clean code; fix problems in documentation

pull/158/head
marina.kolpakova 12 years ago
parent bd3179bda8
commit 05cd88ae42
  1. 6
      modules/gpu/doc/object_detection.rst
  2. 4
      modules/gpu/include/opencv2/gpu/gpu.hpp
  3. 35
      modules/gpu/perf/perf_softcascade.cpp
  4. 2
      modules/gpu/src/cuda/icf-sc.cu
  5. 8
      modules/gpu/src/icf.hpp
  6. 2
      modules/gpu/src/softcascade.cpp
  7. 50
      modules/gpu/test/test_softcascade.cpp

@ -200,7 +200,7 @@ The function is mainly used to learn the classifier.
Soft Cascade Classifier
======================
==========================
Soft Cascade Classifier for Object Detection
----------------------------------------------------------
@ -226,7 +226,7 @@ The sample has been rejected if it fall rejection threshold. So stageless cascad
SCascade
----------------
.. ocv:class:: SCascade
.. ocv:class:: SCascade : public Algorithm
Implementation of soft (stageless) cascaded detector. ::
@ -248,7 +248,7 @@ Implementation of soft (stageless) cascaded detector. ::
virtual ~SCascade();
virtual bool load(const FileNode& fn);
virtual void detect(InputArray image, InputArray rois, OutputArray objects, Stream& stream = Stream::Null()) const;
void genRoi(InputArray roi, OutputArray mask, Stream& stream = Stream::Null()) const;
virtual void genRoi(InputArray roi, OutputArray mask, Stream& stream = Stream::Null()) const;
};

@ -1586,7 +1586,7 @@ public:
// There non zero value mean that detector should be executed in this point.
// Param mask is an output mask
// Param stream is stream is a high-level CUDA stream abstraction used for asynchronous execution
void genRoi(InputArray roi, OutputArray mask, Stream& stream = Stream::Null()) const;
virtual void genRoi(InputArray roi, OutputArray mask, Stream& stream = Stream::Null()) const;
private:
@ -1600,6 +1600,8 @@ private:
int rejCriteria;
};
CV_EXPORTS bool initModule_gpu(void);
////////////////////////////////// SURF //////////////////////////////////////////
class CV_EXPORTS SURF_GPU

@ -33,18 +33,6 @@ namespace {
else if (a.w != b.w) return a.w < b.w;
else return a.h < b.h;
}
// bool operator()(const cv::SoftCascade::Detection& a,
// const cv::SoftCascade::Detection& b) const
// {
// const cv::Rect& ra = a.rect;
// const cv::Rect& rb = b.rect;
// if (ra.x != rb.x) return ra.x < rb.x;
// else if (ra.y != rb.y) return ra.y < rb.y;
// else if (ra.width != rb.width) return ra.width < rb.width;
// else return ra.height < rb.height;
// }
};
cv::Mat sortDetections(cv::gpu::GpuMat& objects)
@ -99,29 +87,6 @@ RUN_GPU(SCascadeTest, detect)
NO_CPU(SCascadeTest, detect)
// RUN_CPU(SCascadeTest, detect)
// {
// cv::Mat colored = readImage(GET_PARAM(1));
// ASSERT_FALSE(colored.empty());
// cv::SCascade cascade;
// ASSERT_TRUE(cascade.load(getDataPath(GET_PARAM(0))));
// std::vector<cv::Rect> rois;
// typedef cv::SCascade::Detection Detection;
// std::vector<Detection>objects;
// cascade.detectMultiScale(colored, rois, objects);
// TEST_CYCLE()
// {
// cascade.detectMultiScale(colored, rois, objects);
// }
// std::sort(objects.begin(), objects.end(), DetectionLess());
// SANITY_CHECK(objects);
// }
static cv::Rect getFromTable(int idx)
{
static const cv::Rect rois[] =

@ -49,7 +49,7 @@
namespace cv { namespace gpu { namespace device {
namespace icf {
// ToDo: use textures or ancached load instruction.
// ToDo: use textures or uncached load instruction.
__global__ void magToHist(const uchar* __restrict__ mag,
const float* __restrict__ angle, const int angPitch,
uchar* __restrict__ hog, const int hogPitch, const int fh)

@ -45,7 +45,6 @@
#define __OPENCV_ICF_HPP__
#include <opencv2/gpu/device/common.hpp>
#include <stdio.h>
#if defined __CUDACC__
# define __device __device__ __forceinline__
@ -93,12 +92,7 @@ struct __align__(8) Node
enum { THRESHOLD_MASK = 0x0FFFFFFF };
Node(const uchar4 r, const uint ch, const uint t) : rect(r), threshold(t + (ch << 28))
{
// printf("%d\n", t);
// printf("[%d %d %d %d] %d, %d\n",rect.x, rect.y, rect.z, rect.w, (int)(threshold >> 28),
// (int)(0x0FFFFFFF & threshold));
}
Node(const uchar4 r, const uint ch, const uint t) : rect(r), threshold(t + (ch << 28)) {}
};
struct __align__(16) Detection

@ -142,7 +142,7 @@ struct cv::gpu::SCascade::Fields
static const char * const SC_F_RECT = "rect";
FileNode fn = root[SC_OCTAVES];
if (fn.empty()) return false;
if (fn.empty()) return false;
using namespace device::icf;

@ -205,56 +205,6 @@ GPU_TEST_P(SCascadeTestRoi, detect,
}
// typedef ::testing::TestWithParam<std::tr1::tuple<cv::gpu::DeviceInfo, std::string, std::string, int> > SCascadeTestLevel;
// GPU_TEST_P(SCascadeTestLevel, detect,
// testing::Combine(
// ALL_DEVICES,
// testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
// testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")),
// testing::Range(0, 47)
// ))
// {
// cv::gpu::setDevice(GET_PARAM(0).deviceID());
// cv::gpu::SCascade cascade;
// cv::FileStorage fs(perf::TestBase::getDataPath(GET_PARAM(1)), cv::FileStorage::READ);
// ASSERT_TRUE(fs.isOpened());
// ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
// cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + GET_PARAM(2));
// ASSERT_FALSE(coloredCpu.empty());
// typedef cv::gpu::SCascade::Detection Detection;
// GpuMat colored(coloredCpu), objectBoxes(1, 100 * sizeof(Detection), CV_8UC1), rois(colored.size(), CV_8UC1);
// rois.setTo(1);
// cv::gpu::GpuMat trois;
// cascade.genRoi(rois, trois);
// objectBoxes.setTo(0);
// int level = GET_PARAM(3);
// cascade.detect(colored, trois, objectBoxes, level);
// cv::Mat dt(objectBoxes);
// Detection* dts = ((Detection*)dt.data) + 1;
// int* count = dt.ptr<int>(0);
// cv::Mat result(coloredCpu);
// printTotal(std::cout, *count);
// for (int i = 0; i < *count; ++i)
// {
// Detection d = dts[i];
// print(std::cout, d);
// cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1);
// }
// writeResult(result, level);
// SHOW(result);
// }
TEST(SCascadeTest, readCascade)
{
std::string xml = cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/icf-template.xml";

Loading…
Cancel
Save