost column, no choice but move upward
|
|
||||||
c = binsDim2-1; |
|
||||||
for(r=0; r<binsDim1-1; r++) |
|
||||||
{ |
|
||||||
dFlow = D[r][c]; |
|
||||||
pBV = &(m_EdgesUp[r][c]); |
|
||||||
D[r+1][c] += dFlow; // auxiliary matrix maintenance
|
|
||||||
pBV->pParent->pChild= pBV; |
|
||||||
pBV->flow = fabs(dFlow); |
|
||||||
pBV->iDir = dFlow>0; // 1:outward, 0:inward
|
|
||||||
} |
|
||||||
return true; |
|
||||||
} |
|
||||||
|
|
||||||
bool EmdL1::greedySolution3() |
|
||||||
{ |
|
||||||
//- Prepare auxiliary array, D=H1-H2
|
|
||||||
int i1,i2,i3; |
|
||||||
std::vector<floatArray2D> D(binsDim1); |
|
||||||
for(i1=0; i1<binsDim1; i1++) |
|
||||||
{ |
|
||||||
D[i1].resize(binsDim2); |
|
||||||
for(i2=0; i2<binsDim2; i2++) |
|
||||||
{ |
|
||||||
D[i1][i2].resize(binsDim3); |
|
||||||
for(i3=0; i3<binsDim3; i3++) |
|
||||||
D[i1][i2][i3] = m_3dNodes[i1][i2][i3].d; |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
// compute integrated values along each dimension
|
|
||||||
std::vector<float> d1s(binsDim1); |
|
||||||
d1s[0] = 0; |
|
||||||
for(i1=0; i1<binsDim1-1; i1++) |
|
||||||
{ |
|
||||||
d1s[i1+1] = d1s[i1]; |
|
||||||
for(i2=0; i2<binsDim2; i2++) |
|
||||||
{ |
|
||||||
for(i3=0; i3<binsDim3; i3++) |
|
||||||
d1s[i1+1] -= D[i1][i2][i3]; |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
std::vector<float> d2s(binsDim2); |
|
||||||
d2s[0] = 0; |
|
||||||
for(i2=0; i2<binsDim2-1; i2++) |
|
||||||
{ |
|
||||||
d2s[i2+1] = d2s[i2]; |
|
||||||
for(i1=0; i1<binsDim1; i1++) |
|
||||||
{ |
|
||||||
for(i3=0; i3<binsDim3; i3++) |
|
||||||
d2s[i2+1] -= D[i1][i2][i3]; |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
std::vector<float> d3s(binsDim3); |
|
||||||
d3s[0] = 0; |
|
||||||
for(i3=0; i3<binsDim3-1; i3++) |
|
||||||
{ |
|
||||||
d3s[i3+1] = d3s[i3]; |
|
||||||
for(i1=0; i1<binsDim1; i1++) |
|
||||||
{ |
|
||||||
for(i2=0; i2<binsDim2; i2++) |
|
||||||
d3s[i3+1] -= D[i1][i2][i3]; |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
//- Greedy algorithm for initial solution
|
|
||||||
cvPEmdEdge pBV; |
|
||||||
float dFlow, f1,f2,f3; |
|
||||||
nNBV = 0; // number of NON-BV edges
|
|
||||||
for(i3=0; i3<binsDim3; i3++) |
|
||||||
{ |
|
||||||
for(i2=0; i2<binsDim2; i2++) |
|
||||||
{ |
|
||||||
for(i1=0; i1<binsDim1; i1++) |
|
||||||
{ |
|
||||||
if(i3==binsDim3-1 && i2==binsDim2-1 && i1==binsDim1-1) break; |
|
||||||
|
|
||||||
//- determine which direction to move, either right or upward
|
|
||||||
dFlow = D[i1][i2][i3]; |
|
||||||
f1 = (i1<(binsDim1-1))?fabs(dFlow+d1s[i1+1]):std::numeric_limits<float>::max(); |
|
||||||
f2 = (i2<(binsDim2-1))?fabs(dFlow+d2s[i2+1]):std::numeric_limits<float>::max(); |
|
||||||
f3 = (i3<(binsDim3-1))?fabs(dFlow+d3s[i3+1]):std::numeric_limits<float>::max(); |
|
||||||
|
|
||||||
if(f1<f2 && f1<f3) |
|
||||||
{ |
|
||||||
pBV = &(m_3dEdgesUp[i1][i2][i3]); // up
|
|
||||||
if(i2<binsDim2-1) m_NBVEdges[nNBV++] = &(m_3dEdgesRight[i1][i2][i3]); // right
|
|
||||||
if(i3<binsDim3-1) m_NBVEdges[nNBV++] = &(m_3dEdgesDeep[i1][i2][i3]); // deep
|
|
||||||
D[i1+1][i2][i3] += dFlow; // maintain auxiliary matrix
|
|
||||||
d1s[i1+1] += dFlow; |
|
||||||
} |
|
||||||
else if(f2<f3) |
|
||||||
{ |
|
||||||
pBV = &(m_3dEdgesRight[i1][i2][i3]); // right
|
|
||||||
if(i1<binsDim1-1) m_NBVEdges[nNBV++] = &(m_3dEdgesUp[i1][i2][i3]); // up
|
|
||||||
if(i3<binsDim3-1) m_NBVEdges[nNBV++] = &(m_3dEdgesDeep[i1][i2][i3]); // deep
|
|
||||||
D[i1][i2+1][i3] += dFlow; // maintain auxiliary matrix
|
|
||||||
d2s[i2+1] += dFlow; |
|
||||||
} |
|
||||||
else |
|
||||||
{ |
|
||||||
pBV = &(m_3dEdgesDeep[i1][i2][i3]); // deep
|
|
||||||
if(i2<binsDim2-1) m_NBVEdges[nNBV++] = &(m_3dEdgesRight[i1][i2][i3]); // right
|
|
||||||
if(i1<binsDim1-1) m_NBVEdges[nNBV++] = &(m_3dEdgesUp[i1][i2][i3]); // up
|
|
||||||
D[i1][i2][i3+1] += dFlow; // maintain auxiliary matrix
|
|
||||||
d3s[i3+1] += dFlow; |
|
||||||
} |
|
||||||
|
|
||||||
pBV->flow = fabs(dFlow); |
|
||||||
pBV->iDir = dFlow>0; // 1:outward, 0:inward
|
|
||||||
pBV->pParent->pChild= pBV; |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
return true; |
|
||||||
} |
|
||||||
|
|
||||||
void EmdL1::initBVTree() |
|
||||||
{ |
|
||||||
// initialize BVTree from the initial BF solution
|
|
||||||
//- Using the center of the graph as the root
|
|
||||||
int r = (int)(0.5*binsDim1-.5); |
|
||||||
int c = (int)(0.5*binsDim2-.5); |
|
||||||
int z = (int)(0.5*binsDim3-.5); |
|
||||||
m_pRoot = dimension==2 ? &(m_Nodes[r][c]) : &(m_3dNodes[r][c][z]); |
|
||||||
m_pRoot->u = 0; |
|
||||||
m_pRoot->iLevel = 0; |
|
||||||
m_pRoot->pParent= NULL; |
|
||||||
m_pRoot->pPEdge = NULL; |
|
||||||
|
|
||||||
//- Prepare a queue
|
|
||||||
m_auxQueue[0] = m_pRoot; |
|
||||||
int nQueue = 1; // length of queue
|
|
||||||
int iQHead = 0; // head of queue
|
|
||||||
|
|
||||||
//- Recursively build subtrees
|
|
||||||
cvPEmdEdge pCurE=NULL, pNxtE=NULL; |
|
||||||
cvPEmdNode pCurN=NULL, pNxtN=NULL; |
|
||||||
int nBin = binsDim1*binsDim2*std::max(binsDim3,1); |
|
||||||
while(iQHead<nQueue && nQueue<nBin) |
|
||||||
{ |
|
||||||
pCurN = m_auxQueue[iQHead++]; // pop out from queue
|
|
||||||
r = pCurN->pos[0]; |
|
||||||
c = pCurN->pos[1]; |
|
||||||
z = pCurN->pos[2]; |
|
||||||
|
|
||||||
// check connection from itself
|
|
||||||
pCurE = pCurN->pChild; // the initial child from initial solution
|
|
||||||
if(pCurE) |
|
||||||
{ |
|
||||||
pNxtN = pCurE->pChild; |
|
||||||
pNxtN->pParent = pCurN; |
|
||||||
pNxtN->pPEdge = pCurE; |
|
||||||
m_auxQueue[nQueue++] = pNxtN; |
|
||||||
} |
|
||||||
|
|
||||||
// check four neighbor nodes
|
|
||||||
int nNB = dimension==2?4:6; |
|
||||||
for(int k=0;k<nNB;k++) |
|
||||||
{ |
|
||||||
if(dimension==2) |
|
||||||
{ |
|
||||||
if(k==0 && c>0) pNxtN = &(m_Nodes[r][c-1]); // left
|
|
||||||
else if(k==1 && r>0) pNxtN = &(m_Nodes[r-1][c]); // down
|
|
||||||
else if(k==2 && c<binsDim2-1) pNxtN = &(m_Nodes[r][c+1]); // right
|
|
||||||
else if(k==3 && r<binsDim1-1) pNxtN = &(m_Nodes[r+1][c]); // up
|
|
||||||
else continue; |
|
||||||
} |
|
||||||
else if(dimension==3) |
|
||||||
{ |
|
||||||
if(k==0 && c>0) pNxtN = &(m_3dNodes[r][c-1][z]); // left
|
|
||||||
else if(k==1 && c<binsDim2-1) pNxtN = &(m_3dNodes[r][c+1][z]); // right
|
|
||||||
else if(k==2 && r>0) pNxtN = &(m_3dNodes[r-1][c][z]); // down
|
|
||||||
else if(k==3 && r<binsDim1-1) pNxtN = &(m_3dNodes[r+1][c][z]); // up
|
|
||||||
else if(k==4 && z>0) pNxtN = &(m_3dNodes[r][c][z-1]); // shallow
|
|
||||||
else if(k==5 && z<binsDim3-1) pNxtN = &(m_3dNodes[r][c][z+1]); // deep
|
|
||||||
else continue; |
|
||||||
} |
|
||||||
if(pNxtN != pCurN->pParent) |
|
||||||
{ |
|
||||||
CV_Assert(pNxtN != NULL); |
|
||||||
pNxtE = pNxtN->pChild; |
|
||||||
if(pNxtE && pNxtE->pChild==pCurN) // has connection
|
|
||||||
{ |
|
||||||
pNxtN->pParent = pCurN; |
|
||||||
pNxtN->pPEdge = pNxtE; |
|
||||||
pNxtN->pChild = NULL; |
|
||||||
m_auxQueue[nQueue++] = pNxtN; |
|
||||||
|
|
||||||
pNxtE->pParent = pCurN; // reverse direction
|
|
||||||
pNxtE->pChild = pNxtN; |
|
||||||
pNxtE->iDir = !pNxtE->iDir; |
|
||||||
|
|
||||||
if(pCurE) pCurE->pNxt = pNxtE; // add to edge list
|
|
||||||
else pCurN->pChild = pNxtE; |
|
||||||
pCurE = pNxtE; |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
void EmdL1::updateSubtree(cvPEmdNode pRoot) |
|
||||||
{ |
|
||||||
// Initialize auxiliary queue
|
|
||||||
m_auxQueue[0] = pRoot; |
|
||||||
int nQueue = 1; // queue length
|
|
||||||
int iQHead = 0; // head of queue
|
|
||||||
|
|
||||||
// BFS browing
|
|
||||||
cvPEmdNode pCurN=NULL,pNxtN=NULL; |
|
||||||
cvPEmdEdge pCurE=NULL; |
|
||||||
while(iQHead<nQueue) |
|
||||||
{ |
|
||||||
pCurN = m_auxQueue[iQHead++]; // pop out from queue
|
|
||||||
pCurE = pCurN->pChild; |
|
||||||
|
|
||||||
// browsing all children
|
|
||||||
while(pCurE) |
|
||||||
{ |
|
||||||
pNxtN = pCurE->pChild; |
|
||||||
pNxtN->iLevel = pCurN->iLevel+1; |
|
||||||
pNxtN->u = pCurE->iDir ? (pCurN->u - 1) : (pCurN->u + 1); |
|
||||||
pCurE = pCurE->pNxt; |
|
||||||
m_auxQueue[nQueue++] = pNxtN; |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
bool EmdL1::isOptimal() |
|
||||||
{ |
|
||||||
int iC, iMinC = 0; |
|
||||||
cvPEmdEdge pE; |
|
||||||
m_pEnter = NULL; |
|
||||||
m_iEnter = -1; |
|
||||||
|
|
||||||
// test each NON-BV edges
|
|
||||||
for(int k=0; k<nNBV; ++k) |
|
||||||
{ |
|
||||||
pE = m_NBVEdges[k]; |
|
||||||
iC = 1 - pE->pParent->u + pE->pChild->u; |
|
||||||
if(iC<iMinC) |
|
||||||
{ |
|
||||||
iMinC = iC; |
|
||||||
m_iEnter= k; |
|
||||||
} |
|
||||||
else |
|
||||||
{ |
|
||||||
// Try reversing the direction
|
|
||||||
iC = 1 + pE->pParent->u - pE->pChild->u; |
|
||||||
if(iC<iMinC) |
|
||||||
{ |
|
||||||
iMinC = iC; |
|
||||||
m_iEnter= k; |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
if(m_iEnter>=0) |
|
||||||
{ |
|
||||||
m_pEnter = m_NBVEdges[m_iEnter]; |
|
||||||
if(iMinC == (1 - m_pEnter->pChild->u + m_pEnter->pParent->u)) { |
|
||||||
// reverse direction
|
|
||||||
cvPEmdNode pN = m_pEnter->pParent; |
|
||||||
m_pEnter->pParent = m_pEnter->pChild; |
|
||||||
m_pEnter->pChild = pN; |
|
||||||
} |
|
||||||
|
|
||||||
m_pEnter->iDir = 1; |
|
||||||
} |
|
||||||
return m_iEnter==-1; |
|
||||||
} |
|
||||||
|
|
||||||
void EmdL1::findNewSolution() |
|
||||||
{ |
|
||||||
// Find loop formed by adding the Enter BV edge.
|
|
||||||
findLoopFromEnterBV(); |
|
||||||
// Modify flow values along the loop
|
|
||||||
cvPEmdEdge pE = NULL; |
|
||||||
CV_Assert(m_pLeave != NULL); |
|
||||||
float minFlow = m_pLeave->flow; |
|
||||||
int k; |
|
||||||
for(k=0; k<m_iFrom; k++) |
|
||||||
{ |
|
||||||
pE = m_fromLoop[k]; |
|
||||||
if(pE->iDir) pE->flow += minFlow; // outward
|
|
||||||
else pE->flow -= minFlow; // inward
|
|
||||||
} |
|
||||||
for(k=0; k<m_iTo; k++) |
|
||||||
{ |
|
||||||
pE = m_toLoop[k]; |
|
||||||
if(pE->iDir) pE->flow -= minFlow; // outward
|
|
||||||
else pE->flow += minFlow; // inward
|
|
||||||
} |
|
||||||
|
|
||||||
// Update BV Tree, removing the Leaving-BV edge
|
|
||||||
cvPEmdNode pLParentN = m_pLeave->pParent; |
|
||||||
cvPEmdNode pLChildN = m_pLeave->pChild; |
|
||||||
cvPEmdEdge pPreE = pLParentN->pChild; |
|
||||||
if(pPreE==m_pLeave) |
|
||||||
{ |
|
||||||
pLParentN->pChild = m_pLeave->pNxt; // Leaving-BV is the first child
|
|
||||||
} |
|
||||||
else |
|
||||||
{ |
|
||||||
while(pPreE->pNxt != m_pLeave) |
|
||||||
pPreE = pPreE->pNxt; |
|
||||||
pPreE->pNxt = m_pLeave->pNxt; // remove Leaving-BV from child list
|
|
||||||
} |
|
||||||
pLChildN->pParent = NULL; |
|
||||||
pLChildN->pPEdge = NULL; |
|
||||||
|
|
||||||
m_NBVEdges[m_iEnter]= m_pLeave; // put the leaving-BV into the NBV array
|
|
||||||
|
|
||||||
// Add the Enter BV edge
|
|
||||||
cvPEmdNode pEParentN = m_pEnter->pParent; |
|
||||||
cvPEmdNode pEChildN = m_pEnter->pChild; |
|
||||||
m_pEnter->flow = minFlow; |
|
||||||
m_pEnter->pNxt = pEParentN->pChild; // insert the Enter BV as the first child
|
|
||||||
pEParentN->pChild = m_pEnter; // of its parent
|
|
||||||
|
|
||||||
// Recursively update the tree start from pEChildN
|
|
||||||
cvPEmdNode pPreN = pEParentN; |
|
||||||
cvPEmdNode pCurN = pEChildN; |
|
||||||
cvPEmdNode pNxtN; |
|
||||||
cvPEmdEdge pNxtE, pPreE0; |
|
||||||
pPreE = m_pEnter; |
|
||||||
while(pCurN) |
|
||||||
{ |
|
||||||
pNxtN = pCurN->pParent; |
|
||||||
pNxtE = pCurN->pPEdge; |
|
||||||
pCurN->pParent = pPreN; |
|
||||||
pCurN->pPEdge = pPreE; |
|
||||||
if(pNxtN) |
|
||||||
{ |
|
||||||
// remove the edge from pNxtN's child list
|
|
||||||
if(pNxtN->pChild==pNxtE) |
|
||||||
{ |
|
||||||
pNxtN->pChild = pNxtE->pNxt; // first child
|
|
||||||
} |
|
||||||
else |
|
||||||
{ |
|
||||||
pPreE0 = pNxtN->pChild; |
|
||||||
while(pPreE0->pNxt != pNxtE) |
|
||||||
pPreE0 = pPreE0->pNxt; |
|
||||||
pPreE0->pNxt = pNxtE->pNxt; // remove Leaving-BV from child list
|
|
||||||
} |
|
||||||
// reverse the parent-child direction
|
|
||||||
pNxtE->pParent = pCurN; |
|
||||||
pNxtE->pChild = pNxtN; |
|
||||||
pNxtE->iDir = !pNxtE->iDir; |
|
||||||
pNxtE->pNxt = pCurN->pChild; |
|
||||||
pCurN->pChild = pNxtE; |
|
||||||
pPreE = pNxtE; |
|
||||||
pPreN = pCurN; |
|
||||||
} |
|
||||||
pCurN = pNxtN; |
|
||||||
} |
|
||||||
|
|
||||||
// Update U at the child of the Enter BV
|
|
||||||
pEChildN->u = m_pEnter->iDir?(pEParentN->u-1):(pEParentN->u + 1); |
|
||||||
pEChildN->iLevel = pEParentN->iLevel+1; |
|
||||||
} |
|
||||||
|
|
||||||
void EmdL1::findLoopFromEnterBV() |
|
||||||
{ |
|
||||||
// Initialize Leaving-BV edge
|
|
||||||
float minFlow = std::numeric_limits<float>::max(); |
|
||||||
cvPEmdEdge pE = NULL; |
|
||||||
int iLFlag = 0; // 0: in the FROM list, 1: in the TO list
|
|
||||||
|
|
||||||
// Using two loop list to store the loop nodes
|
|
||||||
cvPEmdNode pFrom = m_pEnter->pParent; |
|
||||||
cvPEmdNode pTo = m_pEnter->pChild; |
|
||||||
m_iFrom = 0; |
|
||||||
m_iTo = 0; |
|
||||||
m_pLeave = NULL; |
|
||||||
|
|
||||||
// Trace back to make pFrom and pTo at the same level
|
|
||||||
while(pFrom->iLevel > pTo->iLevel) |
|
||||||
{ |
|
||||||
pE = pFrom->pPEdge; |
|
||||||
m_fromLoop[m_iFrom++] = pE; |
|
||||||
if(!pE->iDir && pE->flow<minFlow) |
|
||||||
{ |
|
||||||
minFlow = pE->flow; |
|
||||||
m_pLeave = pE; |
|
||||||
iLFlag = 0; // 0: in the FROM list
|
|
||||||
} |
|
||||||
pFrom = pFrom->pParent; |
|
||||||
} |
|
||||||
|
|
||||||
while(pTo->iLevel > pFrom->iLevel) |
|
||||||
{ |
|
||||||
pE = pTo->pPEdge; |
|
||||||
m_toLoop[m_iTo++] = pE; |
|
||||||
if(pE->iDir && pE->flow<minFlow) |
|
||||||
{ |
|
||||||
minFlow = pE->flow; |
|
||||||
m_pLeave = pE; |
|
||||||
iLFlag = 1; // 1: in the TO list
|
|
||||||
} |
|
||||||
pTo = pTo->pParent; |
|
||||||
} |
|
||||||
|
|
||||||
// Trace pTo and pFrom simultaneously till find their common ancester
|
|
||||||
while(pTo!=pFrom) |
|
||||||
{ |
|
||||||
pE = pFrom->pPEdge; |
|
||||||
m_fromLoop[m_iFrom++] = pE; |
|
||||||
if(!pE->iDir && pE->flow<minFlow) |
|
||||||
{ |
|
||||||
minFlow = pE->flow; |
|
||||||
m_pLeave = pE; |
|
||||||
iLFlag = 0; // 0: in the FROM list, 1: in the TO list
|
|
||||||
} |
|
||||||
pFrom = pFrom->pParent; |
|
||||||
|
|
||||||
pE = pTo->pPEdge; |
|
||||||
m_toLoop[m_iTo++] = pE; |
|
||||||
if(pE->iDir && pE->flow<minFlow) |
|
||||||
{ |
|
||||||
minFlow = pE->flow; |
|
||||||
m_pLeave = pE; |
|
||||||
iLFlag = 1; // 0: in the FROM list, 1: in the TO list
|
|
||||||
} |
|
||||||
pTo = pTo->pParent; |
|
||||||
} |
|
||||||
|
|
||||||
// Reverse the direction of the Enter BV edge if necessary
|
|
||||||
if(iLFlag==0) |
|
||||||
{ |
|
||||||
cvPEmdNode pN = m_pEnter->pParent; |
|
||||||
m_pEnter->pParent = m_pEnter->pChild; |
|
||||||
m_pEnter->pChild = pN; |
|
||||||
m_pEnter->iDir = !m_pEnter->iDir; |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
float EmdL1::compuTotalFlow() |
|
||||||
{ |
|
||||||
// Computing the total flow as the final distance
|
|
||||||
float f = 0; |
|
||||||
|
|
||||||
// Initialize auxiliary queue
|
|
||||||
m_auxQueue[0] = m_pRoot; |
|
||||||
int nQueue = 1; // length of queue
|
|
||||||
int iQHead = 0; // head of queue
|
|
||||||
|
|
||||||
// BFS browing the tree
|
|
||||||
cvPEmdNode pCurN=NULL,pNxtN=NULL; |
|
||||||
cvPEmdEdge pCurE=NULL; |
|
||||||
while(iQHead<nQueue) |
|
||||||
{ |
|
||||||
pCurN = m_auxQueue[iQHead++]; // pop out from queue
|
|
||||||
pCurE = pCurN->pChild; |
|
||||||
|
|
||||||
// browsing all children
|
|
||||||
while(pCurE) |
|
||||||
{ |
|
||||||
f += pCurE->flow; |
|
||||||
pNxtN = pCurE->pChild; |
|
||||||
pCurE = pCurE->pNxt; |
|
||||||
m_auxQueue[nQueue++] = pNxtN; |
|
||||||
} |
|
||||||
} |
|
||||||
return f; |
|
||||||
} |
|
||||||
|
|
||||||
/****************************************************************************************\
|
|
||||||
* EMDL1 Function * |
|
||||||
\****************************************************************************************/ |
|
||||||
|
|
||||||
float cv::EMDL1(InputArray _signature1, InputArray _signature2) |
|
||||||
{ |
|
||||||
CV_INSTRUMENT_REGION(); |
|
||||||
|
|
||||||
Mat signature1 = _signature1.getMat(), signature2 = _signature2.getMat(); |
|
||||||
EmdL1 emdl1; |
|
||||||
return emdl1.getEMDL1(signature1, signature2); |
|
||||||
} |
|
@ -1,148 +0,0 @@ |
|||||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
||||||
//
|
|
||||||
// By downloading, copying, installing or using the software you agree to this license.
|
|
||||||
// If you do not agree to this license, do not download, install,
|
|
||||||
// copy or use the software.
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// License Agreement
|
|
||||||
// For Open Source Computer Vision Library
|
|
||||||
//
|
|
||||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
||||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
||||||
// Third party copyrights are property of their respective owners.
|
|
||||||
//
|
|
||||||
// Redistribution and use in source and binary forms, with or without modification,
|
|
||||||
// are permitted provided that the following conditions are met:
|
|
||||||
//
|
|
||||||
// * Redistribution's of source code must retain the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer.
|
|
||||||
//
|
|
||||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer in the documentation
|
|
||||||
// and/or other materials provided with the distribution.
|
|
||||||
//
|
|
||||||
// * The name of the copyright holders may not be used to endorse or promote products
|
|
||||||
// derived from this software without specific prior written permission.
|
|
||||||
//
|
|
||||||
// This software is provided by the copyright holders and contributors "as is" and
|
|
||||||
// any express or implied warranties, including, but not limited to, the implied
|
|
||||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
||||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
||||||
// indirect, incidental, special, exemplary, or consequential damages
|
|
||||||
// (including, but not limited to, procurement of substitute goods or services;
|
|
||||||
// loss of use, data, or profits; or business interruption) however caused
|
|
||||||
// and on any theory of liability, whether in contract, strict liability,
|
|
||||||
// or tort (including negligence or otherwise) arising in any way out of
|
|
||||||
// the use of this software, even if advised of the possibility of such damage.
|
|
||||||
//
|
|
||||||
//M*/
|
|
||||||
|
|
||||||
#include <stdlib.h> |
|
||||||
#include <math.h> |
|
||||||
#include <vector> |
|
||||||
|
|
||||||
/****************************************************************************************\
|
|
||||||
* For EMDL1 Framework * |
|
||||||
\****************************************************************************************/ |
|
||||||
typedef struct cvEMDEdge* cvPEmdEdge; |
|
||||||
typedef struct cvEMDNode* cvPEmdNode; |
|
||||||
struct cvEMDNode |
|
||||||
{ |
|
||||||
int pos[3]; // grid position
|
|
||||||
float d; // initial value
|
|
||||||
int u; |
|
||||||
// tree maintenance
|
|
||||||
int iLevel; // level in the tree, 0 means root
|
|
||||||
cvPEmdNode pParent; // pointer to its parent
|
|
||||||
cvPEmdEdge pChild; |
|
||||||
cvPEmdEdge pPEdge; // point to the edge coming out from its parent
|
|
||||||
}; |
|
||||||
struct cvEMDEdge |
|
||||||
{ |
|
||||||
float flow; // initial value
|
|
||||||
int iDir; // 1:outward, 0:inward
|
|
||||||
// tree maintenance
|
|
||||||
cvPEmdNode pParent; // point to its parent
|
|
||||||
cvPEmdNode pChild; // the child node
|
|
||||||
cvPEmdEdge pNxt; // next child/edge
|
|
||||||
}; |
|
||||||
typedef std::vector<cvEMDNode> cvEMDNodeArray; |
|
||||||
typedef std::vector<cvEMDEdge> cvEMDEdgeArray; |
|
||||||
typedef std::vector<cvEMDNodeArray> cvEMDNodeArray2D; |
|
||||||
typedef std::vector<cvEMDEdgeArray> cvEMDEdgeArray2D; |
|
||||||
typedef std::vector<float> floatArray; |
|
||||||
typedef std::vector<floatArray> floatArray2D; |
|
||||||
|
|
||||||
/****************************************************************************************\
|
|
||||||
* EMDL1 Class * |
|
||||||
\****************************************************************************************/ |
|
||||||
class EmdL1 |
|
||||||
{ |
|
||||||
public: |
|
||||||
EmdL1() |
|
||||||
{ |
|
||||||
m_pRoot = NULL; |
|
||||||
binsDim1 = 0; |
|
||||||
binsDim2 = 0; |
|
||||||
binsDim3 = 0; |
|
||||||
dimension = 0; |
|
||||||
nMaxIt = 500; |
|
||||||
|
|
||||||
m_pLeave = 0; |
|
||||||
m_iEnter = 0; |
|
||||||
nNBV = 0; |
|
||||||
m_nItr = 0; |
|
||||||
m_iTo = 0; |
|
||||||
m_iFrom = 0; |
|
||||||
m_pEnter = 0; |
|
||||||
} |
|
||||||
|
|
||||||
~EmdL1() |
|
||||||
{ |
|
||||||
} |
|
||||||
|
|
||||||
float getEMDL1(cv::Mat &sig1, cv::Mat &sig2); |
|
||||||
void setMaxIteration(int _nMaxIt); |
|
||||||
|
|
||||||
private: |
|
||||||
//-- SubFunctions called in the EMD algorithm
|
|
||||||
bool initBaseTrees(int n1=0, int n2=0, int n3=0); |
|
||||||
bool fillBaseTrees(float *H1, float *H2); |
|
||||||
bool greedySolution(); |
|
||||||
bool greedySolution2(); |
|
||||||
bool greedySolution3(); |
|
||||||
void initBVTree(); |
|
||||||
void updateSubtree(cvPEmdNode pRoot); |
|
||||||
bool isOptimal(); |
|
||||||
void findNewSolution(); |
|
||||||
void findLoopFromEnterBV(); |
|
||||||
float compuTotalFlow(); |
|
||||||
|
|
||||||
private: |
|
||||||
int dimension; |
|
||||||
int binsDim1, binsDim2, binsDim3; // the histogram contains m_n1 rows and m_n2 columns
|
|
||||||
int nNBV; // number of Non-Basic Variables (NBV)
|
|
||||||
int nMaxIt; |
|
||||||
cvEMDNodeArray2D m_Nodes; // all nodes
|
|
||||||
cvEMDEdgeArray2D m_EdgesRight; // all edges to right
|
|
||||||
cvEMDEdgeArray2D m_EdgesUp; // all edges to upward
|
|
||||||
std::vector<cvEMDNodeArray2D> m_3dNodes; // all nodes for 3D
|
|
||||||
std::vector<cvEMDEdgeArray2D> m_3dEdgesRight; // all edges to right, 3D
|
|
||||||
std::vector<cvEMDEdgeArray2D> m_3dEdgesUp; // all edges to upward, 3D
|
|
||||||
std::vector<cvEMDEdgeArray2D> m_3dEdgesDeep; // all edges to deep, 3D
|
|
||||||
std::vector<cvPEmdEdge> m_NBVEdges; // pointers to all NON-BV edges
|
|
||||||
std::vector<cvPEmdNode> m_auxQueue; // auxiliary node queue
|
|
||||||
cvPEmdNode m_pRoot; // root of the BV Tree
|
|
||||||
cvPEmdEdge m_pEnter; // Enter BV edge
|
|
||||||
int m_iEnter; // Enter BV edge, index in m_NBVEdges
|
|
||||||
cvPEmdEdge m_pLeave; // Leave BV edge
|
|
||||||
int m_nItr; // number of iteration
|
|
||||||
// auxiliary variables for searching a new loop
|
|
||||||
std::vector<cvPEmdEdge> m_fromLoop; |
|
||||||
std::vector<cvPEmdEdge> m_toLoop; |
|
||||||
int m_iFrom; |
|
||||||
int m_iTo; |
|
||||||
}; |
|
@ -1,157 +0,0 @@ |
|||||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
||||||
//
|
|
||||||
// By downloading, copying, installing or using the software you agree to this license.
|
|
||||||
// If you do not agree to this license, do not download, install,
|
|
||||||
// copy or use the software.
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// Intel License Agreement
|
|
||||||
// For Open Source Computer Vision Library
|
|
||||||
//
|
|
||||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
||||||
// Third party copyrights are property of their respective owners.
|
|
||||||
//
|
|
||||||
// Redistribution and use in source and binary forms, with or without modification,
|
|
||||||
// are permitted provided that the following conditions are met:
|
|
||||||
//
|
|
||||||
// * Redistribution's of source code must retain the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer.
|
|
||||||
//
|
|
||||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer in the documentation
|
|
||||||
// and/or other materials provided with the distribution.
|
|
||||||
//
|
|
||||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
||||||
// derived from this software without specific prior written permission.
|
|
||||||
//
|
|
||||||
// This software is provided by the copyright holders and contributors "as is" and
|
|
||||||
// any express or implied warranties, including, but not limited to, the implied
|
|
||||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
||||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
||||||
// indirect, incidental, special, exemplary, or consequential damages
|
|
||||||
// (including, but not limited to, procurement of substitute goods or services;
|
|
||||||
// loss of use, data, or profits; or business interruption) however caused
|
|
||||||
// and on any theory of liability, whether in contract, strict liability,
|
|
||||||
// or tort (including negligence or otherwise) arising in any way out of
|
|
||||||
// the use of this software, even if advised of the possibility of such damage.
|
|
||||||
//
|
|
||||||
//M*/
|
|
||||||
|
|
||||||
#include "precomp.hpp" |
|
||||||
|
|
||||||
namespace cv |
|
||||||
{ |
|
||||||
|
|
||||||
class HausdorffDistanceExtractorImpl CV_FINAL : public HausdorffDistanceExtractor |
|
||||||
{ |
|
||||||
public: |
|
||||||
/* Constructor */ |
|
||||||
HausdorffDistanceExtractorImpl(int _distanceFlag = NORM_L1, float _rankProportion=0.6) |
|
||||||
{ |
|
||||||
distanceFlag = _distanceFlag; |
|
||||||
rankProportion = _rankProportion; |
|
||||||
name_ = "ShapeDistanceExtractor.HAU"; |
|
||||||
} |
|
||||||
|
|
||||||
/* Destructor */ |
|
||||||
~HausdorffDistanceExtractorImpl() |
|
||||||
{ |
|
||||||
} |
|
||||||
|
|
||||||
//! the main operator
|
|
||||||
virtual float computeDistance(InputArray contour1, InputArray contour2) CV_OVERRIDE; |
|
||||||
|
|
||||||
//! Setters/Getters
|
|
||||||
virtual void setDistanceFlag(int _distanceFlag) CV_OVERRIDE {distanceFlag=_distanceFlag;} |
|
||||||
virtual int getDistanceFlag() const CV_OVERRIDE {return distanceFlag;} |
|
||||||
|
|
||||||
virtual void setRankProportion(float _rankProportion) CV_OVERRIDE |
|
||||||
{ |
|
||||||
CV_Assert((_rankProportion>0) && (_rankProportion<=1)); |
|
||||||
rankProportion=_rankProportion; |
|
||||||
} |
|
||||||
virtual float getRankProportion() const CV_OVERRIDE {return rankProportion;} |
|
||||||
|
|
||||||
//! write/read
|
|
||||||
virtual void write(FileStorage& fs) const CV_OVERRIDE |
|
||||||
{ |
|
||||||
writeFormat(fs); |
|
||||||
fs << "name" << name_ |
|
||||||
<< "distance" << distanceFlag |
|
||||||
<< "rank" << rankProportion; |
|
||||||
} |
|
||||||
|
|
||||||
virtual void read(const FileNode& fn) CV_OVERRIDE |
|
||||||
{ |
|
||||||
CV_Assert( (String)fn["name"] == name_ ); |
|
||||||
distanceFlag = (int)fn["distance"]; |
|
||||||
rankProportion = (float)fn["rank"]; |
|
||||||
} |
|
||||||
|
|
||||||
private: |
|
||||||
int distanceFlag; |
|
||||||
float rankProportion; |
|
||||||
|
|
||||||
protected: |
|
||||||
String name_; |
|
||||||
}; |
|
||||||
|
|
||||||
//! Hausdorff distance for a pair of set of points
|
|
||||||
static float _apply(const Mat &set1, const Mat &set2, int distType, double propRank) |
|
||||||
{ |
|
||||||
// Building distance matrix //
|
|
||||||
Mat disMat(set1.cols, set2.cols, CV_32F); |
|
||||||
int K = int(propRank*(disMat.rows-1)); |
|
||||||
|
|
||||||
for (int r=0; r<disMat.rows; r++) |
|
||||||
{ |
|
||||||
for (int c=0; c<disMat.cols; c++) |
|
||||||
{ |
|
||||||
Point2f diff = set1.at<Point2f>(0,r)-set2.at<Point2f>(0,c); |
|
||||||
disMat.at<float>(r,c) = (float)norm(Mat(diff), distType); |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
Mat shortest(disMat.rows,1,CV_32F); |
|
||||||
for (int ii=0; ii<disMat.rows; ii++) |
|
||||||
{ |
|
||||||
Mat therow = disMat.row(ii); |
|
||||||
double mindis; |
|
||||||
minMaxIdx(therow, &mindis); |
|
||||||
shortest.at<float>(ii,0) = float(mindis); |
|
||||||
} |
|
||||||
Mat sorted; |
|
||||||
cv::sort(shortest, sorted, SORT_EVERY_ROW | SORT_DESCENDING); |
|
||||||
return sorted.at<float>(K,0); |
|
||||||
} |
|
||||||
|
|
||||||
float HausdorffDistanceExtractorImpl::computeDistance(InputArray contour1, InputArray contour2) |
|
||||||
{ |
|
||||||
CV_INSTRUMENT_REGION(); |
|
||||||
|
|
||||||
Mat set1=contour1.getMat(), set2=contour2.getMat(); |
|
||||||
if (set1.type() != CV_32F) |
|
||||||
set1.convertTo(set1, CV_32F); |
|
||||||
if (set2.type() != CV_32F) |
|
||||||
set2.convertTo(set2, CV_32F); |
|
||||||
CV_Assert((set1.channels()==2) && (set1.cols>0)); |
|
||||||
CV_Assert((set2.channels()==2) && (set2.cols>0)); |
|
||||||
|
|
||||||
// Force vectors column-based
|
|
||||||
if (set1.dims > 1) |
|
||||||
set1 = set1.reshape(2, 1); |
|
||||||
if (set2.dims > 1) |
|
||||||
set2 = set2.reshape(2, 1); |
|
||||||
|
|
||||||
return std::max( _apply(set1, set2, distanceFlag, rankProportion), |
|
||||||
_apply(set2, set1, distanceFlag, rankProportion) ); |
|
||||||
} |
|
||||||
|
|
||||||
Ptr <HausdorffDistanceExtractor> createHausdorffDistanceExtractor(int distanceFlag, float rankProp) |
|
||||||
{ |
|
||||||
return Ptr<HausdorffDistanceExtractor>(new HausdorffDistanceExtractorImpl(distanceFlag, rankProp)); |
|
||||||
} |
|
||||||
|
|
||||||
} // cv
|
|
@ -1,549 +0,0 @@ |
|||||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
||||||
//
|
|
||||||
// By downloading, copying, installing or using the software you agree to this license.
|
|
||||||
// If you do not agree to this license, do not download, install,
|
|
||||||
// copy or use the software.
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// Intel License Agreement
|
|
||||||
// For Open Source Computer Vision Library
|
|
||||||
//
|
|
||||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
||||||
// Third party copyrights are property of their respective owners.
|
|
||||||
//
|
|
||||||
// Redistribution and use in source and binary forms, with or without modification,
|
|
||||||
// are permitted provided that the following conditions are met:
|
|
||||||
//
|
|
||||||
// * Redistribution's of source code must retain the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer.
|
|
||||||
//
|
|
||||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer in the documentation
|
|
||||||
// and/or other materials provided with the distribution.
|
|
||||||
//
|
|
||||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
||||||
// derived from this software without specific prior written permission.
|
|
||||||
//
|
|
||||||
// This software is provided by the copyright holders and contributors "as is" and
|
|
||||||
// any express or implied warranties, including, but not limited to, the implied
|
|
||||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
||||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
||||||
// indirect, incidental, special, exemplary, or consequential damages
|
|
||||||
// (including, but not limited to, procurement of substitute goods or services;
|
|
||||||
// loss of use, data, or profits; or business interruption) however caused
|
|
||||||
// and on any theory of liability, whether in contract, strict liability,
|
|
||||||
// or tort (including negligence or otherwise) arising in any way out of
|
|
||||||
// the use of this software, even if advised of the possibility of such damage.
|
|
||||||
//
|
|
||||||
//M*/
|
|
||||||
|
|
||||||
#include "precomp.hpp" |
|
||||||
|
|
||||||
namespace cv |
|
||||||
{ |
|
||||||
|
|
||||||
/*! */ |
|
||||||
class NormHistogramCostExtractorImpl CV_FINAL : public NormHistogramCostExtractor |
|
||||||
{ |
|
||||||
public: |
|
||||||
/* Constructors */ |
|
||||||
NormHistogramCostExtractorImpl(int _flag, int _nDummies, float _defaultCost) |
|
||||||
{ |
|
||||||
flag=_flag; |
|
||||||
nDummies=_nDummies; |
|
||||||
defaultCost=_defaultCost; |
|
||||||
name_ = "HistogramCostExtractor.NOR"; |
|
||||||
} |
|
||||||
|
|
||||||
/* Destructor */ |
|
||||||
~NormHistogramCostExtractorImpl() CV_OVERRIDE |
|
||||||
{ |
|
||||||
} |
|
||||||
|
|
||||||
//! the main operator
|
|
||||||
virtual void buildCostMatrix(InputArray descriptors1, InputArray descriptors2, OutputArray costMatrix) CV_OVERRIDE; |
|
||||||
|
|
||||||
//! Setters/Getters
|
|
||||||
void setNDummies(int _nDummies) CV_OVERRIDE |
|
||||||
{ |
|
||||||
nDummies=_nDummies; |
|
||||||
} |
|
||||||
|
|
||||||
int getNDummies() const CV_OVERRIDE |
|
||||||
{ |
|
||||||
return nDummies; |
|
||||||
} |
|
||||||
|
|
||||||
void setDefaultCost(float _defaultCost) CV_OVERRIDE |
|
||||||
{ |
|
||||||
defaultCost=_defaultCost; |
|
||||||
} |
|
||||||
|
|
||||||
float getDefaultCost() const CV_OVERRIDE |
|
||||||
{ |
|
||||||
return defaultCost; |
|
||||||
} |
|
||||||
|
|
||||||
virtual void setNormFlag(int _flag) CV_OVERRIDE |
|
||||||
{ |
|
||||||
flag=_flag; |
|
||||||
} |
|
||||||
|
|
||||||
virtual int getNormFlag() const CV_OVERRIDE |
|
||||||
{ |
|
||||||
return flag; |
|
||||||
} |
|
||||||
|
|
||||||
//! write/read
|
|
||||||
virtual void write(FileStorage& fs) const CV_OVERRIDE |
|
||||||
{ |
|
||||||
writeFormat(fs); |
|
||||||
fs << "name" << name_ |
|
||||||
<< "flag" << flag |
|
||||||
<< "dummies" << nDummies |
|
||||||
<< "default" << defaultCost; |
|
||||||
} |
|
||||||
|
|
||||||
virtual void read(const FileNode& fn) CV_OVERRIDE |
|
||||||
{ |
|
||||||
CV_Assert( (String)fn["name"] == name_ ); |
|
||||||
flag = (int)fn["flag"]; |
|
||||||
nDummies = (int)fn["dummies"]; |
|
||||||
defaultCost = (float)fn["default"]; |
|
||||||
} |
|
||||||
|
|
||||||
private: |
|
||||||
int flag; |
|
||||||
int nDummies; |
|
||||||
float defaultCost; |
|
||||||
|
|
||||||
protected: |
|
||||||
String name_; |
|
||||||
}; |
|
||||||
|
|
||||||
void NormHistogramCostExtractorImpl::buildCostMatrix(InputArray _descriptors1, InputArray _descriptors2, OutputArray _costMatrix) |
|
||||||
{ |
|
||||||
CV_INSTRUMENT_REGION(); |
|
||||||
|
|
||||||
// size of the costMatrix with dummies //
|
|
||||||
Mat descriptors1=_descriptors1.getMat(); |
|
||||||
Mat descriptors2=_descriptors2.getMat(); |
|
||||||
int costrows = std::max(descriptors1.rows, descriptors2.rows)+nDummies; |
|
||||||
_costMatrix.create(costrows, costrows, CV_32F); |
|
||||||
Mat costMatrix=_costMatrix.getMat(); |
|
||||||
|
|
||||||
|
|
||||||
// Obtain copies of the descriptors //
|
|
||||||
cv::Mat scd1 = descriptors1.clone(); |
|
||||||
cv::Mat scd2 = descriptors2.clone(); |
|
||||||
|
|
||||||
// row normalization //
|
|
||||||
for(int i=0; i<scd1.rows; i++) |
|
||||||
{ |
|
||||||
scd1.row(i)/=(sum(scd1.row(i))[0]+FLT_EPSILON); |
|
||||||
} |
|
||||||
for(int i=0; i<scd2.rows; i++) |
|
||||||
{ |
|
||||||
scd2.row(i)/=(sum(scd2.row(i))[0]+FLT_EPSILON); |
|
||||||
} |
|
||||||
|
|
||||||
// Compute the Cost Matrix //
|
|
||||||
for(int i=0; i<costrows; i++) |
|
||||||
{ |
|
||||||
for(int j=0; j<costrows; j++) |
|
||||||
{ |
|
||||||
if (i<scd1.rows && j<scd2.rows) |
|
||||||
{ |
|
||||||
Mat columnDiff = scd1.row(i)-scd2.row(j); |
|
||||||
costMatrix.at<float>(i,j)=(float)norm(columnDiff, flag); |
|
||||||
} |
|
||||||
else |
|
||||||
{ |
|
||||||
costMatrix.at<float>(i,j)=defaultCost; |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
Ptr <HistogramCostExtractor> createNormHistogramCostExtractor(int flag, int nDummies, float defaultCost) |
|
||||||
{ |
|
||||||
return Ptr <HistogramCostExtractor>( new NormHistogramCostExtractorImpl(flag, nDummies, defaultCost) ); |
|
||||||
} |
|
||||||
|
|
||||||
/*! */ |
|
||||||
class EMDHistogramCostExtractorImpl CV_FINAL : public EMDHistogramCostExtractor |
|
||||||
{ |
|
||||||
public: |
|
||||||
/* Constructors */ |
|
||||||
EMDHistogramCostExtractorImpl(int _flag, int _nDummies, float _defaultCost) |
|
||||||
{ |
|
||||||
flag=_flag; |
|
||||||
nDummies=_nDummies; |
|
||||||
defaultCost=_defaultCost; |
|
||||||
name_ = "HistogramCostExtractor.EMD"; |
|
||||||
} |
|
||||||
|
|
||||||
/* Destructor */ |
|
||||||
~EMDHistogramCostExtractorImpl() CV_OVERRIDE |
|
||||||
{ |
|
||||||
} |
|
||||||
|
|
||||||
//! the main operator
|
|
||||||
virtual void buildCostMatrix(InputArray descriptors1, InputArray descriptors2, OutputArray costMatrix) CV_OVERRIDE; |
|
||||||
|
|
||||||
//! Setters/Getters
|
|
||||||
void setNDummies(int _nDummies) CV_OVERRIDE |
|
||||||
{ |
|
||||||
nDummies=_nDummies; |
|
||||||
} |
|
||||||
|
|
||||||
int getNDummies() const CV_OVERRIDE |
|
||||||
{ |
|
||||||
return nDummies; |
|
||||||
} |
|
||||||
|
|
||||||
void setDefaultCost(float _defaultCost) CV_OVERRIDE |
|
||||||
{ |
|
||||||
defaultCost=_defaultCost; |
|
||||||
} |
|
||||||
|
|
||||||
float getDefaultCost() const CV_OVERRIDE |
|
||||||
{ |
|
||||||
return defaultCost; |
|
||||||
} |
|
||||||
|
|
||||||
virtual void setNormFlag(int _flag) CV_OVERRIDE |
|
||||||
{ |
|
||||||
flag=_flag; |
|
||||||
} |
|
||||||
|
|
||||||
virtual int getNormFlag() const CV_OVERRIDE |
|
||||||
{ |
|
||||||
return flag; |
|
||||||
} |
|
||||||
|
|
||||||
//! write/read
|
|
||||||
virtual void write(FileStorage& fs) const CV_OVERRIDE |
|
||||||
{ |
|
||||||
writeFormat(fs); |
|
||||||
fs << "name" << name_ |
|
||||||
<< "flag" << flag |
|
||||||
<< "dummies" << nDummies |
|
||||||
<< "default" << defaultCost; |
|
||||||
} |
|
||||||
|
|
||||||
virtual void read(const FileNode& fn) CV_OVERRIDE |
|
||||||
{ |
|
||||||
CV_Assert( (String)fn["name"] == name_ ); |
|
||||||
flag = (int)fn["flag"]; |
|
||||||
nDummies = (int)fn["dummies"]; |
|
||||||
defaultCost = (float)fn["default"]; |
|
||||||
} |
|
||||||
|
|
||||||
private: |
|
||||||
int flag; |
|
||||||
int nDummies; |
|
||||||
float defaultCost; |
|
||||||
|
|
||||||
protected: |
|
||||||
String name_; |
|
||||||
}; |
|
||||||
|
|
||||||
void EMDHistogramCostExtractorImpl::buildCostMatrix(InputArray _descriptors1, InputArray _descriptors2, OutputArray _costMatrix) |
|
||||||
{ |
|
||||||
CV_INSTRUMENT_REGION(); |
|
||||||
|
|
||||||
// size of the costMatrix with dummies //
|
|
||||||
Mat descriptors1=_descriptors1.getMat(); |
|
||||||
Mat descriptors2=_descriptors2.getMat(); |
|
||||||
int costrows = std::max(descriptors1.rows, descriptors2.rows)+nDummies; |
|
||||||
_costMatrix.create(costrows, costrows, CV_32F); |
|
||||||
Mat costMatrix=_costMatrix.getMat(); |
|
||||||
|
|
||||||
// Obtain copies of the descriptors //
|
|
||||||
cv::Mat scd1=descriptors1.clone(); |
|
||||||
cv::Mat scd2=descriptors2.clone(); |
|
||||||
|
|
||||||
// row normalization //
|
|
||||||
for(int i=0; i<scd1.rows; i++) |
|
||||||
{ |
|
||||||
cv::Mat row = scd1.row(i); |
|
||||||
scd1.row(i)/=(sum(row)[0]+FLT_EPSILON); |
|
||||||
} |
|
||||||
for(int i=0; i<scd2.rows; i++) |
|
||||||
{ |
|
||||||
cv::Mat row = scd2.row(i); |
|
||||||
scd2.row(i)/=(sum(row)[0]+FLT_EPSILON); |
|
||||||
} |
|
||||||
|
|
||||||
// Compute the Cost Matrix //
|
|
||||||
for(int i=0; i<costrows; i++) |
|
||||||
{ |
|
||||||
for(int j=0; j<costrows; j++) |
|
||||||
{ |
|
||||||
if (i<scd1.rows && j<scd2.rows) |
|
||||||
{ |
|
||||||
cv::Mat sig1(scd1.cols,2,CV_32F), sig2(scd2.cols,2,CV_32F); |
|
||||||
sig1.col(0)=scd1.row(i).t(); |
|
||||||
sig2.col(0)=scd2.row(j).t(); |
|
||||||
for (int k=0; k<sig1.rows; k++) |
|
||||||
{ |
|
||||||
sig1.at<float>(k,1)=float(k); |
|
||||||
} |
|
||||||
for (int k=0; k<sig2.rows; k++) |
|
||||||
{ |
|
||||||
sig2.at<float>(k,1)=float(k); |
|
||||||
} |
|
||||||
|
|
||||||
costMatrix.at<float>(i,j) = cv::EMD(sig1, sig2, flag); |
|
||||||
} |
|
||||||
else |
|
||||||
{ |
|
||||||
costMatrix.at<float>(i,j) = defaultCost; |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
Ptr <HistogramCostExtractor> createEMDHistogramCostExtractor(int flag, int nDummies, float defaultCost) |
|
||||||
{ |
|
||||||
return Ptr <HistogramCostExtractor>( new EMDHistogramCostExtractorImpl(flag, nDummies, defaultCost) ); |
|
||||||
} |
|
||||||
|
|
||||||
/*! */ |
|
||||||
class ChiHistogramCostExtractorImpl CV_FINAL : public ChiHistogramCostExtractor |
|
||||||
{ |
|
||||||
public: |
|
||||||
/* Constructors */ |
|
||||||
ChiHistogramCostExtractorImpl(int _nDummies, float _defaultCost) |
|
||||||
{ |
|
||||||
name_ = "HistogramCostExtractor.CHI"; |
|
||||||
nDummies=_nDummies; |
|
||||||
defaultCost=_defaultCost; |
|
||||||
} |
|
||||||
|
|
||||||
/* Destructor */ |
|
||||||
~ChiHistogramCostExtractorImpl() CV_OVERRIDE |
|
||||||
{ |
|
||||||
} |
|
||||||
|
|
||||||
//! the main operator
|
|
||||||
virtual void buildCostMatrix(InputArray descriptors1, InputArray descriptors2, OutputArray costMatrix) CV_OVERRIDE; |
|
||||||
|
|
||||||
//! setters / getters
|
|
||||||
void setNDummies(int _nDummies) CV_OVERRIDE |
|
||||||
{ |
|
||||||
nDummies=_nDummies; |
|
||||||
} |
|
||||||
|
|
||||||
int getNDummies() const CV_OVERRIDE |
|
||||||
{ |
|
||||||
return nDummies; |
|
||||||
} |
|
||||||
|
|
||||||
void setDefaultCost(float _defaultCost) CV_OVERRIDE |
|
||||||
{ |
|
||||||
defaultCost=_defaultCost; |
|
||||||
} |
|
||||||
|
|
||||||
float getDefaultCost() const CV_OVERRIDE |
|
||||||
{ |
|
||||||
return defaultCost; |
|
||||||
} |
|
||||||
|
|
||||||
//! write/read
|
|
||||||
virtual void write(FileStorage& fs) const CV_OVERRIDE |
|
||||||
{ |
|
||||||
writeFormat(fs); |
|
||||||
fs << "name" << name_ |
|
||||||
<< "dummies" << nDummies |
|
||||||
<< "default" << defaultCost; |
|
||||||
} |
|
||||||
|
|
||||||
virtual void read(const FileNode& fn) CV_OVERRIDE |
|
||||||
{ |
|
||||||
CV_Assert( (String)fn["name"] == name_ ); |
|
||||||
nDummies = (int)fn["dummies"]; |
|
||||||
defaultCost = (float)fn["default"]; |
|
||||||
} |
|
||||||
|
|
||||||
protected: |
|
||||||
String name_; |
|
||||||
int nDummies; |
|
||||||
float defaultCost; |
|
||||||
}; |
|
||||||
|
|
||||||
void ChiHistogramCostExtractorImpl::buildCostMatrix(InputArray _descriptors1, InputArray _descriptors2, OutputArray _costMatrix) |
|
||||||
{ |
|
||||||
CV_INSTRUMENT_REGION(); |
|
||||||
|
|
||||||
// size of the costMatrix with dummies //
|
|
||||||
Mat descriptors1=_descriptors1.getMat(); |
|
||||||
Mat descriptors2=_descriptors2.getMat(); |
|
||||||
int costrows = std::max(descriptors1.rows, descriptors2.rows)+nDummies; |
|
||||||
_costMatrix.create(costrows, costrows, CV_32FC1); |
|
||||||
Mat costMatrix=_costMatrix.getMat(); |
|
||||||
|
|
||||||
// Obtain copies of the descriptors //
|
|
||||||
cv::Mat scd1=descriptors1.clone(); |
|
||||||
cv::Mat scd2=descriptors2.clone(); |
|
||||||
|
|
||||||
// row normalization //
|
|
||||||
for(int i=0; i<scd1.rows; i++) |
|
||||||
{ |
|
||||||
cv::Mat row = scd1.row(i); |
|
||||||
scd1.row(i)/=(sum(row)[0]+FLT_EPSILON); |
|
||||||
} |
|
||||||
for(int i=0; i<scd2.rows; i++) |
|
||||||
{ |
|
||||||
cv::Mat row = scd2.row(i); |
|
||||||
scd2.row(i)/=(sum(row)[0]+FLT_EPSILON); |
|
||||||
} |
|
||||||
|
|
||||||
// Compute the Cost Matrix //
|
|
||||||
for(int i=0; i<costrows; i++) |
|
||||||
{ |
|
||||||
for(int j=0; j<costrows; j++) |
|
||||||
{ |
|
||||||
if (i<scd1.rows && j<scd2.rows) |
|
||||||
{ |
|
||||||
float csum = 0; |
|
||||||
for(int k=0; k<scd2.cols; k++) |
|
||||||
{ |
|
||||||
float resta=scd1.at<float>(i,k)-scd2.at<float>(j,k); |
|
||||||
float suma=scd1.at<float>(i,k)+scd2.at<float>(j,k); |
|
||||||
csum += resta*resta/(FLT_EPSILON+suma); |
|
||||||
} |
|
||||||
costMatrix.at<float>(i,j)=csum/2; |
|
||||||
} |
|
||||||
else |
|
||||||
{ |
|
||||||
costMatrix.at<float>(i,j)=defaultCost; |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
Ptr <HistogramCostExtractor> createChiHistogramCostExtractor(int nDummies, float defaultCost) |
|
||||||
{ |
|
||||||
return Ptr <HistogramCostExtractor>( new ChiHistogramCostExtractorImpl(nDummies, defaultCost) ); |
|
||||||
} |
|
||||||
|
|
||||||
/*! */ |
|
||||||
class EMDL1HistogramCostExtractorImpl CV_FINAL : public EMDL1HistogramCostExtractor |
|
||||||
{ |
|
||||||
public: |
|
||||||
/* Constructors */ |
|
||||||
EMDL1HistogramCostExtractorImpl(int _nDummies, float _defaultCost) |
|
||||||
{ |
|
||||||
name_ = "HistogramCostExtractor.CHI"; |
|
||||||
nDummies=_nDummies; |
|
||||||
defaultCost=_defaultCost; |
|
||||||
} |
|
||||||
|
|
||||||
/* Destructor */ |
|
||||||
~EMDL1HistogramCostExtractorImpl() CV_OVERRIDE |
|
||||||
{ |
|
||||||
} |
|
||||||
|
|
||||||
//! the main operator
|
|
||||||
virtual void buildCostMatrix(InputArray descriptors1, InputArray descriptors2, OutputArray costMatrix) CV_OVERRIDE; |
|
||||||
|
|
||||||
//! setters / getters
|
|
||||||
void setNDummies(int _nDummies) CV_OVERRIDE |
|
||||||
{ |
|
||||||
nDummies=_nDummies; |
|
||||||
} |
|
||||||
|
|
||||||
int getNDummies() const CV_OVERRIDE |
|
||||||
{ |
|
||||||
return nDummies; |
|
||||||
} |
|
||||||
|
|
||||||
void setDefaultCost(float _defaultCost) CV_OVERRIDE |
|
||||||
{ |
|
||||||
defaultCost=_defaultCost; |
|
||||||
} |
|
||||||
|
|
||||||
float getDefaultCost() const CV_OVERRIDE |
|
||||||
{ |
|
||||||
return defaultCost; |
|
||||||
} |
|
||||||
|
|
||||||
//! write/read
|
|
||||||
virtual void write(FileStorage& fs) const CV_OVERRIDE |
|
||||||
{ |
|
||||||
writeFormat(fs); |
|
||||||
fs << "name" << name_ |
|
||||||
<< "dummies" << nDummies |
|
||||||
<< "default" << defaultCost; |
|
||||||
} |
|
||||||
|
|
||||||
virtual void read(const FileNode& fn) CV_OVERRIDE |
|
||||||
{ |
|
||||||
CV_Assert( (String)fn["name"] == name_ ); |
|
||||||
nDummies = (int)fn["dummies"]; |
|
||||||
defaultCost = (float)fn["default"]; |
|
||||||
} |
|
||||||
|
|
||||||
protected: |
|
||||||
String name_; |
|
||||||
int nDummies; |
|
||||||
float defaultCost; |
|
||||||
}; |
|
||||||
|
|
||||||
void EMDL1HistogramCostExtractorImpl::buildCostMatrix(InputArray _descriptors1, InputArray _descriptors2, OutputArray _costMatrix) |
|
||||||
{ |
|
||||||
CV_INSTRUMENT_REGION(); |
|
||||||
|
|
||||||
// size of the costMatrix with dummies //
|
|
||||||
Mat descriptors1=_descriptors1.getMat(); |
|
||||||
Mat descriptors2=_descriptors2.getMat(); |
|
||||||
int costrows = std::max(descriptors1.rows, descriptors2.rows)+nDummies; |
|
||||||
_costMatrix.create(costrows, costrows, CV_32F); |
|
||||||
Mat costMatrix=_costMatrix.getMat(); |
|
||||||
|
|
||||||
// Obtain copies of the descriptors //
|
|
||||||
cv::Mat scd1=descriptors1.clone(); |
|
||||||
cv::Mat scd2=descriptors2.clone(); |
|
||||||
|
|
||||||
// row normalization //
|
|
||||||
for(int i=0; i<scd1.rows; i++) |
|
||||||
{ |
|
||||||
cv::Mat row = scd1.row(i); |
|
||||||
scd1.row(i)/=(sum(row)[0]+FLT_EPSILON); |
|
||||||
} |
|
||||||
for(int i=0; i<scd2.rows; i++) |
|
||||||
{ |
|
||||||
cv::Mat row = scd2.row(i); |
|
||||||
scd2.row(i)/=(sum(row)[0]+FLT_EPSILON); |
|
||||||
} |
|
||||||
|
|
||||||
// Compute the Cost Matrix //
|
|
||||||
for(int i=0; i<costrows; i++) |
|
||||||
{ |
|
||||||
for(int j=0; j<costrows; j++) |
|
||||||
{ |
|
||||||
if (i<scd1.rows && j<scd2.rows) |
|
||||||
{ |
|
||||||
cv::Mat sig1(scd1.cols,1,CV_32F), sig2(scd2.cols,1,CV_32F); |
|
||||||
sig1.col(0)=scd1.row(i).t(); |
|
||||||
sig2.col(0)=scd2.row(j).t(); |
|
||||||
costMatrix.at<float>(i,j) = cv::EMDL1(sig1, sig2); |
|
||||||
} |
|
||||||
else |
|
||||||
{ |
|
||||||
costMatrix.at<float>(i,j) = defaultCost; |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
Ptr <HistogramCostExtractor> createEMDL1HistogramCostExtractor(int nDummies, float defaultCost) |
|
||||||
{ |
|
||||||
return Ptr <HistogramCostExtractor>( new EMDL1HistogramCostExtractorImpl(nDummies, defaultCost) ); |
|
||||||
} |
|
||||||
|
|
||||||
} // cv
|
|
@ -1,59 +0,0 @@ |
|||||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
||||||
//
|
|
||||||
// By downloading, copying, installing or using the software you agree to this license.
|
|
||||||
// If you do not agree to this license, do not download, install,
|
|
||||||
// copy or use the software.
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// License Agreement
|
|
||||||
// For Open Source Computer Vision Library
|
|
||||||
//
|
|
||||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
||||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
||||||
// Third party copyrights are property of their respective owners.
|
|
||||||
//
|
|
||||||
// Redistribution and use in source and binary forms, with or without modification,
|
|
||||||
// are permitted provided that the following conditions are met:
|
|
||||||
//
|
|
||||||
// * Redistribution's of source code must retain the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer.
|
|
||||||
//
|
|
||||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer in the documentation
|
|
||||||
// and/or other materials provided with the distribution.
|
|
||||||
//
|
|
||||||
// * The name of the copyright holders may not be used to endorse or promote products
|
|
||||||
// derived from this software without specific prior written permission.
|
|
||||||
//
|
|
||||||
// This software is provided by the copyright holders and contributors "as is" and
|
|
||||||
// any express or implied warranties, including, but not limited to, the implied
|
|
||||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
||||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
||||||
// indirect, incidental, special, exemplary, or consequential damages
|
|
||||||
// (including, but not limited to, procurement of substitute goods or services;
|
|
||||||
// loss of use, data, or profits; or business interruption) however caused
|
|
||||||
// and on any theory of liability, whether in contract, strict liability,
|
|
||||||
// or tort (including negligence or otherwise) arising in any way out of
|
|
||||||
// the use of this software, even if advised of the possibility of such damage.
|
|
||||||
//
|
|
||||||
//M*/
|
|
||||||
|
|
||||||
#ifndef __OPENCV_PRECOMP_H__ |
|
||||||
#define __OPENCV_PRECOMP_H__ |
|
||||||
|
|
||||||
#include <vector> |
|
||||||
#include <cmath> |
|
||||||
#include <iostream> |
|
||||||
|
|
||||||
#include "opencv2/calib3d.hpp" |
|
||||||
#include "opencv2/imgproc.hpp" |
|
||||||
#include "opencv2/shape.hpp" |
|
||||||
|
|
||||||
#include "opencv2/core/utility.hpp" |
|
||||||
#include "opencv2/core/private.hpp" |
|
||||||
|
|
||||||
#include "opencv2/opencv_modules.hpp" |
|
||||||
|
|
||||||
#endif |
|
@ -1,793 +0,0 @@ |
|||||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
||||||
//
|
|
||||||
// By downloading, copying, installing or using the software you agree to this license.
|
|
||||||
// If you do not agree to this license, do not download, install,
|
|
||||||
// copy or use the software.
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// License Agreement
|
|
||||||
// For Open Source Computer Vision Library
|
|
||||||
//
|
|
||||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
||||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
||||||
// Third party copyrights are property of their respective owners.
|
|
||||||
//
|
|
||||||
// Redistribution and use in source and binary forms, with or without modification,
|
|
||||||
// are permitted provided that the following conditions are met:
|
|
||||||
//
|
|
||||||
// * Redistribution's of source code must retain the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer.
|
|
||||||
//
|
|
||||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer in the documentation
|
|
||||||
// and/or other materials provided with the distribution.
|
|
||||||
//
|
|
||||||
// * The name of the copyright holders may not be used to endorse or promote products
|
|
||||||
// derived from this software without specific prior written permission.
|
|
||||||
//
|
|
||||||
// This software is provided by the copyright holders and contributors "as is" and
|
|
||||||
// any express or implied warranties, including, but not limited to, the implied
|
|
||||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
||||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
||||||
// indirect, incidental, special, exemplary, or consequential damages
|
|
||||||
// (including, but not limited to, procurement of substitute goods or services;
|
|
||||||
// loss of use, data, or profits; or business interruption) however caused
|
|
||||||
// and on any theory of liability, whether in contract, strict liability,
|
|
||||||
// or tort (including negligence or otherwise) arising in any way out of
|
|
||||||
// the use of this software, even if advised of the possibility of such damage.
|
|
||||||
//
|
|
||||||
//M*/
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Implementation of the paper Shape Matching and Object Recognition Using Shape Contexts |
|
||||||
* Belongie et al., 2002 by Juan Manuel Perez for GSoC 2013. |
|
||||||
*/ |
|
||||||
|
|
||||||
#include "precomp.hpp" |
|
||||||
#include "opencv2/core.hpp" |
|
||||||
#include "scd_def.hpp" |
|
||||||
#include <limits> |
|
||||||
|
|
||||||
namespace cv |
|
||||||
{ |
|
||||||
class ShapeContextDistanceExtractorImpl : public ShapeContextDistanceExtractor |
|
||||||
{ |
|
||||||
public: |
|
||||||
/* Constructors */ |
|
||||||
ShapeContextDistanceExtractorImpl(int _nAngularBins, int _nRadialBins, float _innerRadius, float _outerRadius, int _iterations, |
|
||||||
const Ptr<HistogramCostExtractor> &_comparer, const Ptr<ShapeTransformer> &_transformer) |
|
||||||
{ |
|
||||||
nAngularBins=_nAngularBins; |
|
||||||
nRadialBins=_nRadialBins; |
|
||||||
innerRadius=_innerRadius; |
|
||||||
outerRadius=_outerRadius; |
|
||||||
rotationInvariant=false; |
|
||||||
comparer=_comparer; |
|
||||||
iterations=_iterations; |
|
||||||
transformer=_transformer; |
|
||||||
bendingEnergyWeight=0.3f; |
|
||||||
imageAppearanceWeight=0.0f; |
|
||||||
shapeContextWeight=1.0f; |
|
||||||
sigma=10.0f; |
|
||||||
name_ = "ShapeDistanceExtractor.SCD"; |
|
||||||
costFlag = 0; |
|
||||||
} |
|
||||||
|
|
||||||
/* Destructor */ |
|
||||||
~ShapeContextDistanceExtractorImpl() CV_OVERRIDE |
|
||||||
{ |
|
||||||
} |
|
||||||
|
|
||||||
//! the main operator
|
|
||||||
virtual float computeDistance(InputArray contour1, InputArray contour2) CV_OVERRIDE; |
|
||||||
|
|
||||||
//! Setters/Getters
|
|
||||||
virtual void setAngularBins(int _nAngularBins) CV_OVERRIDE { CV_Assert(_nAngularBins>0); nAngularBins=_nAngularBins; } |
|
||||||
virtual int getAngularBins() const CV_OVERRIDE { return nAngularBins; } |
|
||||||
|
|
||||||
virtual void setRadialBins(int _nRadialBins) CV_OVERRIDE { CV_Assert(_nRadialBins>0); nRadialBins=_nRadialBins; } |
|
||||||
virtual int getRadialBins() const CV_OVERRIDE { return nRadialBins; } |
|
||||||
|
|
||||||
virtual void setInnerRadius(float _innerRadius) CV_OVERRIDE { CV_Assert(_innerRadius>0); innerRadius=_innerRadius; } |
|
||||||
virtual float getInnerRadius() const CV_OVERRIDE { return innerRadius; } |
|
||||||
|
|
||||||
virtual void setOuterRadius(float _outerRadius) CV_OVERRIDE { CV_Assert(_outerRadius>0); outerRadius=_outerRadius; } |
|
||||||
virtual float getOuterRadius() const CV_OVERRIDE { return outerRadius; } |
|
||||||
|
|
||||||
virtual void setRotationInvariant(bool _rotationInvariant) CV_OVERRIDE { rotationInvariant=_rotationInvariant; } |
|
||||||
virtual bool getRotationInvariant() const CV_OVERRIDE { return rotationInvariant; } |
|
||||||
|
|
||||||
virtual void setCostExtractor(Ptr<HistogramCostExtractor> _comparer) CV_OVERRIDE { comparer = _comparer; } |
|
||||||
virtual Ptr<HistogramCostExtractor> getCostExtractor() const CV_OVERRIDE { return comparer; } |
|
||||||
|
|
||||||
virtual void setShapeContextWeight(float _shapeContextWeight) CV_OVERRIDE { shapeContextWeight=_shapeContextWeight; } |
|
||||||
virtual float getShapeContextWeight() const CV_OVERRIDE { return shapeContextWeight; } |
|
||||||
|
|
||||||
virtual void setImageAppearanceWeight(float _imageAppearanceWeight) CV_OVERRIDE { imageAppearanceWeight=_imageAppearanceWeight; } |
|
||||||
virtual float getImageAppearanceWeight() const CV_OVERRIDE { return imageAppearanceWeight; } |
|
||||||
|
|
||||||
virtual void setBendingEnergyWeight(float _bendingEnergyWeight) CV_OVERRIDE { bendingEnergyWeight=_bendingEnergyWeight; } |
|
||||||
virtual float getBendingEnergyWeight() const CV_OVERRIDE { return bendingEnergyWeight; } |
|
||||||
|
|
||||||
virtual void setStdDev(float _sigma) CV_OVERRIDE { sigma=_sigma; } |
|
||||||
virtual float getStdDev() const CV_OVERRIDE { return sigma; } |
|
||||||
|
|
||||||
virtual void setImages(InputArray _image1, InputArray _image2) CV_OVERRIDE |
|
||||||
{ |
|
||||||
Mat image1_=_image1.getMat(), image2_=_image2.getMat(); |
|
||||||
CV_Assert((image1_.depth()==0) && (image2_.depth()==0)); |
|
||||||
image1=image1_; |
|
||||||
image2=image2_; |
|
||||||
} |
|
||||||
|
|
||||||
virtual void getImages(OutputArray _image1, OutputArray _image2) const CV_OVERRIDE |
|
||||||
{ |
|
||||||
CV_Assert((!image1.empty()) && (!image2.empty())); |
|
||||||
image1.copyTo(_image1); |
|
||||||
image2.copyTo(_image2); |
|
||||||
} |
|
||||||
|
|
||||||
virtual void setIterations(int _iterations) CV_OVERRIDE {CV_Assert(_iterations>0); iterations=_iterations;} |
|
||||||
virtual int getIterations() const CV_OVERRIDE {return iterations;} |
|
||||||
|
|
||||||
virtual void setTransformAlgorithm(Ptr<ShapeTransformer> _transformer) CV_OVERRIDE {transformer=_transformer;} |
|
||||||
virtual Ptr<ShapeTransformer> getTransformAlgorithm() const CV_OVERRIDE {return transformer;} |
|
||||||
|
|
||||||
//! write/read
|
|
||||||
virtual void write(FileStorage& fs) const CV_OVERRIDE |
|
||||||
{ |
|
||||||
writeFormat(fs); |
|
||||||
fs << "name" << name_ |
|
||||||
<< "nRads" << nRadialBins |
|
||||||
<< "nAngs" << nAngularBins |
|
||||||
<< "iters" << iterations |
|
||||||
<< "img_1" << image1 |
|
||||||
<< "img_2" << image2 |
|
||||||
<< "beWei" << bendingEnergyWeight |
|
||||||
<< "scWei" << shapeContextWeight |
|
||||||
<< "iaWei" << imageAppearanceWeight |
|
||||||
<< "costF" << costFlag |
|
||||||
<< "rotIn" << rotationInvariant |
|
||||||
<< "sigma" << sigma; |
|
||||||
} |
|
||||||
|
|
||||||
virtual void read(const FileNode& fn) CV_OVERRIDE |
|
||||||
{ |
|
||||||
CV_Assert( (String)fn["name"] == name_ ); |
|
||||||
nRadialBins = (int)fn["nRads"]; |
|
||||||
nAngularBins = (int)fn["nAngs"]; |
|
||||||
iterations = (int)fn["iters"]; |
|
||||||
bendingEnergyWeight = (float)fn["beWei"]; |
|
||||||
shapeContextWeight = (float)fn["scWei"]; |
|
||||||
imageAppearanceWeight = (float)fn["iaWei"]; |
|
||||||
costFlag = (int)fn["costF"]; |
|
||||||
sigma = (float)fn["sigma"]; |
|
||||||
} |
|
||||||
|
|
||||||
protected: |
|
||||||
int nAngularBins; |
|
||||||
int nRadialBins; |
|
||||||
float innerRadius; |
|
||||||
float outerRadius; |
|
||||||
bool rotationInvariant; |
|
||||||
int costFlag; |
|
||||||
int iterations; |
|
||||||
Ptr<ShapeTransformer> transformer; |
|
||||||
Ptr<HistogramCostExtractor> comparer; |
|
||||||
Mat image1; |
|
||||||
Mat image2; |
|
||||||
float bendingEnergyWeight; |
|
||||||
float imageAppearanceWeight; |
|
||||||
float shapeContextWeight; |
|
||||||
float sigma; |
|
||||||
String name_; |
|
||||||
}; |
|
||||||
|
|
||||||
float ShapeContextDistanceExtractorImpl::computeDistance(InputArray contour1, InputArray contour2) |
|
||||||
{ |
|
||||||
CV_INSTRUMENT_REGION(); |
|
||||||
|
|
||||||
// Checking //
|
|
||||||
Mat sset1=contour1.getMat(), sset2=contour2.getMat(), set1, set2; |
|
||||||
if (set1.type() != CV_32F) |
|
||||||
sset1.convertTo(set1, CV_32F); |
|
||||||
else |
|
||||||
sset1.copyTo(set1); |
|
||||||
|
|
||||||
if (set2.type() != CV_32F) |
|
||||||
sset2.convertTo(set2, CV_32F); |
|
||||||
else |
|
||||||
sset2.copyTo(set2); |
|
||||||
|
|
||||||
CV_Assert((set1.channels()==2) && (set1.cols>0)); |
|
||||||
CV_Assert((set2.channels()==2) && (set2.cols>0)); |
|
||||||
|
|
||||||
// Force vectors column-based
|
|
||||||
if (set1.dims > 1) |
|
||||||
set1 = set1.reshape(2, 1); |
|
||||||
if (set2.dims > 1) |
|
||||||
set2 = set2.reshape(2, 1); |
|
||||||
|
|
||||||
if (imageAppearanceWeight!=0) |
|
||||||
{ |
|
||||||
CV_Assert((!image1.empty()) && (!image2.empty())); |
|
||||||
} |
|
||||||
|
|
||||||
// Initializing Extractor, Descriptor structures and Matcher //
|
|
||||||
SCD set1SCE(nAngularBins, nRadialBins, innerRadius, outerRadius, rotationInvariant); |
|
||||||
Mat set1SCD; |
|
||||||
SCD set2SCE(nAngularBins, nRadialBins, innerRadius, outerRadius, rotationInvariant); |
|
||||||
Mat set2SCD; |
|
||||||
SCDMatcher matcher; |
|
||||||
std::vector<DMatch> matches; |
|
||||||
|
|
||||||
// Distance components (The output is a linear combination of these 3) //
|
|
||||||
float sDistance=0, bEnergy=0, iAppearance=0; |
|
||||||
float beta; |
|
||||||
|
|
||||||
// Initializing some variables //
|
|
||||||
std::vector<int> inliers1, inliers2; |
|
||||||
|
|
||||||
Ptr<ThinPlateSplineShapeTransformer> transDown = transformer.dynamicCast<ThinPlateSplineShapeTransformer>(); |
|
||||||
|
|
||||||
Mat warpedImage; |
|
||||||
int ii, jj, pt; |
|
||||||
|
|
||||||
for (ii=0; ii<iterations; ii++) |
|
||||||
{ |
|
||||||
// Extract SCD descriptor in the set1 //
|
|
||||||
set1SCE.extractSCD(set1, set1SCD, inliers1); |
|
||||||
|
|
||||||
// Extract SCD descriptor of the set2 (TARGET) //
|
|
||||||
set2SCE.extractSCD(set2, set2SCD, inliers2, set1SCE.getMeanDistance()); |
|
||||||
|
|
||||||
// regularization parameter with annealing rate annRate //
|
|
||||||
beta=set1SCE.getMeanDistance(); |
|
||||||
beta *= beta; |
|
||||||
|
|
||||||
// match //
|
|
||||||
matcher.matchDescriptors(set1SCD, set2SCD, matches, comparer, inliers1, inliers2); |
|
||||||
|
|
||||||
// apply TPS transform //
|
|
||||||
if ( !transDown.empty() ) |
|
||||||
transDown->setRegularizationParameter(beta); |
|
||||||
transformer->estimateTransformation(set1, set2, matches); |
|
||||||
bEnergy += transformer->applyTransformation(set1, set1); |
|
||||||
|
|
||||||
// Image appearance //
|
|
||||||
if (imageAppearanceWeight!=0) |
|
||||||
{ |
|
||||||
// Have to accumulate the transformation along all the iterations
|
|
||||||
if (ii==0) |
|
||||||
{ |
|
||||||
if ( !transDown.empty() ) |
|
||||||
{ |
|
||||||
image2.copyTo(warpedImage); |
|
||||||
} |
|
||||||
else |
|
||||||
{ |
|
||||||
image1.copyTo(warpedImage); |
|
||||||
} |
|
||||||
} |
|
||||||
transformer->warpImage(warpedImage, warpedImage); |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
Mat gaussWindow, diffIm; |
|
||||||
if (imageAppearanceWeight!=0) |
|
||||||
{ |
|
||||||
// compute appearance cost
|
|
||||||
if ( !transDown.empty() ) |
|
||||||
{ |
|
||||||
resize(warpedImage, warpedImage, image1.size(), 0, 0, INTER_LINEAR_EXACT); |
|
||||||
Mat temp=(warpedImage-image1); |
|
||||||
multiply(temp, temp, diffIm); |
|
||||||
} |
|
||||||
else |
|
||||||
{ |
|
||||||
resize(warpedImage, warpedImage, image2.size(), 0, 0, INTER_LINEAR_EXACT); |
|
||||||
Mat temp=(warpedImage-image2); |
|
||||||
multiply(temp, temp, diffIm); |
|
||||||
} |
|
||||||
gaussWindow = Mat::zeros(warpedImage.rows, warpedImage.cols, CV_32F); |
|
||||||
for (pt=0; pt<sset1.cols; pt++) |
|
||||||
{ |
|
||||||
Point2f p = sset1.at<Point2f>(0,pt); |
|
||||||
for (ii=0; ii<diffIm.rows; ii++) |
|
||||||
{ |
|
||||||
for (jj=0; jj<diffIm.cols; jj++) |
|
||||||
{ |
|
||||||
float val = float(std::exp( -float( (p.x-jj)*(p.x-jj) + (p.y-ii)*(p.y-ii) )/(2*sigma*sigma) ) / (sigma*sigma*2*CV_PI)); |
|
||||||
gaussWindow.at<float>(ii,jj) += val; |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
Mat appIm(diffIm.rows, diffIm.cols, CV_32F); |
|
||||||
for (ii=0; ii<diffIm.rows; ii++) |
|
||||||
{ |
|
||||||
for (jj=0; jj<diffIm.cols; jj++) |
|
||||||
{ |
|
||||||
float elema=float( diffIm.at<uchar>(ii,jj) )/255; |
|
||||||
float elemb=gaussWindow.at<float>(ii,jj); |
|
||||||
appIm.at<float>(ii,jj) = elema*elemb; |
|
||||||
} |
|
||||||
} |
|
||||||
iAppearance = float(cv::sum(appIm)[0]/sset1.cols); |
|
||||||
} |
|
||||||
sDistance = matcher.getMatchingCost(); |
|
||||||
|
|
||||||
return (sDistance*shapeContextWeight+bEnergy*bendingEnergyWeight+iAppearance*imageAppearanceWeight); |
|
||||||
} |
|
||||||
|
|
||||||
Ptr <ShapeContextDistanceExtractor> createShapeContextDistanceExtractor(int nAngularBins, int nRadialBins, float innerRadius, float outerRadius, int iterations, |
|
||||||
const Ptr<HistogramCostExtractor> &comparer, const Ptr<ShapeTransformer> &transformer) |
|
||||||
{ |
|
||||||
return Ptr <ShapeContextDistanceExtractor> ( new ShapeContextDistanceExtractorImpl(nAngularBins, nRadialBins, innerRadius, |
|
||||||
outerRadius, iterations, comparer, transformer) ); |
|
||||||
} |
|
||||||
|
|
||||||
//! SCD
|
|
||||||
void SCD::extractSCD(cv::Mat &contour, cv::Mat &descriptors, const std::vector<int> &queryInliers, const float _meanDistance) |
|
||||||
{ |
|
||||||
cv::Mat contourMat = contour; |
|
||||||
cv::Mat disMatrix = cv::Mat::zeros(contourMat.cols, contourMat.cols, CV_32F); |
|
||||||
cv::Mat angleMatrix = cv::Mat::zeros(contourMat.cols, contourMat.cols, CV_32F); |
|
||||||
|
|
||||||
std::vector<double> logspaces, angspaces; |
|
||||||
logarithmicSpaces(logspaces); |
|
||||||
angularSpaces(angspaces); |
|
||||||
buildNormalizedDistanceMatrix(contourMat, disMatrix, queryInliers, _meanDistance); |
|
||||||
buildAngleMatrix(contourMat, angleMatrix); |
|
||||||
|
|
||||||
// Now, build the descriptor matrix (each row is a point) //
|
|
||||||
descriptors = cv::Mat::zeros(contourMat.cols, descriptorSize(), CV_32F); |
|
||||||
|
|
||||||
for (int ptidx=0; ptidx<contourMat.cols; ptidx++) |
|
||||||
{ |
|
||||||
for (int cmp=0; cmp<contourMat.cols; cmp++) |
|
||||||
{ |
|
||||||
if (ptidx==cmp) continue; |
|
||||||
if ((int)queryInliers.size()>0) |
|
||||||
{ |
|
||||||
if (queryInliers[ptidx]==0 || queryInliers[cmp]==0) continue; //avoid outliers
|
|
||||||
} |
|
||||||
|
|
||||||
int angidx=-1, radidx=-1; |
|
||||||
for (int i=0; i<nRadialBins; i++) |
|
||||||
{ |
|
||||||
if (disMatrix.at<float>(ptidx, cmp)<logspaces[i]) |
|
||||||
{ |
|
||||||
radidx=i; |
|
||||||
break; |
|
||||||
} |
|
||||||
} |
|
||||||
for (int i=0; i<nAngularBins; i++) |
|
||||||
{ |
|
||||||
if (angleMatrix.at<float>(ptidx, cmp)<angspaces[i]) |
|
||||||
{ |
|
||||||
angidx=i; |
|
||||||
break; |
|
||||||
} |
|
||||||
} |
|
||||||
if (angidx!=-1 && radidx!=-1) |
|
||||||
{ |
|
||||||
int idx = angidx+radidx*nAngularBins; |
|
||||||
descriptors.at<float>(ptidx, idx)++; |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
void SCD::logarithmicSpaces(std::vector<double> &vecSpaces) const |
|
||||||
{ |
|
||||||
double logmin=log10(innerRadius); |
|
||||||
double logmax=log10(outerRadius); |
|
||||||
double delta=(logmax-logmin)/(nRadialBins-1); |
|
||||||
double accdelta=0; |
|
||||||
|
|
||||||
for (int i=0; i<nRadialBins; i++) |
|
||||||
{ |
|
||||||
double val = std::pow(10,logmin+accdelta); |
|
||||||
vecSpaces.push_back(val); |
|
||||||
accdelta += delta; |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
void SCD::angularSpaces(std::vector<double> &vecSpaces) const |
|
||||||
{ |
|
||||||
double delta=2*CV_PI/nAngularBins; |
|
||||||
double val=0; |
|
||||||
|
|
||||||
for (int i=0; i<nAngularBins; i++) |
|
||||||
{ |
|
||||||
val += delta; |
|
||||||
vecSpaces.push_back(val); |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
void SCD::buildNormalizedDistanceMatrix(cv::Mat &contour, cv::Mat &disMatrix, const std::vector<int> &queryInliers, const float _meanDistance) |
|
||||||
{ |
|
||||||
cv::Mat contourMat = contour; |
|
||||||
cv::Mat mask(disMatrix.rows, disMatrix.cols, CV_8U); |
|
||||||
|
|
||||||
for (int i=0; i<contourMat.cols; i++) |
|
||||||
{ |
|
||||||
for (int j=0; j<contourMat.cols; j++) |
|
||||||
{ |
|
||||||
disMatrix.at<float>(i,j) = (float)norm( cv::Mat(contourMat.at<cv::Point2f>(0,i)-contourMat.at<cv::Point2f>(0,j)), cv::NORM_L2 ); |
|
||||||
if (_meanDistance<0) |
|
||||||
{ |
|
||||||
if (queryInliers.size()>0) |
|
||||||
{ |
|
||||||
mask.at<char>(i,j)=char(queryInliers[j] && queryInliers[i]); |
|
||||||
} |
|
||||||
else |
|
||||||
{ |
|
||||||
mask.at<char>(i,j)=1; |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
if (_meanDistance<0) |
|
||||||
{ |
|
||||||
meanDistance=(float)mean(disMatrix, mask)[0]; |
|
||||||
} |
|
||||||
else |
|
||||||
{ |
|
||||||
meanDistance=_meanDistance; |
|
||||||
} |
|
||||||
disMatrix/=meanDistance+FLT_EPSILON; |
|
||||||
} |
|
||||||
|
|
||||||
void SCD::buildAngleMatrix(cv::Mat &contour, cv::Mat &angleMatrix) const |
|
||||||
{ |
|
||||||
cv::Mat contourMat = contour; |
|
||||||
|
|
||||||
// if descriptor is rotationInvariant compute massCenter //
|
|
||||||
cv::Point2f massCenter(0,0); |
|
||||||
if (rotationInvariant) |
|
||||||
{ |
|
||||||
for (int i=0; i<contourMat.cols; i++) |
|
||||||
{ |
|
||||||
massCenter+=contourMat.at<cv::Point2f>(0,i); |
|
||||||
} |
|
||||||
massCenter.x=massCenter.x/(float)contourMat.cols; |
|
||||||
massCenter.y=massCenter.y/(float)contourMat.cols; |
|
||||||
} |
|
||||||
|
|
||||||
|
|
||||||
for (int i=0; i<contourMat.cols; i++) |
|
||||||
{ |
|
||||||
for (int j=0; j<contourMat.cols; j++) |
|
||||||
{ |
|
||||||
if (i==j) |
|
||||||
{ |
|
||||||
angleMatrix.at<float>(i,j)=0.0; |
|
||||||
} |
|
||||||
else |
|
||||||
{ |
|
||||||
cv::Point2f dif = contourMat.at<cv::Point2f>(0,i) - contourMat.at<cv::Point2f>(0,j); |
|
||||||
angleMatrix.at<float>(i,j) = std::atan2(dif.y, dif.x); |
|
||||||
|
|
||||||
if (rotationInvariant) |
|
||||||
{ |
|
||||||
cv::Point2f refPt = contourMat.at<cv::Point2f>(0,i) - massCenter; |
|
||||||
float refAngle = atan2(refPt.y, refPt.x); |
|
||||||
angleMatrix.at<float>(i,j) -= refAngle; |
|
||||||
} |
|
||||||
angleMatrix.at<float>(i,j) = float(fmod(double(angleMatrix.at<float>(i,j)+(double)FLT_EPSILON),2*CV_PI)+CV_PI); |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
//! SCDMatcher
|
|
||||||
void SCDMatcher::matchDescriptors(cv::Mat &descriptors1, cv::Mat &descriptors2, std::vector<cv::DMatch> &matches, |
|
||||||
cv::Ptr<cv::HistogramCostExtractor> &comparer, std::vector<int> &inliers1, std::vector<int> &inliers2) |
|
||||||
{ |
|
||||||
matches.clear(); |
|
||||||
|
|
||||||
// Build the cost Matrix between descriptors //
|
|
||||||
cv::Mat costMat; |
|
||||||
buildCostMatrix(descriptors1, descriptors2, costMat, comparer); |
|
||||||
|
|
||||||
// Solve the matching problem using the hungarian method //
|
|
||||||
hungarian(costMat, matches, inliers1, inliers2, descriptors1.rows, descriptors2.rows); |
|
||||||
} |
|
||||||
|
|
||||||
void SCDMatcher::buildCostMatrix(const cv::Mat &descriptors1, const cv::Mat &descriptors2, |
|
||||||
cv::Mat &costMatrix, cv::Ptr<cv::HistogramCostExtractor> &comparer) const |
|
||||||
{ |
|
||||||
CV_INSTRUMENT_REGION(); |
|
||||||
|
|
||||||
comparer->buildCostMatrix(descriptors1, descriptors2, costMatrix); |
|
||||||
} |
|
||||||
|
|
||||||
void SCDMatcher::hungarian(cv::Mat &costMatrix, std::vector<cv::DMatch> &outMatches, std::vector<int> &inliers1, |
|
||||||
std::vector<int> &inliers2, int sizeScd1, int sizeScd2) |
|
||||||
{ |
|
||||||
std::vector<int> free(costMatrix.rows, 0), collist(costMatrix.rows, 0); |
|
||||||
std::vector<int> matches(costMatrix.rows, 0), colsol(costMatrix.rows), rowsol(costMatrix.rows); |
|
||||||
std::vector<float> d(costMatrix.rows), pred(costMatrix.rows), v(costMatrix.rows); |
|
||||||
|
|
||||||
const float LOWV = 1e-10f; |
|
||||||
bool unassignedfound; |
|
||||||
int i=0, imin=0, numfree=0, prvnumfree=0, f=0, i0=0, k=0, freerow=0; |
|
||||||
int j=0, j1=0, j2=0, endofpath=0, last=0, low=0, up=0; |
|
||||||
float min=0, h=0, umin=0, usubmin=0, v2=0; |
|
||||||
|
|
||||||
// COLUMN REDUCTION //
|
|
||||||
for (j = costMatrix.rows-1; j >= 0; j--) |
|
||||||
{ |
|
||||||
// find minimum cost over rows.
|
|
||||||
min = costMatrix.at<float>(0,j); |
|
||||||
imin = 0; |
|
||||||
for (i = 1; i < costMatrix.rows; i++) |
|
||||||
if (costMatrix.at<float>(i,j) < min) |
|
||||||
{ |
|
||||||
min = costMatrix.at<float>(i,j); |
|
||||||
imin = i; |
|
||||||
} |
|
||||||
v[j] = min; |
|
||||||
|
|
||||||
if (++matches[imin] == 1) |
|
||||||
{ |
|
||||||
rowsol[imin] = j; |
|
||||||
colsol[j] = imin; |
|
||||||
} |
|
||||||
else |
|
||||||
{ |
|
||||||
colsol[j]=-1; |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
// REDUCTION TRANSFER //
|
|
||||||
for (i=0; i<costMatrix.rows; i++) |
|
||||||
{ |
|
||||||
if (matches[i] == 0) |
|
||||||
{ |
|
||||||
free[numfree++] = i; |
|
||||||
} |
|
||||||
else |
|
||||||
{ |
|
||||||
if (matches[i] == 1) |
|
||||||
{ |
|
||||||
j1=rowsol[i]; |
|
||||||
min=std::numeric_limits<float>::max(); |
|
||||||
for (j=0; j<costMatrix.rows; j++) |
|
||||||
{ |
|
||||||
if (j!=j1) |
|
||||||
{ |
|
||||||
if (costMatrix.at<float>(i,j)-v[j] < min) |
|
||||||
{ |
|
||||||
min=costMatrix.at<float>(i,j)-v[j]; |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
v[j1] = v[j1]-min; |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
// AUGMENTING ROW REDUCTION //
|
|
||||||
int loopcnt = 0; |
|
||||||
do |
|
||||||
{ |
|
||||||
loopcnt++; |
|
||||||
k=0; |
|
||||||
prvnumfree=numfree; |
|
||||||
numfree=0; |
|
||||||
while (k < prvnumfree) |
|
||||||
{ |
|
||||||
i=free[k]; |
|
||||||
k++; |
|
||||||
umin = costMatrix.at<float>(i,0)-v[0]; |
|
||||||
j1=0; |
|
||||||
usubmin = std::numeric_limits<float>::max(); |
|
||||||
for (j=1; j<costMatrix.rows; j++) |
|
||||||
{ |
|
||||||
h = costMatrix.at<float>(i,j)-v[j]; |
|
||||||
if (h < usubmin) |
|
||||||
{ |
|
||||||
if (h >= umin) |
|
||||||
{ |
|
||||||
usubmin = h; |
|
||||||
j2 = j; |
|
||||||
} |
|
||||||
else |
|
||||||
{ |
|
||||||
usubmin = umin; |
|
||||||
umin = h; |
|
||||||
j2 = j1; |
|
||||||
j1 = j; |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
i0 = colsol[j1]; |
|
||||||
|
|
||||||
if (fabs(umin-usubmin) > LOWV) //if( umin < usubmin )
|
|
||||||
{ |
|
||||||
v[j1] = v[j1] - (usubmin - umin); |
|
||||||
} |
|
||||||
else // minimum and subminimum equal.
|
|
||||||
{ |
|
||||||
if (i0 >= 0) // minimum column j1 is assigned.
|
|
||||||
{ |
|
||||||
j1 = j2; |
|
||||||
i0 = colsol[j2]; |
|
||||||
} |
|
||||||
} |
|
||||||
// (re-)assign i to j1, possibly de-assigning an i0.
|
|
||||||
rowsol[i]=j1; |
|
||||||
colsol[j1]=i; |
|
||||||
|
|
||||||
if (i0 >= 0) |
|
||||||
{ |
|
||||||
//if( umin < usubmin )
|
|
||||||
if (fabs(umin-usubmin) > LOWV) |
|
||||||
{ |
|
||||||
free[--k] = i0; |
|
||||||
} |
|
||||||
else |
|
||||||
{ |
|
||||||
free[numfree++] = i0; |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
}while (loopcnt<2); // repeat once.
|
|
||||||
|
|
||||||
// AUGMENT SOLUTION for each free row //
|
|
||||||
for (f = 0; f<numfree; f++) |
|
||||||
{ |
|
||||||
freerow = free[f]; // start row of augmenting path.
|
|
||||||
// Dijkstra shortest path algorithm.
|
|
||||||
// runs until unassigned column added to shortest path tree.
|
|
||||||
for (j = 0; j < costMatrix.rows; j++) |
|
||||||
{ |
|
||||||
d[j] = costMatrix.at<float>(freerow,j) - v[j]; |
|
||||||
pred[j] = float(freerow); |
|
||||||
collist[j] = j; // init column list.
|
|
||||||
} |
|
||||||
|
|
||||||
low=0; // columns in 0..low-1 are ready, now none.
|
|
||||||
up=0; // columns in low..up-1 are to be scanned for current minimum, now none.
|
|
||||||
unassignedfound = false; |
|
||||||
do |
|
||||||
{ |
|
||||||
if (up == low) |
|
||||||
{ |
|
||||||
last=low-1; |
|
||||||
min = d[collist[up++]]; |
|
||||||
for (k = up; k < costMatrix.rows; k++) |
|
||||||
{ |
|
||||||
j = collist[k]; |
|
||||||
h = d[j]; |
|
||||||
if (h <= min) |
|
||||||
{ |
|
||||||
if (h < min) // new minimum.
|
|
||||||
{ |
|
||||||
up = low; // restart list at index low.
|
|
||||||
min = h; |
|
||||||
} |
|
||||||
collist[k] = collist[up]; |
|
||||||
collist[up++] = j; |
|
||||||
} |
|
||||||
} |
|
||||||
for (k=low; k<up; k++) |
|
||||||
{ |
|
||||||
if (colsol[collist[k]] < 0) |
|
||||||
{ |
|
||||||
endofpath = collist[k]; |
|
||||||
unassignedfound = true; |
|
||||||
break; |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
if (!unassignedfound) |
|
||||||
{ |
|
||||||
// update 'distances' between freerow and all unscanned columns, via next scanned column.
|
|
||||||
j1 = collist[low]; |
|
||||||
low++; |
|
||||||
i = colsol[j1]; |
|
||||||
h = costMatrix.at<float>(i,j1)-v[j1]-min; |
|
||||||
|
|
||||||
for (k = up; k < costMatrix.rows; k++) |
|
||||||
{ |
|
||||||
j = collist[k]; |
|
||||||
v2 = costMatrix.at<float>(i,j) - v[j] - h; |
|
||||||
if (v2 < d[j]) |
|
||||||
{ |
|
||||||
pred[j] = float(i); |
|
||||||
if (v2 == min) |
|
||||||
{ |
|
||||||
if (colsol[j] < 0) |
|
||||||
{ |
|
||||||
// if unassigned, shortest augmenting path is complete.
|
|
||||||
endofpath = j; |
|
||||||
unassignedfound = true; |
|
||||||
break; |
|
||||||
} |
|
||||||
else |
|
||||||
{ |
|
||||||
collist[k] = collist[up]; |
|
||||||
collist[up++] = j; |
|
||||||
} |
|
||||||
} |
|
||||||
d[j] = v2; |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
}while (!unassignedfound); |
|
||||||
|
|
||||||
// update column prices.
|
|
||||||
for (k = 0; k <= last; k++) |
|
||||||
{ |
|
||||||
j1 = collist[k]; |
|
||||||
v[j1] = v[j1] + d[j1] - min; |
|
||||||
} |
|
||||||
|
|
||||||
// reset row and column assignments along the alternating path.
|
|
||||||
do |
|
||||||
{ |
|
||||||
i = int(pred[endofpath]); |
|
||||||
colsol[endofpath] = i; |
|
||||||
j1 = endofpath; |
|
||||||
endofpath = rowsol[i]; |
|
||||||
rowsol[i] = j1; |
|
||||||
}while (i != freerow); |
|
||||||
} |
|
||||||
|
|
||||||
// calculate symmetric shape context cost
|
|
||||||
cv::Mat trueCostMatrix(costMatrix, cv::Rect(0,0,sizeScd1, sizeScd2)); |
|
||||||
CV_Assert(!trueCostMatrix.empty()); |
|
||||||
float leftcost = 0; |
|
||||||
for (int nrow=0; nrow<trueCostMatrix.rows; nrow++) |
|
||||||
{ |
|
||||||
double minval; |
|
||||||
minMaxIdx(trueCostMatrix.row(nrow), &minval); |
|
||||||
leftcost+=float(minval); |
|
||||||
} |
|
||||||
leftcost /= trueCostMatrix.rows; |
|
||||||
|
|
||||||
float rightcost = 0; |
|
||||||
for (int ncol=0; ncol<trueCostMatrix.cols; ncol++) |
|
||||||
{ |
|
||||||
double minval; |
|
||||||
minMaxIdx(trueCostMatrix.col(ncol), &minval); |
|
||||||
rightcost+=float(minval); |
|
||||||
} |
|
||||||
rightcost /= trueCostMatrix.cols; |
|
||||||
|
|
||||||
minMatchCost = std::max(leftcost,rightcost); |
|
||||||
|
|
||||||
// Save in a DMatch vector
|
|
||||||
for (i=0;i<costMatrix.cols;i++) |
|
||||||
{ |
|
||||||
cv::DMatch singleMatch(colsol[i],i,costMatrix.at<float>(colsol[i],i));//queryIdx,trainIdx,distance
|
|
||||||
outMatches.push_back(singleMatch); |
|
||||||
} |
|
||||||
|
|
||||||
// Update inliers
|
|
||||||
inliers1.reserve(sizeScd1); |
|
||||||
for (size_t kc = 0; kc<inliers1.size(); kc++) |
|
||||||
{ |
|
||||||
if (rowsol[kc]<sizeScd2) // if a real match
|
|
||||||
inliers1[kc]=1; |
|
||||||
else |
|
||||||
inliers1[kc]=0; |
|
||||||
} |
|
||||||
inliers2.reserve(sizeScd2); |
|
||||||
for (size_t kc = 0; kc<inliers2.size(); kc++) |
|
||||||
{ |
|
||||||
if (colsol[kc]<sizeScd1) // if a real match
|
|
||||||
inliers2[kc]=1; |
|
||||||
else |
|
||||||
inliers2[kc]=0; |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
} |
|
@ -1,132 +0,0 @@ |
|||||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
||||||
//
|
|
||||||
// By downloading, copying, installing or using the software you agree to this license.
|
|
||||||
// If you do not agree to this license, do not download, install,
|
|
||||||
// copy or use the software.
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// License Agreement
|
|
||||||
// For Open Source Computer Vision Library
|
|
||||||
//
|
|
||||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
||||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
||||||
// Third party copyrights are property of their respective owners.
|
|
||||||
//
|
|
||||||
// Redistribution and use in source and binary forms, with or without modification,
|
|
||||||
// are permitted provided that the following conditions are met:
|
|
||||||
//
|
|
||||||
// * Redistribution's of source code must retain the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer.
|
|
||||||
//
|
|
||||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer in the documentation
|
|
||||||
// and/or other materials provided with the distribution.
|
|
||||||
//
|
|
||||||
// * The name of the copyright holders may not be used to endorse or promote products
|
|
||||||
// derived from this software without specific prior written permission.
|
|
||||||
//
|
|
||||||
// This software is provided by the copyright holders and contributors "as is" and
|
|
||||||
// any express or implied warranties, including, but not limited to, the implied
|
|
||||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
||||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
||||||
// indirect, incidental, special, exemplary, or consequential damages
|
|
||||||
// (including, but not limited to, procurement of substitute goods or services;
|
|
||||||
// loss of use, data, or profits; or business interruption) however caused
|
|
||||||
// and on any theory of liability, whether in contract, strict liability,
|
|
||||||
// or tort (including negligence or otherwise) arising in any way out of
|
|
||||||
// the use of this software, even if advised of the possibility of such damage.
|
|
||||||
//
|
|
||||||
//M*/
|
|
||||||
|
|
||||||
#include <stdlib.h> |
|
||||||
#include <math.h> |
|
||||||
#include <vector> |
|
||||||
|
|
||||||
namespace cv |
|
||||||
{ |
|
||||||
/*
|
|
||||||
* ShapeContextDescriptor class
|
|
||||||
*/ |
|
||||||
class SCD |
|
||||||
{ |
|
||||||
public: |
|
||||||
//! the full constructor taking all the necessary parameters
|
|
||||||
explicit SCD(int _nAngularBins=12, int _nRadialBins=5, |
|
||||||
double _innerRadius=0.1, double _outerRadius=1, bool _rotationInvariant=false) |
|
||||||
{ |
|
||||||
setAngularBins(_nAngularBins); |
|
||||||
setRadialBins(_nRadialBins); |
|
||||||
setInnerRadius(_innerRadius); |
|
||||||
setOuterRadius(_outerRadius); |
|
||||||
setRotationInvariant(_rotationInvariant); |
|
||||||
meanDistance = 0; |
|
||||||
} |
|
||||||
|
|
||||||
void extractSCD(cv::Mat& contour, cv::Mat& descriptors, |
|
||||||
const std::vector<int>& queryInliers=std::vector<int>(), |
|
||||||
const float _meanDistance=-1); |
|
||||||
|
|
||||||
int descriptorSize() {return nAngularBins*nRadialBins;} |
|
||||||
void setAngularBins(int angularBins) { nAngularBins=angularBins; } |
|
||||||
void setRadialBins(int radialBins) { nRadialBins=radialBins; } |
|
||||||
void setInnerRadius(double _innerRadius) { innerRadius=_innerRadius; } |
|
||||||
void setOuterRadius(double _outerRadius) { outerRadius=_outerRadius; } |
|
||||||
void setRotationInvariant(bool _rotationInvariant) { rotationInvariant=_rotationInvariant; } |
|
||||||
int getAngularBins() const { return nAngularBins; } |
|
||||||
int getRadialBins() const { return nRadialBins; } |
|
||||||
double getInnerRadius() const { return innerRadius; } |
|
||||||
double getOuterRadius() const { return outerRadius; } |
|
||||||
bool getRotationInvariant() const { return rotationInvariant; } |
|
||||||
float getMeanDistance() const { return meanDistance; } |
|
||||||
|
|
||||||
private: |
|
||||||
int nAngularBins; |
|
||||||
int nRadialBins; |
|
||||||
double innerRadius; |
|
||||||
double outerRadius; |
|
||||||
bool rotationInvariant; |
|
||||||
float meanDistance; |
|
||||||
|
|
||||||
protected: |
|
||||||
void logarithmicSpaces(std::vector<double>& vecSpaces) const; |
|
||||||
void angularSpaces(std::vector<double>& vecSpaces) const; |
|
||||||
|
|
||||||
void buildNormalizedDistanceMatrix(cv::Mat& contour, |
|
||||||
cv::Mat& disMatrix, const std::vector<int> &queryInliers, |
|
||||||
const float _meanDistance=-1); |
|
||||||
|
|
||||||
void buildAngleMatrix(cv::Mat& contour, |
|
||||||
cv::Mat& angleMatrix) const; |
|
||||||
}; |
|
||||||
|
|
||||||
/*
|
|
||||||
* Matcher |
|
||||||
*/ |
|
||||||
class SCDMatcher |
|
||||||
{ |
|
||||||
public: |
|
||||||
// the full constructor
|
|
||||||
SCDMatcher() : minMatchCost(0) |
|
||||||
{ |
|
||||||
} |
|
||||||
|
|
||||||
// the matcher function using Hungarian method
|
|
||||||
void matchDescriptors(cv::Mat& descriptors1, cv::Mat& descriptors2, std::vector<cv::DMatch>& matches, cv::Ptr<cv::HistogramCostExtractor>& comparer, |
|
||||||
std::vector<int>& inliers1, std::vector<int> &inliers2); |
|
||||||
|
|
||||||
// matching cost
|
|
||||||
float getMatchingCost() const {return minMatchCost;} |
|
||||||
|
|
||||||
private: |
|
||||||
float minMatchCost; |
|
||||||
protected: |
|
||||||
void buildCostMatrix(const cv::Mat& descriptors1, const cv::Mat& descriptors2, |
|
||||||
cv::Mat& costMatrix, cv::Ptr<cv::HistogramCostExtractor>& comparer) const; |
|
||||||
void hungarian(cv::Mat& costMatrix, std::vector<cv::DMatch>& outMatches, std::vector<int> &inliers1, |
|
||||||
std::vector<int> &inliers2, int sizeScd1=0, int sizeScd2=0); |
|
||||||
|
|
||||||
}; |
|
||||||
|
|
||||||
} |
|
@ -1,295 +0,0 @@ |
|||||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
||||||
//
|
|
||||||
// By downloading, copying, installing or using the software you agree to this license.
|
|
||||||
// If you do not agree to this license, do not download, install,
|
|
||||||
// copy or use the software.
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// License Agreement
|
|
||||||
// For Open Source Computer Vision Library
|
|
||||||
//
|
|
||||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
||||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
||||||
// Third party copyrights are property of their respective owners.
|
|
||||||
//
|
|
||||||
// Redistribution and use in source and binary forms, with or without modification,
|
|
||||||
// are permitted provided that the following conditions are met:
|
|
||||||
//
|
|
||||||
// * Redistribution's of source code must retain the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer.
|
|
||||||
//
|
|
||||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer in the documentation
|
|
||||||
// and/or other materials provided with the distribution.
|
|
||||||
//
|
|
||||||
// * The name of the copyright holders may not be used to endorse or promote products
|
|
||||||
// derived from this software without specific prior written permission.
|
|
||||||
//
|
|
||||||
// This software is provided by the copyright holders and contributors "as is" and
|
|
||||||
// any express or implied warranties, including, but not limited to, the implied
|
|
||||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
||||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
||||||
// indirect, incidental, special, exemplary, or consequential damages
|
|
||||||
// (including, but not limited to, procurement of substitute goods or services;
|
|
||||||
// loss of use, data, or profits; or business interruption) however caused
|
|
||||||
// and on any theory of liability, whether in contract, strict liability,
|
|
||||||
// or tort (including negligence or otherwise) arising in any way out of
|
|
||||||
// the use of this software, even if advised of the possibility of such damage.
|
|
||||||
//
|
|
||||||
//M*/
|
|
||||||
|
|
||||||
#include "precomp.hpp" |
|
||||||
|
|
||||||
namespace cv |
|
||||||
{ |
|
||||||
|
|
||||||
class ThinPlateSplineShapeTransformerImpl CV_FINAL : public ThinPlateSplineShapeTransformer |
|
||||||
{ |
|
||||||
public: |
|
||||||
/* Constructors */ |
|
||||||
ThinPlateSplineShapeTransformerImpl() |
|
||||||
{ |
|
||||||
regularizationParameter=0; |
|
||||||
name_ = "ShapeTransformer.TPS"; |
|
||||||
tpsComputed=false; |
|
||||||
transformCost = 0; |
|
||||||
} |
|
||||||
|
|
||||||
ThinPlateSplineShapeTransformerImpl(double _regularizationParameter) |
|
||||||
{ |
|
||||||
regularizationParameter=_regularizationParameter; |
|
||||||
name_ = "ShapeTransformer.TPS"; |
|
||||||
tpsComputed=false; |
|
||||||
transformCost = 0; |
|
||||||
} |
|
||||||
|
|
||||||
/* Destructor */ |
|
||||||
~ThinPlateSplineShapeTransformerImpl() CV_OVERRIDE |
|
||||||
{ |
|
||||||
} |
|
||||||
|
|
||||||
//! the main operators
|
|
||||||
virtual void estimateTransformation(InputArray transformingShape, InputArray targetShape, std::vector<DMatch> &matches) CV_OVERRIDE; |
|
||||||
virtual float applyTransformation(InputArray inPts, OutputArray output=noArray()) CV_OVERRIDE; |
|
||||||
virtual void warpImage(InputArray transformingImage, OutputArray output, |
|
||||||
int flags, int borderMode, const Scalar& borderValue) const CV_OVERRIDE; |
|
||||||
|
|
||||||
//! Setters/Getters
|
|
||||||
virtual void setRegularizationParameter(double _regularizationParameter) CV_OVERRIDE { regularizationParameter=_regularizationParameter; } |
|
||||||
virtual double getRegularizationParameter() const CV_OVERRIDE { return regularizationParameter; } |
|
||||||
|
|
||||||
//! write/read
|
|
||||||
virtual void write(FileStorage& fs) const CV_OVERRIDE |
|
||||||
{ |
|
||||||
writeFormat(fs); |
|
||||||
fs << "name" << name_ |
|
||||||
<< "regularization" << regularizationParameter; |
|
||||||
} |
|
||||||
|
|
||||||
virtual void read(const FileNode& fn) CV_OVERRIDE |
|
||||||
{ |
|
||||||
CV_Assert( (String)fn["name"] == name_ ); |
|
||||||
regularizationParameter = (int)fn["regularization"]; |
|
||||||
} |
|
||||||
|
|
||||||
private: |
|
||||||
bool tpsComputed; |
|
||||||
double regularizationParameter; |
|
||||||
float transformCost; |
|
||||||
Mat tpsParameters; |
|
||||||
Mat shapeReference; |
|
||||||
|
|
||||||
protected: |
|
||||||
String name_; |
|
||||||
}; |
|
||||||
|
|
||||||
static float distance(Point2f p, Point2f q) |
|
||||||
{ |
|
||||||
Point2f diff = p - q; |
|
||||||
float norma = diff.x*diff.x + diff.y*diff.y;// - 2*diff.x*diff.y;
|
|
||||||
if (norma<0) norma=0; |
|
||||||
//else norma = std::sqrt(norma);
|
|
||||||
norma = norma*std::log(norma+FLT_EPSILON); |
|
||||||
return norma; |
|
||||||
} |
|
||||||
|
|
||||||
static Point2f _applyTransformation(const Mat &shapeRef, const Point2f point, const Mat &tpsParameters) |
|
||||||
{ |
|
||||||
Point2f out; |
|
||||||
for (int i=0; i<2; i++) |
|
||||||
{ |
|
||||||
float a1=tpsParameters.at<float>(tpsParameters.rows-3,i); |
|
||||||
float ax=tpsParameters.at<float>(tpsParameters.rows-2,i); |
|
||||||
float ay=tpsParameters.at<float>(tpsParameters.rows-1,i); |
|
||||||
|
|
||||||
float affine=a1+ax*point.x+ay*point.y; |
|
||||||
float nonrigid=0; |
|
||||||
for (int j=0; j<shapeRef.rows; j++) |
|
||||||
{ |
|
||||||
nonrigid+=tpsParameters.at<float>(j,i)* |
|
||||||
distance(Point2f(shapeRef.at<float>(j,0),shapeRef.at<float>(j,1)), |
|
||||||
point); |
|
||||||
} |
|
||||||
if (i==0) |
|
||||||
{ |
|
||||||
out.x=affine+nonrigid; |
|
||||||
} |
|
||||||
if (i==1) |
|
||||||
{ |
|
||||||
out.y=affine+nonrigid; |
|
||||||
} |
|
||||||
} |
|
||||||
return out; |
|
||||||
} |
|
||||||
|
|
||||||
/* public methods */ |
|
||||||
void ThinPlateSplineShapeTransformerImpl::warpImage(InputArray transformingImage, OutputArray output, |
|
||||||
int flags, int borderMode, const Scalar& borderValue) const |
|
||||||
{ |
|
||||||
CV_INSTRUMENT_REGION(); |
|
||||||
|
|
||||||
CV_Assert(tpsComputed==true); |
|
||||||
|
|
||||||
Mat theinput = transformingImage.getMat(); |
|
||||||
Mat mapX(theinput.rows, theinput.cols, CV_32FC1); |
|
||||||
Mat mapY(theinput.rows, theinput.cols, CV_32FC1); |
|
||||||
|
|
||||||
for (int row = 0; row < theinput.rows; row++) |
|
||||||
{ |
|
||||||
for (int col = 0; col < theinput.cols; col++) |
|
||||||
{ |
|
||||||
Point2f pt = _applyTransformation(shapeReference, Point2f(float(col), float(row)), tpsParameters); |
|
||||||
mapX.at<float>(row, col) = pt.x; |
|
||||||
mapY.at<float>(row, col) = pt.y; |
|
||||||
} |
|
||||||
} |
|
||||||
remap(transformingImage, output, mapX, mapY, flags, borderMode, borderValue); |
|
||||||
} |
|
||||||
|
|
||||||
float ThinPlateSplineShapeTransformerImpl::applyTransformation(InputArray inPts, OutputArray outPts) |
|
||||||
{ |
|
||||||
CV_INSTRUMENT_REGION(); |
|
||||||
|
|
||||||
CV_Assert(tpsComputed); |
|
||||||
Mat pts1 = inPts.getMat(); |
|
||||||
CV_Assert((pts1.channels()==2) && (pts1.cols>0)); |
|
||||||
|
|
||||||
//Apply transformation in the complete set of points
|
|
||||||
// Ensambling output //
|
|
||||||
if (outPts.needed()) |
|
||||||
{ |
|
||||||
outPts.create(1,pts1.cols, CV_32FC2); |
|
||||||
Mat outMat = outPts.getMat(); |
|
||||||
for (int i=0; i<pts1.cols; i++) |
|
||||||
{ |
|
||||||
Point2f pt=pts1.at<Point2f>(0,i); |
|
||||||
outMat.at<Point2f>(0,i)=_applyTransformation(shapeReference, pt, tpsParameters); |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
return transformCost; |
|
||||||
} |
|
||||||
|
|
||||||
void ThinPlateSplineShapeTransformerImpl::estimateTransformation(InputArray _pts1, InputArray _pts2, |
|
||||||
std::vector<DMatch>& _matches ) |
|
||||||
{ |
|
||||||
CV_INSTRUMENT_REGION(); |
|
||||||
|
|
||||||
Mat pts1 = _pts1.getMat(); |
|
||||||
Mat pts2 = _pts2.getMat(); |
|
||||||
CV_Assert((pts1.channels()==2) && (pts1.cols>0) && (pts2.channels()==2) && (pts2.cols>0)); |
|
||||||
CV_Assert(_matches.size()>1); |
|
||||||
|
|
||||||
if (pts1.type() != CV_32F) |
|
||||||
pts1.convertTo(pts1, CV_32F); |
|
||||||
if (pts2.type() != CV_32F) |
|
||||||
pts2.convertTo(pts2, CV_32F); |
|
||||||
|
|
||||||
// Use only valid matchings //
|
|
||||||
std::vector<DMatch> matches; |
|
||||||
for (size_t i=0; i<_matches.size(); i++) |
|
||||||
{ |
|
||||||
if (_matches[i].queryIdx<pts1.cols && |
|
||||||
_matches[i].trainIdx<pts2.cols) |
|
||||||
{ |
|
||||||
matches.push_back(_matches[i]); |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
// Organizing the correspondent points in matrix style //
|
|
||||||
Mat shape1((int)matches.size(),2,CV_32F); // transforming shape
|
|
||||||
Mat shape2((int)matches.size(),2,CV_32F); // target shape
|
|
||||||
for (int i=0, end = (int)matches.size(); i<end; i++) |
|
||||||
{ |
|
||||||
Point2f pt1=pts1.at<Point2f>(0,matches[i].queryIdx); |
|
||||||
shape1.at<float>(i,0) = pt1.x; |
|
||||||
shape1.at<float>(i,1) = pt1.y; |
|
||||||
|
|
||||||
Point2f pt2=pts2.at<Point2f>(0,matches[i].trainIdx); |
|
||||||
shape2.at<float>(i,0) = pt2.x; |
|
||||||
shape2.at<float>(i,1) = pt2.y; |
|
||||||
} |
|
||||||
shape1.copyTo(shapeReference); |
|
||||||
|
|
||||||
// Building the matrices for solving the L*(w|a)=(v|0) problem with L={[K|P];[P'|0]}
|
|
||||||
|
|
||||||
//Building K and P (Needed to build L)
|
|
||||||
Mat matK((int)matches.size(),(int)matches.size(),CV_32F); |
|
||||||
Mat matP((int)matches.size(),3,CV_32F); |
|
||||||
for (int i=0, end=(int)matches.size(); i<end; i++) |
|
||||||
{ |
|
||||||
for (int j=0; j<end; j++) |
|
||||||
{ |
|
||||||
if (i==j) |
|
||||||
{ |
|
||||||
matK.at<float>(i,j)=float(regularizationParameter); |
|
||||||
} |
|
||||||
else |
|
||||||
{ |
|
||||||
matK.at<float>(i,j) = distance(Point2f(shape1.at<float>(i,0),shape1.at<float>(i,1)), |
|
||||||
Point2f(shape1.at<float>(j,0),shape1.at<float>(j,1))); |
|
||||||
} |
|
||||||
} |
|
||||||
matP.at<float>(i,0) = 1; |
|
||||||
matP.at<float>(i,1) = shape1.at<float>(i,0); |
|
||||||
matP.at<float>(i,2) = shape1.at<float>(i,1); |
|
||||||
} |
|
||||||
|
|
||||||
//Building L
|
|
||||||
Mat matL=Mat::zeros((int)matches.size()+3,(int)matches.size()+3,CV_32F); |
|
||||||
Mat matLroi(matL, Rect(0,0,(int)matches.size(),(int)matches.size())); //roi for K
|
|
||||||
matK.copyTo(matLroi); |
|
||||||
matLroi = Mat(matL,Rect((int)matches.size(),0,3,(int)matches.size())); //roi for P
|
|
||||||
matP.copyTo(matLroi); |
|
||||||
Mat matPt; |
|
||||||
transpose(matP,matPt); |
|
||||||
matLroi = Mat(matL,Rect(0,(int)matches.size(),(int)matches.size(),3)); //roi for P'
|
|
||||||
matPt.copyTo(matLroi); |
|
||||||
|
|
||||||
//Building B (v|0)
|
|
||||||
Mat matB = Mat::zeros((int)matches.size()+3,2,CV_32F); |
|
||||||
for (int i=0, end = (int)matches.size(); i<end; i++) |
|
||||||
{ |
|
||||||
matB.at<float>(i,0) = shape2.at<float>(i,0); //x's
|
|
||||||
matB.at<float>(i,1) = shape2.at<float>(i,1); //y's
|
|
||||||
} |
|
||||||
|
|
||||||
//Obtaining transformation params (w|a)
|
|
||||||
solve(matL, matB, tpsParameters, DECOMP_LU); |
|
||||||
//tpsParameters = matL.inv()*matB;
|
|
||||||
|
|
||||||
//Setting transform Cost and Shape reference
|
|
||||||
Mat w(tpsParameters, Rect(0,0,2,tpsParameters.rows-3)); |
|
||||||
Mat Q=w.t()*matK*w; |
|
||||||
transformCost=fabs(Q.at<float>(0,0)*Q.at<float>(1,1));//fabs(mean(Q.diag(0))[0]);//std::max(Q.at<float>(0,0),Q.at<float>(1,1));
|
|
||||||
tpsComputed=true; |
|
||||||
} |
|
||||||
|
|
||||||
Ptr <ThinPlateSplineShapeTransformer> createThinPlateSplineShapeTransformer(double regularizationParameter) |
|
||||||
{ |
|
||||||
return Ptr<ThinPlateSplineShapeTransformer>( new ThinPlateSplineShapeTransformerImpl(regularizationParameter) ); |
|
||||||
} |
|
||||||
|
|
||||||
} // cv
|
|
@ -1,10 +0,0 @@ |
|||||||
// This file is part of OpenCV project.
|
|
||||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
||||||
// of this distribution and at http://opencv.org/license.html.
|
|
||||||
#include "test_precomp.hpp" |
|
||||||
|
|
||||||
#if defined(HAVE_HPX) |
|
||||||
#include <hpx/hpx_main.hpp> |
|
||||||
#endif |
|
||||||
|
|
||||||
CV_TEST_MAIN("cv") |
|
@ -1,10 +0,0 @@ |
|||||||
// This file is part of OpenCV project.
|
|
||||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
||||||
// of this distribution and at http://opencv.org/license.html.
|
|
||||||
#ifndef __OPENCV_TEST_PRECOMP_HPP__ |
|
||||||
#define __OPENCV_TEST_PRECOMP_HPP__ |
|
||||||
|
|
||||||
#include "opencv2/ts.hpp" |
|
||||||
#include "opencv2/shape.hpp" |
|
||||||
|
|
||||||
#endif |
|
@ -1,324 +0,0 @@ |
|||||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
||||||
//
|
|
||||||
// By downloading, copying, installing or using the software you agree to this license.
|
|
||||||
// If you do not agree to this license, do not download, install,
|
|
||||||
// copy or use the software.
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// Intel License Agreement
|
|
||||||
// For Open Source Computer Vision Library
|
|
||||||
//
|
|
||||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
||||||
// Third party copyrights are property of their respective owners.
|
|
||||||
//
|
|
||||||
// Redistribution and use in source and binary forms, with or without modification,
|
|
||||||
// are permitted provided that the following conditions are met:
|
|
||||||
//
|
|
||||||
// * Redistribution's of source code must retain the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer.
|
|
||||||
//
|
|
||||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer in the documentation
|
|
||||||
// and/or other materials provided with the distribution.
|
|
||||||
//
|
|
||||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
||||||
// derived from this software without specific prior written permission.
|
|
||||||
//
|
|
||||||
// This software is provided by the copyright holders and contributors "as is" and
|
|
||||||
// any express or implied warranties, including, but not limited to, the implied
|
|
||||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
||||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
||||||
// indirect, incidental, special, exemplary, or consequential damages
|
|
||||||
// (including, but not limited to, procurement of substitute goods or services;
|
|
||||||
// loss of use, data, or profits; or business interruption) however caused
|
|
||||||
// and on any theory of liability, whether in contract, strict liability,
|
|
||||||
// or tort (including negligence or otherwise) arising in any way out of
|
|
||||||
// the use of this software, even if advised of the possibility of such damage.
|
|
||||||
//
|
|
||||||
//M*/
|
|
||||||
|
|
||||||
#include "test_precomp.hpp" |
|
||||||
|
|
||||||
namespace opencv_test { namespace { |
|
||||||
|
|
||||||
template <typename T, typename compute> |
|
||||||
class ShapeBaseTest : public cvtest::BaseTest |
|
||||||
{ |
|
||||||
public: |
|
||||||
typedef Point_<T> PointType; |
|
||||||
ShapeBaseTest(int _NSN, int _NP, float _CURRENT_MAX_ACCUR) |
|
||||||
: NSN(_NSN), NP(_NP), CURRENT_MAX_ACCUR(_CURRENT_MAX_ACCUR) |
|
||||||
{ |
|
||||||
// generate file list
|
|
||||||
vector<string> shapeNames; |
|
||||||
shapeNames.push_back("apple"); //ok
|
|
||||||
shapeNames.push_back("children"); // ok
|
|
||||||
shapeNames.push_back("device7"); // ok
|
|
||||||
shapeNames.push_back("Heart"); // ok
|
|
||||||
shapeNames.push_back("teddy"); // ok
|
|
||||||
for (vector<string>::const_iterator i = shapeNames.begin(); i != shapeNames.end(); ++i) |
|
||||||
{ |
|
||||||
for (int j = 0; j < NSN; ++j) |
|
||||||
{ |
|
||||||
std::stringstream filename; |
|
||||||
filename << cvtest::TS::ptr()->get_data_path() |
|
||||||
<< "shape/mpeg_test/" << *i << "-" << j + 1 << ".png"; |
|
||||||
filenames.push_back(filename.str()); |
|
||||||
} |
|
||||||
} |
|
||||||
// distance matrix
|
|
||||||
const int totalCount = (int)filenames.size(); |
|
||||||
distanceMat = Mat::zeros(totalCount, totalCount, CV_32F); |
|
||||||
} |
|
||||||
|
|
||||||
protected: |
|
||||||
void run(int) |
|
||||||
{ |
|
||||||
mpegTest(); |
|
||||||
displayMPEGResults(); |
|
||||||
} |
|
||||||
|
|
||||||
vector<PointType> convertContourType(const Mat& currentQuery) const |
|
||||||
{ |
|
||||||
if (currentQuery.empty()) { |
|
||||||
return vector<PointType>(); |
|
||||||
} |
|
||||||
vector<vector<Point> > _contoursQuery; |
|
||||||
findContours(currentQuery, _contoursQuery, RETR_LIST, CHAIN_APPROX_NONE); |
|
||||||
|
|
||||||
vector <PointType> contoursQuery; |
|
||||||
for (size_t border=0; border<_contoursQuery.size(); border++) |
|
||||||
{ |
|
||||||
for (size_t p=0; p<_contoursQuery[border].size(); p++) |
|
||||||
{ |
|
||||||
contoursQuery.push_back(PointType((T)_contoursQuery[border][p].x, |
|
||||||
(T)_contoursQuery[border][p].y)); |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
// In case actual number of points is less than n
|
|
||||||
for (int add=(int)contoursQuery.size()-1; add<NP; add++) |
|
||||||
{ |
|
||||||
contoursQuery.push_back(contoursQuery[contoursQuery.size()-add+1]); //adding dummy values
|
|
||||||
} |
|
||||||
|
|
||||||
// Uniformly sampling
|
|
||||||
cv::randShuffle(contoursQuery); |
|
||||||
int nStart=NP; |
|
||||||
vector<PointType> cont; |
|
||||||
for (int i=0; i<nStart; i++) |
|
||||||
{ |
|
||||||
cont.push_back(contoursQuery[i]); |
|
||||||
} |
|
||||||
return cont; |
|
||||||
} |
|
||||||
|
|
||||||
void mpegTest() |
|
||||||
{ |
|
||||||
// query contours (normal v flipped, h flipped) and testing contour
|
|
||||||
vector<PointType> contoursQuery1, contoursQuery2, contoursQuery3, contoursTesting; |
|
||||||
// reading query and computing its properties
|
|
||||||
for (vector<string>::const_iterator a = filenames.begin(); a != filenames.end(); ++a) |
|
||||||
{ |
|
||||||
// read current image
|
|
||||||
int aIndex = (int)(a - filenames.begin()); |
|
||||||
Mat currentQuery = imread(*a, IMREAD_GRAYSCALE); |
|
||||||
Mat flippedHQuery, flippedVQuery; |
|
||||||
flip(currentQuery, flippedHQuery, 0); |
|
||||||
flip(currentQuery, flippedVQuery, 1); |
|
||||||
// compute border of the query and its flipped versions
|
|
||||||
contoursQuery1=convertContourType(currentQuery); |
|
||||||
contoursQuery2=convertContourType(flippedHQuery); |
|
||||||
contoursQuery3=convertContourType(flippedVQuery); |
|
||||||
// compare with all the rest of the images: testing
|
|
||||||
for (vector<string>::const_iterator b = filenames.begin(); b != filenames.end(); ++b) |
|
||||||
{ |
|
||||||
int bIndex = (int)(b - filenames.begin()); |
|
||||||
float distance = 0; |
|
||||||
// skip self-comparisson
|
|
||||||
if (a != b) |
|
||||||
{ |
|
||||||
// read testing image
|
|
||||||
Mat currentTest = imread(*b, IMREAD_GRAYSCALE); |
|
||||||
// compute border of the testing
|
|
||||||
contoursTesting=convertContourType(currentTest); |
|
||||||
// compute shape distance
|
|
||||||
distance = cmp(contoursQuery1, contoursQuery2, |
|
||||||
contoursQuery3, contoursTesting); |
|
||||||
} |
|
||||||
distanceMat.at<float>(aIndex, bIndex) = distance; |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
void displayMPEGResults() |
|
||||||
{ |
|
||||||
const int FIRST_MANY=2*NSN; |
|
||||||
|
|
||||||
int corrects=0; |
|
||||||
int divi=0; |
|
||||||
for (int row=0; row<distanceMat.rows; row++) |
|
||||||
{ |
|
||||||
if (row%NSN==0) //another group
|
|
||||||
{ |
|
||||||
divi+=NSN; |
|
||||||
} |
|
||||||
for (int col=divi-NSN; col<divi; col++) |
|
||||||
{ |
|
||||||
int nsmall=0; |
|
||||||
for (int i=0; i<distanceMat.cols; i++) |
|
||||||
{ |
|
||||||
if (distanceMat.at<float>(row,col) > distanceMat.at<float>(row,i)) |
|
||||||
{ |
|
||||||
nsmall++; |
|
||||||
} |
|
||||||
} |
|
||||||
if (nsmall<=FIRST_MANY) |
|
||||||
{ |
|
||||||
corrects++; |
|
||||||
} |
|
||||||
} |
|
||||||
} |
|
||||||
float porc = 100*float(corrects)/(NSN*distanceMat.rows); |
|
||||||
std::cout << "Test result: " << porc << "%" << std::endl; |
|
||||||
if (porc >= CURRENT_MAX_ACCUR) |
|
||||||
ts->set_failed_test_info(cvtest::TS::OK); |
|
||||||
else |
|
||||||
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
||||||
} |
|
||||||
|
|
||||||
protected: |
|
||||||
int NSN; |
|
||||||
int NP; |
|
||||||
float CURRENT_MAX_ACCUR; |
|
||||||
vector<string> filenames; |
|
||||||
Mat distanceMat; |
|
||||||
compute cmp; |
|
||||||
}; |
|
||||||
|
|
||||||
//------------------------------------------------------------------------
|
|
||||||
// Test Shape_SCD.regression
|
|
||||||
//------------------------------------------------------------------------
|
|
||||||
|
|
||||||
class computeShapeDistance_Chi |
|
||||||
{ |
|
||||||
Ptr <ShapeContextDistanceExtractor> mysc; |
|
||||||
public: |
|
||||||
computeShapeDistance_Chi() |
|
||||||
{ |
|
||||||
const int angularBins=12; |
|
||||||
const int radialBins=4; |
|
||||||
const float minRad=0.2f; |
|
||||||
const float maxRad=2; |
|
||||||
mysc = createShapeContextDistanceExtractor(angularBins, radialBins, minRad, maxRad); |
|
||||||
mysc->setIterations(1); |
|
||||||
mysc->setCostExtractor(createChiHistogramCostExtractor(30,0.15f)); |
|
||||||
mysc->setTransformAlgorithm( createThinPlateSplineShapeTransformer() ); |
|
||||||
} |
|
||||||
float operator()(vector <Point2f>& query1, vector <Point2f>& query2, |
|
||||||
vector <Point2f>& query3, vector <Point2f>& testq) |
|
||||||
{ |
|
||||||
return std::min(mysc->computeDistance(query1, testq), |
|
||||||
std::min(mysc->computeDistance(query2, testq), |
|
||||||
mysc->computeDistance(query3, testq))); |
|
||||||
} |
|
||||||
}; |
|
||||||
|
|
||||||
TEST(Shape_SCD, regression) |
|
||||||
{ |
|
||||||
const int NSN_val=5;//10;//20; //number of shapes per class
|
|
||||||
const int NP_val=120; //number of points simplifying the contour
|
|
||||||
const float CURRENT_MAX_ACCUR_val=95; //99% and 100% reached in several tests, 95 is fixed as minimum boundary
|
|
||||||
ShapeBaseTest<float, computeShapeDistance_Chi> test(NSN_val, NP_val, CURRENT_MAX_ACCUR_val); |
|
||||||
test.safe_run(); |
|
||||||
} |
|
||||||
|
|
||||||
//------------------------------------------------------------------------
|
|
||||||
// Test ShapeEMD_SCD.regression
|
|
||||||
//------------------------------------------------------------------------
|
|
||||||
|
|
||||||
class computeShapeDistance_EMD |
|
||||||
{ |
|
||||||
Ptr <ShapeContextDistanceExtractor> mysc; |
|
||||||
public: |
|
||||||
computeShapeDistance_EMD() |
|
||||||
{ |
|
||||||
const int angularBins=12; |
|
||||||
const int radialBins=4; |
|
||||||
const float minRad=0.2f; |
|
||||||
const float maxRad=2; |
|
||||||
mysc = createShapeContextDistanceExtractor(angularBins, radialBins, minRad, maxRad); |
|
||||||
mysc->setIterations(1); |
|
||||||
mysc->setCostExtractor( createEMDL1HistogramCostExtractor() ); |
|
||||||
mysc->setTransformAlgorithm( createThinPlateSplineShapeTransformer() ); |
|
||||||
} |
|
||||||
float operator()(vector <Point2f>& query1, vector <Point2f>& query2, |
|
||||||
vector <Point2f>& query3, vector <Point2f>& testq) |
|
||||||
{ |
|
||||||
return std::min(mysc->computeDistance(query1, testq), |
|
||||||
std::min(mysc->computeDistance(query2, testq), |
|
||||||
mysc->computeDistance(query3, testq))); |
|
||||||
} |
|
||||||
}; |
|
||||||
|
|
||||||
TEST(ShapeEMD_SCD, regression) |
|
||||||
{ |
|
||||||
const int NSN_val=5;//10;//20; //number of shapes per class
|
|
||||||
const int NP_val=100; //number of points simplifying the contour
|
|
||||||
const float CURRENT_MAX_ACCUR_val=95; //98% and 99% reached in several tests, 95 is fixed as minimum boundary
|
|
||||||
ShapeBaseTest<float, computeShapeDistance_EMD> test(NSN_val, NP_val, CURRENT_MAX_ACCUR_val); |
|
||||||
test.safe_run(); |
|
||||||
} |
|
||||||
|
|
||||||
//------------------------------------------------------------------------
|
|
||||||
// Test Hauss.regression
|
|
||||||
//------------------------------------------------------------------------
|
|
||||||
|
|
||||||
class computeShapeDistance_Haussdorf |
|
||||||
{ |
|
||||||
Ptr <HausdorffDistanceExtractor> haus; |
|
||||||
public: |
|
||||||
computeShapeDistance_Haussdorf() |
|
||||||
{ |
|
||||||
haus = createHausdorffDistanceExtractor(); |
|
||||||
} |
|
||||||
float operator()(vector<Point> &query1, vector<Point> &query2, |
|
||||||
vector<Point> &query3, vector<Point> &testq) |
|
||||||
{ |
|
||||||
return std::min(haus->computeDistance(query1,testq), |
|
||||||
std::min(haus->computeDistance(query2,testq), |
|
||||||
haus->computeDistance(query3,testq))); |
|
||||||
} |
|
||||||
}; |
|
||||||
|
|
||||||
TEST(Hauss, regression) |
|
||||||
{ |
|
||||||
const int NSN_val=5;//10;//20; //number of shapes per class
|
|
||||||
const int NP_val = 180; //number of points simplifying the contour
|
|
||||||
const float CURRENT_MAX_ACCUR_val=85; //90% and 91% reached in several tests, 85 is fixed as minimum boundary
|
|
||||||
ShapeBaseTest<int, computeShapeDistance_Haussdorf> test(NSN_val, NP_val, CURRENT_MAX_ACCUR_val); |
|
||||||
test.safe_run(); |
|
||||||
} |
|
||||||
|
|
||||||
TEST(computeDistance, regression_4976) |
|
||||||
{ |
|
||||||
Mat a = imread(cvtest::findDataFile("shape/samples/1.png"), 0); |
|
||||||
Mat b = imread(cvtest::findDataFile("shape/samples/2.png"), 0); |
|
||||||
|
|
||||||
vector<vector<Point> > ca,cb; |
|
||||||
findContours(a, ca, cv::RETR_CCOMP, cv::CHAIN_APPROX_TC89_KCOS); |
|
||||||
findContours(b, cb, cv::RETR_CCOMP, cv::CHAIN_APPROX_TC89_KCOS); |
|
||||||
|
|
||||||
Ptr<HausdorffDistanceExtractor> hd = createHausdorffDistanceExtractor(); |
|
||||||
Ptr<ShapeContextDistanceExtractor> sd = createShapeContextDistanceExtractor(); |
|
||||||
|
|
||||||
double d1 = hd->computeDistance(ca[0],cb[0]); |
|
||||||
double d2 = sd->computeDistance(ca[0],cb[0]); |
|
||||||
|
|
||||||
EXPECT_NEAR(d1, 26.4196891785, 1e-3) << "HausdorffDistanceExtractor"; |
|
||||||
EXPECT_NEAR(d2, 0.25804194808, 1e-3) << "ShapeContextDistanceExtractor"; |
|
||||||
} |
|
||||||
|
|
||||||
}} // namespace
|
|
@ -1,121 +0,0 @@ |
|||||||
/*
|
|
||||||
* shape_context.cpp -- Shape context demo for shape matching |
|
||||||
*/ |
|
||||||
|
|
||||||
#include "opencv2/shape.hpp" |
|
||||||
#include "opencv2/imgcodecs.hpp" |
|
||||||
#include "opencv2/highgui.hpp" |
|
||||||
#include "opencv2/imgproc.hpp" |
|
||||||
#include <opencv2/core/utility.hpp> |
|
||||||
#include <iostream> |
|
||||||
#include <string> |
|
||||||
|
|
||||||
using namespace std; |
|
||||||
using namespace cv; |
|
||||||
|
|
||||||
static void help() |
|
||||||
{ |
|
||||||
printf("\n" |
|
||||||
"This program demonstrates a method for shape comparison based on Shape Context\n" |
|
||||||
"You should run the program providing a number between 1 and 20 for selecting an image in the folder ../data/shape_sample.\n" |
|
||||||
"Call\n" |
|
||||||
"./shape_example [number between 1 and 20, 1 default]\n\n"); |
|
||||||
} |
|
||||||
|
|
||||||
static vector<Point> simpleContour( const Mat& currentQuery, int n=300 ) |
|
||||||
{ |
|
||||||
vector<vector<Point> > _contoursQuery; |
|
||||||
vector <Point> contoursQuery; |
|
||||||
findContours(currentQuery, _contoursQuery, RETR_LIST, CHAIN_APPROX_NONE); |
|
||||||
for (size_t border=0; border<_contoursQuery.size(); border++) |
|
||||||
{ |
|
||||||
for (size_t p=0; p<_contoursQuery[border].size(); p++) |
|
||||||
{ |
|
||||||
contoursQuery.push_back( _contoursQuery[border][p] ); |
|
||||||
} |
|
||||||
} |
|
||||||
|
|
||||||
// In case actual number of points is less than n
|
|
||||||
int dummy=0; |
|
||||||
for (int add=(int)contoursQuery.size()-1; add<n; add++) |
|
||||||
{ |
|
||||||
contoursQuery.push_back(contoursQuery[dummy++]); //adding dummy values
|
|
||||||
} |
|
||||||
|
|
||||||
// Uniformly sampling
|
|
||||||
cv::randShuffle(contoursQuery); |
|
||||||
vector<Point> cont; |
|
||||||
for (int i=0; i<n; i++) |
|
||||||
{ |
|
||||||
cont.push_back(contoursQuery[i]); |
|
||||||
} |
|
||||||
return cont; |
|
||||||
} |
|
||||||
|
|
||||||
int main(int argc, char** argv) |
|
||||||
{ |
|
||||||
string path = "../data/shape_sample/"; |
|
||||||
cv::CommandLineParser parser(argc, argv, "{help h||}{@input|1|}"); |
|
||||||
if (parser.has("help")) |
|
||||||
{ |
|
||||||
help(); |
|
||||||
return 0; |
|
||||||
} |
|
||||||
int indexQuery = parser.get<int>("@input"); |
|
||||||
if (!parser.check()) |
|
||||||
{ |
|
||||||
parser.printErrors(); |
|
||||||
help(); |
|
||||||
return 1; |
|
||||||
} |
|
||||||
if (indexQuery < 1 || indexQuery > 20) |
|
||||||
{ |
|
||||||
help(); |
|
||||||
return 1; |
|
||||||
} |
|
||||||
cv::Ptr <cv::ShapeContextDistanceExtractor> mysc = cv::createShapeContextDistanceExtractor(); |
|
||||||
|
|
||||||
Size sz2Sh(300,300); |
|
||||||
stringstream queryName; |
|
||||||
queryName<<path<<indexQuery<<".png"; |
|
||||||
Mat query=imread(queryName.str(), IMREAD_GRAYSCALE); |
|
||||||
Mat queryToShow; |
|
||||||
resize(query, queryToShow, sz2Sh, 0, 0, INTER_LINEAR_EXACT); |
|
||||||
imshow("QUERY", queryToShow); |
|
||||||
moveWindow("TEST", 0,0); |
|
||||||
vector<Point> contQuery = simpleContour(query); |
|
||||||
int bestMatch = 0; |
|
||||||
float bestDis=FLT_MAX; |
|
||||||
for ( int ii=1; ii<=20; ii++ ) |
|
||||||
{ |
|
||||||
if (ii==indexQuery) continue; |
|
||||||
waitKey(30); |
|
||||||
stringstream iiname; |
|
||||||
iiname<<path<<ii<<".png"; |
|
||||||
cout<<"name: "<<iiname.str()<<endl; |
|
||||||
Mat iiIm=imread(iiname.str(), 0); |
|
||||||
Mat iiToShow; |
|
||||||
resize(iiIm, iiToShow, sz2Sh, 0, 0, INTER_LINEAR_EXACT); |
|
||||||
imshow("TEST", iiToShow); |
|
||||||
moveWindow("TEST", sz2Sh.width+50,0); |
|
||||||
vector<Point> contii = simpleContour(iiIm); |
|
||||||
float dis = mysc->computeDistance( contQuery, contii ); |
|
||||||
if ( dis<bestDis ) |
|
||||||
{ |
|
||||||
bestMatch = ii; |
|
||||||
bestDis = dis; |
|
||||||
} |
|
||||||
std::cout<<" distance between "<<queryName.str()<<" and "<<iiname.str()<<" is: "<<dis<<std::endl; |
|
||||||
} |
|
||||||
destroyWindow("TEST"); |
|
||||||
stringstream bestname; |
|
||||||
bestname<<path<<bestMatch<<".png"; |
|
||||||
Mat iiIm=imread(bestname.str(), 0); |
|
||||||
Mat bestToShow; |
|
||||||
resize(iiIm, bestToShow, sz2Sh, 0, 0, INTER_LINEAR_EXACT); |
|
||||||
imshow("BEST MATCH", bestToShow); |
|
||||||
moveWindow("BEST MATCH", sz2Sh.width+50,0); |
|
||||||
waitKey(); |
|
||||||
|
|
||||||
return 0; |
|
||||||
} |
|
Before Width: | Height: | Size: 705 B |
Before Width: | Height: | Size: 1.0 KiB |
Before Width: | Height: | Size: 722 B |
Before Width: | Height: | Size: 437 B |
Before Width: | Height: | Size: 443 B |
Before Width: | Height: | Size: 1.8 KiB |
Before Width: | Height: | Size: 803 B |
Before Width: | Height: | Size: 830 B |
Before Width: | Height: | Size: 3.0 KiB |
Before Width: | Height: | Size: 3.2 KiB |
Before Width: | Height: | Size: 1.5 KiB |
Before Width: | Height: | Size: 813 B |
Before Width: | Height: | Size: 1.5 KiB |
Before Width: | Height: | Size: 2.2 KiB |
Before Width: | Height: | Size: 2.4 KiB |
Before Width: | Height: | Size: 852 B |
Before Width: | Height: | Size: 969 B |
Before Width: | Height: | Size: 874 B |
Before Width: | Height: | Size: 851 B |
Before Width: | Height: | Size: 1.2 KiB |