|
|
|
@ -58,7 +58,7 @@ EM::EM(int _nclusters, int _covMatType, const TermCriteria& _criteria) |
|
|
|
|
|
|
|
|
|
EM::~EM() |
|
|
|
|
{ |
|
|
|
|
clear(); |
|
|
|
|
//clear();
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void EM::clear() |
|
|
|
@ -322,6 +322,8 @@ void EM::clusterTrainSamples() |
|
|
|
|
int nsamples = trainSamples.rows; |
|
|
|
|
|
|
|
|
|
// Cluster samples, compute/update means
|
|
|
|
|
|
|
|
|
|
// Convert samples and means to 32F, because kmeans requires this type.
|
|
|
|
|
Mat trainSamplesFlt, meansFlt; |
|
|
|
|
if(trainSamples.type() != CV_32FC1) |
|
|
|
|
trainSamples.convertTo(trainSamplesFlt, CV_32FC1); |
|
|
|
@ -338,6 +340,7 @@ void EM::clusterTrainSamples() |
|
|
|
|
Mat labels; |
|
|
|
|
kmeans(trainSamplesFlt, nclusters, labels, TermCriteria(TermCriteria::COUNT, means.empty() ? 10 : 1, 0.5), 10, KMEANS_PP_CENTERS, meansFlt); |
|
|
|
|
|
|
|
|
|
// Convert samples and means back to 64F.
|
|
|
|
|
CV_Assert(meansFlt.type() == CV_32FC1); |
|
|
|
|
if(trainSamples.type() != CV_64FC1) |
|
|
|
|
{ |
|
|
|
@ -476,6 +479,8 @@ void EM::computeProbabilities(const Mat& sample, int& label, Mat* probs, double* |
|
|
|
|
// L_ik = log(weight_k) - 0.5 * log(|det(cov_k)|) - 0.5 *(x_i - mean_k)' cov_k^(-1) (x_i - mean_k)]
|
|
|
|
|
// q = arg(max_k(L_ik))
|
|
|
|
|
// probs_ik = exp(L_ik - L_iq) / (1 + sum_j!=q (exp(L_ij - L_iq))
|
|
|
|
|
// see Alex Smola's blog http://blog.smola.org/page/2 for
|
|
|
|
|
// details on the log-sum-exp trick
|
|
|
|
|
|
|
|
|
|
CV_Assert(!means.empty()); |
|
|
|
|
CV_Assert(sample.type() == CV_64FC1); |
|
|
|
@ -511,29 +516,22 @@ void EM::computeProbabilities(const Mat& sample, int& label, Mat* probs, double* |
|
|
|
|
if(!probs && !logLikelihood) |
|
|
|
|
return; |
|
|
|
|
|
|
|
|
|
Mat expL_Lmax(L.size(), CV_64FC1); |
|
|
|
|
double maxLVal = L.at<double>(label); |
|
|
|
|
Mat expL_Lmax = L; // exp(L_ij - L_iq)
|
|
|
|
|
for(int i = 0; i < L.cols; i++) |
|
|
|
|
expL_Lmax.at<double>(i) = std::exp(L.at<double>(i) - maxLVal); |
|
|
|
|
|
|
|
|
|
double partSum = 0; // sum_j!=q (exp(L_ij - L_iq))
|
|
|
|
|
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++) |
|
|
|
|
if(clusterIndex != label) |
|
|
|
|
partSum += expL_Lmax.at<double>(clusterIndex); |
|
|
|
|
double expDiffSum = sum(expL_Lmax)[0]; // sum_j(exp(L_ij - L_iq))
|
|
|
|
|
|
|
|
|
|
if(probs) |
|
|
|
|
{ |
|
|
|
|
probs->create(1, nclusters, CV_64FC1); |
|
|
|
|
double factor = 1./(1 + partSum); |
|
|
|
|
double factor = 1./expDiffSum; |
|
|
|
|
expL_Lmax *= factor; |
|
|
|
|
expL_Lmax.copyTo(*probs); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if(logLikelihood) |
|
|
|
|
{ |
|
|
|
|
double logWeightProbs = std::log((1 + partSum) * std::exp(maxLVal)) - 0.5 * dim * CV_LOG2PI; |
|
|
|
|
*logLikelihood = logWeightProbs; |
|
|
|
|
} |
|
|
|
|
*logLikelihood = std::log(expDiffSum) + maxLVal - 0.5 * dim * CV_LOG2PI; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void EM::eStep() |
|
|
|
|